
PyGTK 2.0 Reference Manual
 Next

PyGTK 2.0 Reference Manual

John Finlay

Version 2.5.2

March 5, 2005

Revision History
Revision 2.5.2 March 5, 2005
Revision 2.5.1 December 23, 2004
First release covering PyGTK 2.5.1 (GTK+ 2.6)
Revision 2.5.0 November 15, 2004
First release covering PyGTK 2.5.x
Revision 2.4.11 October 3, 2004
Revision 2.4.10 August 11, 2004
Revision 2.4.9 August 3, 2004
Revision 2.4.8 July 1, 2004
Revision 2.4.7 May 19, 2004
Revision 2.4.6 May 17, 2004
Revision 2.4.4 May 5, 2004
Revision 2.4.2 April 29, 2004
Revision 2.4.0 April 27, 2004
First release covering PyGTK 2.2 and 2.4
Revision 1.9 January 28, 2004
Revision 1.8 October 7, 2003
Revision 1.7 August 23, 2003
Revision 1.6 July 20, 2003
Revision 1.5 July 17, 2003
Revision 1.4 July 16, 2003
Revision 1.3 July 15, 2003
Revision 1.2 July 12, 2003
Revision 1.1 July 11, 2003
Revision 1.0 July 2, 2003
Frist release for PyGTK 2.0
Abstract

This reference describes the classes of the Python PyGTK module.

Table of Contents

Introduction
Major Changes since Version 1.9
Reference Page Format

PyGTK 2.0 Reference Manual

PyGTK 2.0 Reference Manual 1

Copyright and License Notice
PyGTK Class Hierarchy
The gobject Class Reference
The gtk Class Reference
The gtk.gdk Class Reference
The gtk.glade Class Reference
The pango Class Reference
A. ChangeLog

List of Examples

1. A UI definition

 Next
 Introduction

gtk.gdk.Atom
Prev The gtk.gdk Class Reference Next

gtk.gdk.Atom

gtk.gdk.Atom � an object representing an interned string

Synopsis

class gtk.gdk.Atom:
gtk.gdk.atom_intern(name, only_if_exists=FALSE)

Description

gtk.gdk.Atom is a PyGTK class that wraps the GTK+ GdkAtom − an unsigned integer representing an
interned string. An interned string is a string that has an internal GTK+ mapping between an atom and a string.
gtk.gdk.Atom has no methods. A copy of the interned string can be retrieved by using the Python str()
function. gtk.gdk.atom_intern() will return a gtk.gdk.Atom referencing an existing interned string but will
intern a string if it isn't already interned.

gtk.gdk.Atom objects are used to provide the targets for gtk.SelectionData objects that are used by
gtk.Clipboard and gtk.TreeView, objects and for drag and drop (see gtk.gdk.DragContext,
gtk.gdk.Window and gtk.TreeDragSource and gtk.Widget for more information). The
advantage of the interned string is that it is easy to pass between processes and even systems since only an
integer value is passed.

PyGTK 2.4 has a number of pre−defined atoms that map to builtin GTK+ interned string atoms. The interned
strings and the PyGTK 2.4 gtk.gdk.Atom objects are:

"PRIMARY" gtk.gdk.SELECTION_PRIMARY

"SECONDARY" gtk.gdk.SELECTION_SECONDARY

"CLIPBOARD" gtk.gdk.SELECTION_CLIPBOARD

"ATOM" gtk.gdk.SELECTION_TYPE_ATOM

"BITMAP" gtk.gdk.TARGET_BITMAP or gtk.gdk.SELECTION_TYPE_BITMAP
"COLORMAP" gtk.gdk.TARGET_COLORMAP or gtk.gdk.SELECTION_TYPE_COLORMAP

PyGTK 2.0 Reference Manual

John Finlay 2

"DRAWABLE" gtk.gdk.TARGET_DRAWABLE or gtk.gdk.SELECTION_TYPE_DRAWABLE
"PIXMAP" gtk.gdk.TARGET_PIXMAP or gtk.gdk.SELECTION_TYPE_PIXMAP
"STRING" gtk.gdk.TARGET_STRING or gtk.gdk.SELECTION_TYPE_STRING
"WINDOW" gtk.gdk.SELECTION_TYPE_WINDOW

Also in PyGTK 2.4, comparison between a string and a gtk.gdk.Atom is supported.

Constructor

gtk.gdk.atom_intern(name, only_if_exists=FALSE)

name : the string to be interned or retrieved
only_if_exists : this value is ignored
Returns : a new gtk.gdk.Atom or None
Creates a gtk.gdk.Atom referencing the interned string specified by name. An interned string is a string
that has a GTK+ mapping to an unsigned integer value. This constructor will intern the string and create a
gtk.gdk.Atom if it does not already exist. only_if_exists is ignored and essentially is always
FALSE.

Prev Up Next
The gtk.gdk Class Reference Home gtk.gdk.Color

gtk.gdk.Color
Prev The gtk.gdk Class Reference Next

gtk.gdk.Color

gtk.gdk.Color � an object holding color information

Synopsis

class gtk.gdk.Color(gobject.GBoxed):
gtk.gdk.Color(red=0, green=0, blue=0, pixel=0)

Functions

 def gtk.gdk.color_parse(spec)

Attributes

"pixel" Read−Write The pixel value of the color

"red" Read−Write The value of the red component of the color

"green" Read−Write The value of the green component of the color

"blue" Read−Write The value of the blue component of the color

Description

A gtk.gdk.Color contains the values of a color that may or may not be allocated. The red, green and blue
attributes are specified by an unsigned integer in the range 0−65535. The pixel value is an index into the

PyGTK 2.0 Reference Manual

Description 3

colormap that has allocated the gtk.gdk.Color. Typically a color is allocated by using the
gdk.Colormap.alloc_color() method. Unallocated colors can be used to specify the color attributes of
gtk.Style objects since these colors will be allocated when an attempt is made to use the gtk.Style
object.

Constructor

gtk.gdk.Color(red=0, green=0, blue=0, pixel=0)

red : The red color component in the range 0−65535
green : The green color component in the range 0−65535
blue : The blue color component in the range 0−65535
pixel : The index of the color when allocated in its colormap
Returns : a new gtk.gdk.Color object
Creates a new gtk.gdk.Color object with the color component values specified by red, green and
blue (all default to 0) and using the pixel value specified by pixel. The value of pixel will be
overwritten when the color is allocated.

Functions

gtk.gdk.color_parse

 def gtk.gdk.color_parse(spec)

spec : a string containing a color specification
Returns : a gtk.gdk.Color object
The gtk.gdk.color_parse() method returns the gtk.gdk.Color specified by spec. The format of
spec is a string containing the specification of the color either as a name (e.g. "navajowhite") as specified in
the X11 rgb.txt file or as a hexadecimal string (e.g. "#FF0078"). The hexadecimal string must start with '#'
and must contain 3 sets of hexadecimal digits of the same length (i.e. 1, 2 ,3 or 4 digits). For example the
following specify the same color value: "#F0A", "#FF00AA", "#FFF000AAA" and "#FFFF0000AAAA". The
gtk.gdk.Color is not allocated.

This function raise the ValueError (TypeError prior to PyGTK 2.4) exception if unable to parse the color
specification

Prev Up Next
gtk.gdk.Atom Home gtk.gdk.Colormap

gtk.gdk.Colormap
Prev The gtk.gdk Class Reference Next

gtk.gdk.Colormap

gtk.gdk.Colormap � a table of color display component values

PyGTK 2.0 Reference Manual

Description 4

Synopsis

class gtk.gdk.Colormap(gobject.GObject):
gtk.gdk.Colormap(visual, allocate)

 def alloc_color(color, writeable=FALSE, best_match=TRUE)
 def alloc_color(spec, writeable=FALSE, best_match=TRUE)
 def alloc_color(red, green, blue, writeable=FALSE, best_match=TRUE)
 def get_visual()
 def get_screen()
 def query_color(pixel)

Functions

 def gtk.gdk.colormap_get_system()

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Colormap

Description

A gtk.gdk.Colormap contains a table mapping index values to the RGB color component values used to
display the colors. The index value corresponds to the pixel value of a gtk.gdk.Color object and the RGB
component values correspond to the gtk.gdk.Color red, green and blue values. The
gtk.Widget.get_colormap() method is used to retrieve the colormap used by a widget. The default
system colormap is retrieved by using the gtk.gdk.colormap_get_system() function. The
alloc_color() method has three signatures to allow the color specification using an unallocated
gtk.gdk.Color, a string or a RGB trio.

Constructor

gtk.gdk.Colormap(visual, allocate)

visual : the gtk.gdk.Visual to use

allocate : if TRUE, the newly created colormap will be a private colormap, and all colors in it will be
allocated for the applications use.

Returns : a gtk.gdk.Colormap object
Creates a new gtk.gdk.Colormap for the gtk.gdk.Visual specified by visual. If allocate is
TRUE the colormap will be a private colormap for the sole use of the application.

Methods

gtk.gdk.Colormap.alloc_color

 def alloc_color(color, writeable=FALSE, best_match=TRUE)

color : an unallocated gtk.gdk.Color
writeable : if TRUE the colormap entry is writeable.
best_match : if TRUE a best match to the requested color can be used if needed.
Returns : a new gtk.gdk.Color object

PyGTK 2.0 Reference Manual

Synopsis 5

The alloc_color() method allocates the color specified by color in the colormap. The value of color
should be an unallocated gtk.gdk.Color. If writeable is TRUE the color is allocated writeable which
means it can be changed after allocation but cannot be shared with another application. If best_match is
TRUE the closest match to the color will be returned if the request could not be satisfied exactly.

This method raises:

the ValueError (TypeError prior to PyGTK 2.4) exception if unable to parse the color specification•
the RuntimeError exception if the color could not be allocated•

gtk.gdk.Colormap.alloc_color

 def alloc_color(spec, writeable=FALSE, best_match=TRUE)

spec : a string containing a color specification
writeable : if TRUE the colormap entry is writeable.
best_match : if TRUE a best match to the requested color can be used if needed.
Returns : a gtk.gdk.Color object
The alloc_color() method allocates the color specified by spec in the colormap. The format of spec is
a string containing the specification of the color either as a name (e.g. "navajowhite") as specified in the X11
rgb.txt file or as a hexadecimal string (e.g. "#FF0078"). The hexadecimal string must start with '#' and
must contain 3 sets of hexadecimal digits of the same length (i.e. 1, 2 ,3 or 4 digits). For example the
following specify the same color value: "#F0A", "#FF00AA", "#FFF000AAA" and "#FFFF0000AAAA". If
writeable is TRUE the color is allocated writeable which means it can be changed after allocation but
cannot be shared with another application. If best_match is TRUE the closest match to the color will be
returned if the request could not be satisfied exactly.

This method raises:

the ValueError (TypeError prior to PyGTK 2.4) exception if unable to parse the color specification•
the RuntimeError exception if the color could not be allocated•

gtk.gdk.Colormap.alloc_color

 def alloc_color(red, green, blue, writeable=FALSE, best_match=TRUE)

red : the red component of the color in the range 0−65535
green : the green component of the color in the range 0−65535
blue : the blue component of the color in the range 0−65535
writeable : a gboolean
best_match : a gboolean
Returns : a gtk.gdk.Color object
The alloc_color() method allocates the color specified by the component values red, green and blue.
If writeable is TRUE the color is allocated writeable which means it can be changed after allocation but
cannot be shared with another application. If best_match is TRUE the closest match to the color will be
returned if the request could not be satisfied exactly.

This method raises:

the ValueError (TypeError prior to PyGTK 2.4) exception if unable to parse the color specification•
the RuntimeError exception if the color could not be allocated•

PyGTK 2.0 Reference Manual

gtk.gdk.Colormap.alloc_color 6

gtk.gdk.Colormap.get_visual

 def get_visual()

Returns : a gtk.gdk.Visual
The get_visual() method returns the visual the colormap was created for. See the gtk.gdk.Colormap
constructor.

gtk.gdk.Colormap.get_screen

 def get_screen()

Returns : a gtk.gdk.Screen
The get_screen() method returns the gtk.gdk.Screen the colormap was created for.

gtk.gdk.Colormap.query_color

 def query_color()

pixel : a pixel value
Returns : the gtk.gdk.Color corresponding to pixel

Note

This method is available in PyGTK 2.4 and above.

The query_color() method returns the gtk.gdk.Color corresponding to the hardware pixel value
specified by pixel. pixel must be a valid pixel in the colormap. It's a programmer error to call this method
with a pixel which is not in the colormap. Hardware pixels are normally obtained from the alloc_color()
method, or from a gtk.gdk.Image object. (A gtk.gdk.Image contains image data in hardware format
while a gtk.gdk.Pixbuf contains image data in a canonical 24−bit RGB format.)

Functions

gtk.gdk.colormap_get_system

 def gtk.gdk.colormap_get_system()

Returns : the system' default colormap
The gtk.gdk.colormap_get_system() method returns the default colormap used by the system on the
default screen. See the gtk.gdk.Screen.get_system_colormap() method for more information.

Prev Up Next
gtk.gdk.Color Home gtk.gdk.Cursor

gtk.gdk.Cursor
Prev The gtk.gdk Class Reference Next

gtk.gdk.Cursor

gtk.gdk.Cursor � standard and pixmap cursors

PyGTK 2.0 Reference Manual

gtk.gdk.Colormap.get_visual 7

Synopsis

class gtk.gdk.Cursor(gobject.GBoxed):
gtk.gdk.Cursor(cursor_type)
gtk.gdk.Cursor(display, cursor_type)
gtk.gdk.Cursor(display, pixbuf, x, y)
gtk.gdk.Cursor(source, mask, fg, bg, x, y)

 def get_display()

Description

A gtk.gdk.Cursor represents a bitmap image used for the mouse pointer. Each gtk.gdk.Window can
have its own cursor. By default a gtk.gdk.Window uses its parent's cursor. A standard set of cursors is
provided in PyGTK:

gtk.gdk.X_CURSOR

gtk.gdk.ARROW

gtk.gdk.BASED_ARROW_DOWN

gtk.gdk.BASED_ARROW_UP

gtk.gdk.BOAT

gtk.gdk.BOGOSITY

gtk.gdk.BOTTOM_LEFT_CORNER

gtk.gdk.BOTTOM_RIGHT_CORNER

gtk.gdk.BOTTOM_SIDE

gtk.gdk.BOTTOM_TEE

gtk.gdk.BOX_SPIRAL

gtk.gdk.CENTER_PTR

gtk.gdk.CIRCLE

gtk.gdk.CLOCK

gtk.gdk.COFFEE_MUG

gtk.gdk.CROSS

gtk.gdk.CROSS_REVERSE

gtk.gdk.CROSSHAIR

gtk.gdk.DIAMOND_CROSS

gtk.gdk.DOT

gtk.gdk.DOTBOX

gtk.gdk.DOUBLE_ARROW

gtk.gdk.DRAFT_LARGE

gtk.gdk.DRAFT_SMALL

gtk.gdk.DRAPED_BOX

gtk.gdk.EXCHANGE

gtk.gdk.FLEUR

gtk.gdk.GOBBLER

gtk.gdk.GUMBY

gtk.gdk.HAND1

gtk.gdk.HAND2

gtk.gdk.HEART

PyGTK 2.0 Reference Manual

Synopsis 8

gtk.gdk.ICON

gtk.gdk.IRON_CROSS

gtk.gdk.LEFT_PTR

gtk.gdk.LEFT_SIDE

gtk.gdk.LEFT_TEE

gtk.gdk.LEFTBUTTON

gtk.gdk.LL_ANGLE

gtk.gdk.LR_ANGLE

gtk.gdk.MAN

gtk.gdk.MIDDLEBUTTON

gtk.gdk.MOUSE

gtk.gdk.PENCIL

gtk.gdk.PIRATE

gtk.gdk.PLUS

gtk.gdk.QUESTION_ARROW

gtk.gdk.RIGHT_PTR

gtk.gdk.RIGHT_SIDE

gtk.gdk.RIGHT_TEE

gtk.gdk.RIGHTBUTTON

gtk.gdk.RTL_LOGO

gtk.gdk.SAILBOAT

gtk.gdk.SB_DOWN_ARROW

gtk.gdk.SB_H_DOUBLE_ARROW

gtk.gdk.SB_LEFT_ARROW

gtk.gdk.SB_RIGHT_ARROW

gtk.gdk.SB_UP_ARROW

gtk.gdk.SB_V_DOUBLE_ARROW

gtk.gdk.SHUTTLE

gtk.gdk.SIZING

gtk.gdk.SPIDER

gtk.gdk.SPRAYCAN

gtk.gdk.STAR

gtk.gdk.TARGET

gtk.gdk.TCROSS

gtk.gdk.TOP_LEFT_ARROW

gtk.gdk.TOP_LEFT_CORNER

gtk.gdk.TOP_RIGHT_CORNER

gtk.gdk.TOP_SIDE

gtk.gdk.TOP_TEE

gtk.gdk.TREK

gtk.gdk.UL_ANGLE

gtk.gdk.UMBRELLA

gtk.gdk.UR_ANGLE

gtk.gdk.WATCH

gtk.gdk.XTERM

PyGTK 2.0 Reference Manual

Description 9

Constructor

gtk.gdk.Cursor(cursor_type)

cursor_type : the standard cursor to create
Returns : a new gtk.gdk.Cursor
Creates the new gtk.gdk.Cursor from a builtin cursor specified by cursor_type. To make the cursor
invisible, see the description of the gtk.gdk.Cursor() constructor that creates a cursor from a pixmap below.

gtk.gdk.Cursor(display, cursor_type)

display : the gtk.gdk.Display to create the cursor for
cursor_type : the standard cursor to create
Returns : a new gtk.gdk.Cursor

Note

This constructor is available in PyGTK 2.4 and above.

Creates the new gtk.gdk.Cursor for the gtk.gdk.Display specified by display from a builtin
cursor specified by cursor_type. To make the cursor invisible, see the description of the gtk.gdk.Cursor()
constructor that creates a cursor from a pixmap below.

gtk.gdk.Cursor(display, pixbuf, x, y)

display : the gtk.gdk.Display to create the cursor for
pixbuf : the gtk.gdk.Pixbuf holding the cursor image
x : the "hot spot" x offset
y : the "hot spot" y offset
Returns : a new gtk.gdk.Cursor

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.gdk.Cursor for the gtk.gdk.Display specified by display using the
gtk.gdk.Pixbuf specified by source as the icon image. The "hotspot" of the cursor will be located as
the position specified by x and y. To make the cursor invisible, see the description of the gtk.gdk.Cursor()
constructor that creates a cursor from a pixmap below

gtk.gdk.Cursor(source, mask, fg, bg, x, y)

source : the gtk.gdk.Pixmap holding the cursor image
mask : the gtk.gdk.Pixmap to use as a mask
fg : the unallocated foreground gtk.gdk.Color
bg : the unallocated background gtk.gdk.Color
x : the "hot spot" x offset
y : the "hot spot" y offset
Returns : a new gtk.gdk.Cursor
Creates a new gtk.gdk.Cursor using:

the gtk.gdk.Pixmap specified by source as the icon image•

PyGTK 2.0 Reference Manual

Constructor 10

the gtk.gdk.Pixmap specified by mask to mask source (must be the same size as source)•
the gtk.gdk.Color specified by fg as the foreground color of the cursor•
the gtk.gdk.Color specified by bg as the background color of the cursor•
the horizontal offset of the cursor "hot spot" specified by x•
the vertical offset of the cursor "hot spot" specified by y•

To make the cursor invisible, create a cursor from an empty gtk.gdk.Pixmap as follows:

 pixmap = gtk.gdk.Pixmap(None, 1, 1, 1)
 color = gtk.gdk.Color()
 cursor = gtk.gdk.Cursor(pixmap, pixmap, color, color, 0, 0)

Methods

gtk.gdk.Cursor.get_display

 def get_display()

Returns : the associated gtk.gdk.Display

Note

This method is available in PyGTK 2.2 and above.

The get_display() method returns the gtk.gdk.Display on which the cursor is defined.

Prev Up Next
gtk.gdk.Colormap Home gtk.gdk.Device

gtk.gdk.Device
Prev The gtk.gdk Class Reference Next

gtk.gdk.Device

gtk.gdk.Device � an object for supporting input devices

Synopsis

class gtk.gdk.Device(gobject.GObject):
 def set_source(source)
 def set_mode(mode)
 def set_key(index, keyval, modifiers)
 def set_axis_use(index, use)
 def get_state(window)
 def get_history(window, start, stop)
 def get_axis(axes, use)

Functions

 def gtk.gdk.devices_list()
 def gtk.gdk.device_get_core_pointer()

PyGTK 2.0 Reference Manual

Note 11

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Device

Attributes

"axes" Read a tuple containing axes information. Each axes is described by a
tuple containing: use information (one of:
gtk.gdk.AXIS_IGNORE, gtk.gdk.AXIS_X,
gtk.gdk.AXIS_Y, gtk.gdk.AXIS_PRESSURE,
gtk.gdk.AXIS_XTILT, gtk.gdk.AXIS_YTILT,
gtk.gdk.AXIS_WHEEL, gtk.gdk.AXIS_LAST), the
minimum and maximum axes values.

"has_cursor" Read if TRUE the pointer follows device motion.

"keys" Read a tuple describing the mapped macro buttons. Each macro button
is described by a tuple containing: a key value output when the
macro button is pressed and a set of modifiers output with the
key value.

"mode" Read the mode of this device − one of:
gtk.gdk.MODE_DISABLED, gtk.gdk.MODE_SCREEN,
gtk.gdk.MODE_WINDOW

"name" Read the name of this device.

"num_axes" Read the length of the axes tuple.

"num_keys" Read the length of the keys tuple

"source" Read the type of this device − one of: gtk.gdk.SOURCE_MOUSE,
gtk.gdk.SOURCE_PEN, gtk.gdk.SOURCE_ERASER,
gtk.gdk.SOURCE_CURSOR

Description

In addition to the normal keyboard and mouse input devices, PyGTK also contains support for extended input
devices. In particular, this support is targeted at graphics tablets. Graphics tablets typically return sub−pixel
positioning information and possibly information about the pressure and tilt of the stylus. Under X, the
support for extended devices is done through the XInput extension. Because handling extended input devices
may involve considerable overhead, they need to be turned on for each gtk.gdk.Window individually
using gtk.gdk.Window.input_set_extension_events(). (Or, more typically, for gtk.Widget
objects, using the gtk.Widget.set_extension_events() method). As an additional complication,
depending on the support from the windowing system, its possible that a normal mouse cursor will not be
displayed for a particular extension device. If an application does not want to deal with displaying a cursor
itself, it can ask only to get extension events from devices that will display a cursor, by passing the
gtk.gdk.EXTENSION_EVENTS_CURSOR value to the
gtk.gdk.Window.input_set_extension_events() method. Otherwise, the application must
retrieve the device information using the gtk.gdk.devices_list() function, check the has_cursor field,
and, if it is FALSE, draw a cursor itself when it receives motion events.

Each pointing device is assigned a unique integer ID; events from a particular device can be identified by the
deviceid attribute in the event structure. The events generated by pointer devices have also been extended

PyGTK 2.0 Reference Manual

Ancestry 12

to contain pressure, xtilt and ytilt attributes which contain the extended information reported as
additional valuators from the device. The pressure attribute ranges from 0.0 to 1.0, while the tilt attributes
range from −1.0 to 1.0. (With −1.0 representing the maximum tilt to the left or up, and 1.0 representing the
maximum tilt to the right or down.) One additional attribute in each event is the source attribute, which
contains an enumeration value describing the type of device; this currently can be one of
gtk.gdk.SOURCE_MOUSE, gtk.gdk.SOURCE_PEN, gtk.gdk.SOURCE_ERASER, or
gtk.gdk.SOURCE_CURSOR. This attribute is present to allow simple applications to (for instance) delete
when they detect eraser devices without having to keep track of complicated per−device settings.

Various aspects of each device may be configured. The easiest way of creating a GUI to allow the user to
configure such a device is to use the gtk.InputDialog widget in PyGTK. However, even when using this
widget, application writers will need to directly query and set the configuration parameters in order to save the
state between invocations of the application. The configuration of devices is queried using the
gtk.gdk.devices_list() function. Each device must be activated using the set_mode() method,
which also controls whether the device's range is mapped to the entire screen or to a single window. The
mapping of the valuators of the device onto the predefined valuator types is set using the set_axis_use()
method. And the source type for each device can be set with the set_source() method.

Devices may also have associated keys or macro buttons. Such keys can be globally set to map into normal X
keyboard events. The mapping is set using the set_key() method. The interfaces in this section will most
likely be considerably modified in the future to accommodate devices that may have different sets of
additional valuators than the pressure xtilt and ytilt.

Methods

gtk.gdk.Device.set_source

 def set_source(source)

source : the source type of the device
The set_source() method sets the source type for the input device to the value specified by source. The
value of source must be one of:

gtk.gdk.SOURCE_MOUSE
the device is a mouse. (This will be reported for the core pointer, even
if it is something else, such as a trackball.)

gtk.gdk.SOURCE_PEN the device is a stylus of a graphics tablet or similar device.

gtk.gdk.SOURCE_ERASER
the device is an eraser. Typically, this would be the other end of a
stylus on a graphics tablet.

gtk.gdk.SOURCE_CURSOR the device is a graphics tablet "puck" or similar device.

gtk.gdk.Device.set_mode

 def set_mode(mode)

mode : the input mode
Returns : TRUE if the mode was successfully changed.
The set_mode() method sets the input device mode to the value specified by mode. The value of mode
must be one of:

gtk.gdk.MODE_DISABLED the device is disabled and will not report any events.
gtk.gdk.MODE_SCREEN

PyGTK 2.0 Reference Manual

Description 13

the device is enabled. The device's coordinate space maps to the entire
screen.

gtk.gdk.MODE_WINDOW

the device is enabled. The device's coordinate space is mapped to a single
window. The manner in which this window is chosen is undefined, but it will
typically be the same way in which the focus window for key events is
determined.

gtk.gdk.Device.set_key

 def set_key(index, keyval, modifiers)

index : the index of the macro button to set.
keyval : the key value to generate.
modifiers : the modifiers to set.
The set_key() method sets the key event to generate when a macro button of a device is pressed. The macro
button is specified by index. The key value and modifiers generated are specified by keyval and
modifiers respectively.

gtk.gdk.Device.set_axis_use

 def set_axis_use(index, use)

index : the index of the axis.
use : how the axis is used.
The set_axis_use() method sets the axis (specified by index) of the input device to be used in the
fashion specified by use. The value of use must be one of:

gtk.gdk.AXIS_IGNORE the axis is ignored.
gtk.gdk.AXIS_X the axis is used as the x axis.
gtk.gdk.AXIS_Y the axis is used as the y axis.
gtk.gdk.AXIS_PRESSURE the axis is used for pressure information.
gtk.gdk.AXIS_XTILT the axis is used for x tilt information.
gtk.gdk.AXIS_YTILT the axis is used for y tilt information.
gtk.gdk.AXIS_WHEEL the axis is used for wheel information.
gtk.gdk.AXIS_LAST a constant equal to the numerically highest axis value.

gtk.gdk.Device.get_state

 def get_state(window)

window : a gtk.gdk.Window
Returns : a tuple containing: a tuple containing the axes data; and, the modifiers in effect.
The get_state() method returns a tuple containing:

a tuple containing the axes data•
the bitmask containing the set of key modifiers in effect•

The state information is relative to the gtk.gdk.Window specified by window.

PyGTK 2.0 Reference Manual

gtk.gdk.Device.set_mode 14

gtk.gdk.Device.get_history

 def get_history(window, start, stop)

window : a gtk.gdk.Window
start : the earliest event time limit
stop : the latest event time limit
Returns : a tuple containing event tuples each with axes data and a timestamp
The get_history() method returns a tuple containing the motion history for the device with respect to the
gtk.gdk.Window specified by window between the time limits specified by start and stop. The
motion history is a tuple containing event motion tuples that each contain a timestamp for the event and a
tuple with the axes data for the event.

gtk.gdk.Device.get_axis

 def get_axis(axes, use)

axes : a sequence of axes values
use : the axis use to match
Returns : the axis value from axes that matches the use type or None if there is no match.
The get_axis() method returns the value in axes whose axis matches the specified use.

Functions

gtk.gdk.devices_list

 def gtk.gdk.devices_list()

Returns : a list containing the gtk.gdk.Device objects for the default display
The gtk.gdk.devices_list() function returns a list containing the gtk.gdk.Device objects fro the
default display.

gtk.gdk.device_get_core_pointer

 def gtk.gdk.device_get_core_pointer()

Returns : the
The gtk.gdk.device_get_core_pointer() function returns the device that is used as the core
pointer.

Prev Up Next
gtk.gdk.Cursor Home gtk.gdk.Display

gtk.gdk.Display
Prev The gtk.gdk Class Reference Next

gtk.gdk.Display

gtk.gdk.Display � controls the keyboard/mouse pointer grabs and a set of gtk.gdk.Screen objects

PyGTK 2.0 Reference Manual

gtk.gdk.Device.get_history 15

Synopsis

class gtk.gdk.Display(gobject.GObject):
gtk.gdk.Display(display_name)

 def get_name()
 def get_n_screens()
 def get_screen(screen_num)
 def get_default_screen()
 def pointer_ungrab(time_=0L)
 def keyboard_ungrab(time_=0L)
 def pointer_is_grabbed()
 def beep()
 def sync()
 def close()
 def list_devices()
 def get_event()
 def peek_event()
 def put_event(event)
 def set_double_click_time(msec)
 def get_core_pointer()
 def get_pointer()
 def get_window_at_pointer()
 def flush()
 def set_double_click_distance(distance)
 def supports_cursor_alpha()
 def supports_cursor_color()
 def get_default_cursor_size()
 def get_maximal_cursor_size()
 def get_default_group()
 def supports_selection_notification()
 def supports_clipboard_persistence()
 def request_selection_notification(selection)
 def store_clipboard(clipboard_window, time_, targets)

Functions

 def gtk.gdk.display_get_default()

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Display

Signal Prototypes

"closed" def callback(widget, is_error, user_param1, ...)

Description

Note

This object is available in PyGTK 2.2 and above.

gtk.gdk.Display objects provide two capabilities:

To grab/ungrab keyboard focus and mouse pointer•
To manage and provide information about the gtk.gdk.Screen) objects available for this
gtk.gdk.Display

•

PyGTK 2.0 Reference Manual

Synopsis 16

gtk.gdk.Display objects are the GDK representation of the X Display which can be described as a
workstation consisting of a keyboard, a pointing device (such as a mouse) and one or more screens. It is used
to open and keep track of various gtk.gdk.Screen objects currently instantiated by the application. It is
also used to grab and release the keyboard and the mouse pointer.

Constructor

gtk.gdk.Display(display_name)

display_name : the name of the display to open
Returns : a gtk.gdk.Display, or None if the display could not be opened.

Note

This constructor is available in PyGTK 2.2 and above.

Opens the display with the name specified by display_name and returns a gtk.gdk.Display object
wrapping the display..

Methods

gtk.gdk.Display.get_name

 def get_name()

Returns : a string representing the display name.

Note

This method is available in PyGTK 2.2 and above.

The get_name() method returns the name of the display.

gtk.gdk.Display.get_n_screens

 def get_n_screens()

Returns : the number of display screens.

Note

This method is available in PyGTK 2.2 and above.

The get_n_screens() method returns the number of screens managed by the display.

gtk.gdk.Display.get_screen

 def get_screen(screen_num)

screen_num : the screen number
Returns : the gtk.gdk.Screen object

PyGTK 2.0 Reference Manual

Note 17

Note

This method is available in PyGTK 2.2 and above.

The get_screen() method returns a gtk.gdk.Screen object for one of the screens of the display.

gtk.gdk.Display.get_default_screen

 def get_default_screen()

Returns : the default gtk.gdk.Screen object for display

Note

This method is available in PyGTK 2.2 and above.

The get_default_screen() method returns the default gtk.gdk.Screen for the display

gtk.gdk.Display.pointer_ungrab

 def pointer_ungrab(time_=0L)

time_ : a timestamp or 0L for the current time.

Note

This method is available in PyGTK 2.2 and above.

The pointer_ungrab() method releases any pointer grab held by the display.

gtk.gdk.Display.keyboard_ungrab

 def keyboard_ungrab(time_=0L)

time_ : a timestamp or 0L for the current time.

Note

This method is available in PyGTK 2.2 and above.

The keyboard_ungrab() method releases any keyboard grab held by the display.

gtk.gdk.Display.pointer_is_grabbed

 def pointer_is_grabbed()

Returns : TRUE if an active X pointer grab is in effect

Note

This method is available in PyGTK 2.2 and above.

The pointer_is_grabbed() method returns TRUE if the pointer is grabbed.

PyGTK 2.0 Reference Manual

Note 18

gtk.gdk.Display.beep

 def beep()

Note

This method is available in PyGTK 2.2 and above.

The beep() method emits a short beep on the display.

gtk.gdk.Display.sync

 def sync()

Note

This method is available in PyGTK 2.2 and above.

The sync() method flushes any requests queued for the windowing system and waits until all requests have
been handled. This is often used for making sure that the display is synchronized with the current state of the
program. This is most useful for X11. On windowing systems where requests are handled synchronously, this
method will do nothing.

gtk.gdk.Display.close

 def close()

Note

This method is available in PyGTK 2.2 and above.

The close() method closes the connection to the windowing system for the given display, and cleans up
associated resources.

gtk.gdk.Display.list_devices

 def list_devices()

Returns : a list of gtk.gdk.Device objects.

Note

This method is available in PyGTK 2.2 and above.

The list_devices() method returns the list of available input devices attached to the display.

gtk.gdk.Display.get_event

 def get_event()

Returns : the next gtk.gdk.Event to be processed, or None if no events are pending..

PyGTK 2.0 Reference Manual

gtk.gdk.Display.beep 19

Note

This method is available in PyGTK 2.2 and above.

The get_event() method returns the next gtk.gdk.Event to be processed for the display, fetching
events from the windowing system if necessary. The returned gtk.gdk.Event should be freed with the
gtk.gdk.Event.free() method

gtk.gdk.Display.peek_event

 def peek_event()

Returns : a copy of the first gtk.gdk.Event on the event queue, or None if no events are in the
queue.

Note

This method is available in PyGTK 2.2 and above.

The peek_event() method returns a copy of the first gtk.gdk.Event in the the display's event queue,
without removing the event from the queue. (Note that this method will not get more events from the
windowing system. It only checks the events that have already been moved to the GDK event queue.) The
returned gtk.gdk.Event should be freed with gtk.gdk.Event.free().

gtk.gdk.Display.put_event

 def put_event(event)

event : a gtk.gdk.Event.

Note

This method is available in PyGTK 2.2 and above.

The put_event() method appends a copy of the given event onto the front of the event queue for the
display.

gtk.gdk.Display.set_double_click_time

 def set_double_click_time(msec)

msec : the double click time in milliseconds (thousandths of a second)

Note

This method is available in PyGTK 2.2 and above.

The set_double_click_time() method sets the double click time (two clicks within this time interval
count as a double click and result in a gtk.gdk._2BUTTON_PRESS event). Applications should not set
this, it is a global user−configured setting.

PyGTK 2.0 Reference Manual

Note 20

gtk.gdk.Display.get_core_pointer

 def get_core_pointer()

Returns : the core pointer device

Note

This method is available in PyGTK 2.2 and above.

The get_core_pointer() method returns the core pointer device for the given display

gtk.gdk.Display.get_pointer

 def get_pointer()

Returns : a 4−tuple containing the screen that the cursor is on, the root window X and Y coordinates of the
pointer and the current modifier mask

Note

This method is available in PyGTK 2.2 and above.

The get_pointer() method returns a 4−tuple containing the gtk.gdk.Screen that the pointer is on, the
current location coordinates of the pointer and the current modifier mask for the display. The returned
modifier mask is a combination of the GDK Modifier Constants.

gtk.gdk.Display.get_window_at_pointer

 def get_window_at_pointer()

Returns : a 3−tuple containing the gtk.gdk.Window under the mouse pointer and the x and y coordinates
of the window origin

Note

This method is available in PyGTK 2.2 and above.

The get_window_at_pointer() method returns a 3−tuple containing the gtk.gdk.Window
underneath the mouse pointer and the location of that window's origin. Returns None if the window under the
mouse pointer is not known to GDK (for example, belongs to another application).

gtk.gdk.Display.flush

 def flush()

Note

This method is available in PyGTK 2.4 and above.

The flush() method flushes any requests queued for the windowing system; this happens automatically
when the main loop blocks waiting for new events, but if your application is drawing without returning
control to the main loop, you may need to call this method explicitly. A common case where this method
needs to be called is when an application is executing drawing commands from a thread other than the thread
where the main loop is running.

PyGTK 2.0 Reference Manual

gtk.gdk.Display.get_core_pointer 21

This is most useful for X11. On windowing systems where requests are handled synchronously, this method
will do nothing.

gtk.gdk.Display.set_double_click_distance

 def set_double_click_distance(distance)

distance : the distance in pixels

Note

This method is available in PyGTK 2.4 and above.

The set_double_click_distance() method sets the double click distance (two clicks within this
distance count as a double click and result in a gtk.gdk.2BUTTON_PRESS event). See the
set_double_click_time() method for more information. Applications should not set this, it is a global
user−configured setting.

gtk.gdk.Display.supports_cursor_alpha

 def supports_cursor_alpha()

Returns : TRUE if cursors can have alpha channels.

Note

This method is available in PyGTK 2.4 and above.

The supports_cursor_alpha() method returns TRUE if cursors can use an 8bit alpha channel on the
display. Otherwise, cursors are restricted to bilevel alpha (i.e. a mask).

gtk.gdk.Display.supports_cursor_color

 def supports_cursor_color()

Returns : TRUE if cursors can have multiple colors.

Note

This method is available in PyGTK 2.4 and above.

The supports_cursor_color() method returns TRUE if multicolored cursors are supported on the
display. Otherwise, cursors have only a foreground and a background color.

gtk.gdk.Display.get_default_cursor_size

 def get_default_cursor_size()

Returns : the default cursor size.

Note

This method is available in PyGTK 2.4 and above.

The get_default_cursor_size() method returns the default size to use for cursors on the display.

PyGTK 2.0 Reference Manual

Note 22

gtk.gdk.Display.get_maximal_cursor_size

 def get_maximal_cursor_size()

Returns : a 2−tuple containing the maximal cursor width and height

Note

This method is available in PyGTK 2.4 and above.

The get_maximal_cursor_size() method returns a 2−tuple containing the maximum width and height
to use for cursors on the display.

gtk.gdk.Display.get_default_group

 def get_default_group()

Returns : The default group leader window for the display

Note

This method is available in PyGTK 2.4 and above.

The get_default_group() method returns the default group leader window for all toplevel windows on
the display. This window is implicitly created by GDK. See the gtk.gdk.Window.set_group() method
for more information.

gtk.gdk.Display.supports_selection_notification

 def get_default_group()

Returns : TRUE if gtk.gdk.EventOwnerChange events will be sent.

Note

This method is available in PyGTK 2.6 and above.

The supports_selection_notification() method returns TRUE if
gtk.gdk.EventOwnerChange events will be sent when the owner of a selection changes.

gtk.gdk.Display.supports_clipboard_persistence

 def supports_clipboard_persistence()

Returns : TRUE if the display supports clipboard persistence.

Note

This method is available in PyGTK 2.6 and above.

The supports_clipboard_persistence() method Returns whether the specified display supports
clipboard persistence; i.e. if it's possible to store the clipboard data after an application has quit. On X11 this
checks if a clipboard daemon is running.

PyGTK 2.0 Reference Manual

gtk.gdk.Display.get_maximal_cursor_size 23

gtk.gdk.Display.request_selection_notification

 def request_selection_notification(selection)

selection : The string (or gtk.gdk.Atom) naming the selection for which ownership change
notification is requested

Note

This method is available in PyGTK 2.6 and above.

The request_selection_notification() method requests that gtk.gdk.EventOwnerChange
events will be sent for changes in ownership of the atom specified by selection.

gtk.gdk.Display.store_clipboard

 def store_clipboard(clipboard_window, time, targets)

clipboard_window : a gtk.gdk.Window belonging to the clipboard owner
time : a timestamp

targets : a list of targets that should be saved, or None if all available targets should be
saved.

Note

This method is available in PyGTK 2.6 and above.

The store_clipboard() method issues a request to the the clipboard manager to store the clipboard data.
On X11, this is a special program that works according to the freedesktop clipboard specification, available at
http://www.freedesktop.org/Standards/clipboard−manager−spec.

Functions

gtk.gdk.display_get_default

 def gtk.gdk.display_get_default()

Returns : a gtk.gdk.Display, or None if there is no default display.

Note

This function is available in PyGTK 2.2 and above.

The gtk.gdk.display_get_default() function returns the default gtk.gdk.Display. This is a
convenience function for:

 display_manager = gtk.gdk.display_manager_get()
 display = display.manager.get_default_display()

Signals

PyGTK 2.0 Reference Manual

gtk.gdk.Display.request_selection_notification 24

http://www.freedesktop.org/Standards/clipboard-manager-spec

The "closed" gtk.gdk.Display Signal

 def callback(display, is_error, user_param1, ...)

display : the display that received the signal
is_error : TRUE if the display was closed due to an error
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "closed" signal is emitted when the connection to the windowing system for display is closed.

Prev Up Next
gtk.gdk.Device Home gtk.gdk.DisplayManager

gtk.gdk.DisplayManager
Prev The gtk.gdk Class Reference Next

gtk.gdk.DisplayManager

gtk.gdk.DisplayManager � maintains a list of all open gtk.gdk.Display objects

Synopsis

class gtk.gdk.DisplayManager(gobject.GObject):
 def get_default_display()
 def set_default_display(display)
 def list_displays()

Functions

 def gtk.gdk.display_manager_get()

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.DisplayManager

Properties

"default−display" Read−Write The default gtk.gdk.Display. Available in GTK+ 2.2 and above.

Signal Prototypes

"display−opened" def callback(displaymanager, display, user_param1, ...)

Description

Note

This object is available in PyGTK 2.2 and above.

The gtk.gdk.DisplayManager is a singleton object that offers notification when displays appear or
disappear or the default display changes. The global gtk.gdk.DisplayManager object is returned from

PyGTK 2.0 Reference Manual

The "closed" gtk.gdk.Display Signal 25

the gtk.gdk.display_manager_get() function.

Methods

gtk.gdk.DisplayManager.get_default_display

 def get_default_display()

Returns : a gtk.gdk.Display, or None if there is no default display.

Note

This method is available in PyGTK 2.2 and above.

The get_default_display() method returns the default gtk.gdk.Display.

gtk.gdk.DisplayManager.set_default_display

 def set_default_display(display)

display : a gtk.gdk.Display

Note

This method is available in PyGTK 2.2 and above.

The set_default_display() method sets the gtk.gdk.Display specified by display as the
default display.

gtk.gdk.DisplayManager.list_displays

 def list_displays()

Returns : a list containing gtk.gdk.Display objects.

Note

This method is available in PyGTK 2.2 and above.

The list_displays() method returns a list containing all currently open displays.

Functions

gtk.gdk.display_manager_get

 def gtk.gdk.display_manager_get()

Returns : the singleton gtk.gdk.DisplayManager object.

PyGTK 2.0 Reference Manual

Note 26

Note

This function is available in PyGTK 2.2 and above.

The gtk.gdk.display_manager_get() method returns the global gtk.gdk.DisplayManager
singleton.

Signals

The "display−opened" gtk.gdk.DisplayManager Signal

 def callback(displaymanager, display, user_param1, ...)

displaymanager : the displaymanager that received the signal
display : the display that was opened
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.2 and above.

The "display−opened" signal is emitted when display is opened.

Prev Up Next
gtk.gdk.Display Home gtk.gdk.DragContext

gtk.gdk.DragContext
Prev The gtk.gdk Class Reference Next

gtk.gdk.DragContext

gtk.gdk.DragContext � an object containing the drag and drop context data

Synopsis

class gtk.gdk.DragContext(gobject.GObject):
gtk.gdk.DragContext()

 def drag_status(action, time)
 def drop_reply(ok, time)
 def drop_finish(success, time)
 def drag_get_selection()
 def drag_find_window(drag_window, x_root, y_root)
 def drag_find_window_for_screen(drag_window, screen, x_root, y_root)
 def drag_motion(dest_window, protocol, x_root, y_root, suggested_action, possible_actions, time)
 def drag_drop(time)
 def drag_abort(time)
 def finish(success, del_, time)
 def get_source_widget()
 def set_icon_widget(widget, hot_x, hot_y)
 def set_icon_pixmap(colormap, pixmap, mask, hot_x, hot_y)
 def set_icon_pixbuf(pixbuf, hot_x, hot_y)
 def set_icon_stock(stock_id, hot_x, hot_y)

PyGTK 2.0 Reference Manual

Note 27

 def set_icon_default()
 def drag_drop_succeeded()

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.DragContext

Attributes

"action" Read the action chosen by the destination. One of: gtk.gdk.ACTION_COPY,
gtk.gdk.ACTION_MOVE, gtk.gdk.ACTION_LINK,
gtk.gdk.ACTION_PRIVATE

"actions" Read a bitmask of actions proposed by the source when suggested_action is
gtk.gdk.ACTION_ASK. A combination of: gtk.gdk.ACTION_COPY,
gtk.gdk.ACTION_MOVE, gtk.gdk.ACTION_LINK,
gtk.gdk.ACTION_PRIVATE

"dest_window" Read the destination gtk.gdk.Window of this drag.

"is_source" Read if TRUE the context is used on the source side.

"protocol" Read the DND protocol which governs this drag − one of:
gtk.gdk.DRAG_PROTO_MOTIF, gtk.gdk.DRAG_PROTO_XDND,
gtk.gdk.DRAG_PROTO_ROOTWIN, gtk.gdk.DRAG_PROTO_NONE,
gtk.gdk.DRAG_PROTO_WIN32_DROPFILES,
gtk.gdk.DRAG_PROTO_OLE2, gtk.gdk.DRAG_PROTO_LOCAL

"source_window" Read the source gtk.gdk.Window of this drag.

"start_time" Read a timestamp recording the start time of this drag.

"suggested_action" Read the action suggested by the source. One of: gtk.gdk.ACTION_DEFAULT,
gtk.gdk.ACTION_COPY, gtk.gdk.ACTION_MOVE,
gtk.gdk.ACTION_LINK, gtk.gdk.ACTION_PRIVATE,
gtk.gdk.ACTION_ASK

"targets" Read a list of targets offered by the source.

Description

A gtk.gdk.DragContext holds information about a drag in progress. It is used for both source and
destination. A gtk.gdk.DragContext can be created using the gtk.gdk.DragContext() constructor but
since there is no way to set its attributes the new object is not much use. Useful gtk.gdk.DragContext
objects are created as a result of the gtk.gdk.Window.drag_begin() or the
gtk.Widget.drag_begin() methods.

Constructor

gtk.gdk.DragContext()

Returns : a new gtk.gdk.DragContext
Creates a new gtk.gdk.DragContext object.

PyGTK 2.0 Reference Manual

Synopsis 28

Methods

gtk.gdk.DragContext.drag_status

 def drag_status(action, time)

action : a drag action that will be taken when a drop happens
time : the timestamp for this action
The drag_status() method sets the specified action to be taken when a drop happens. The value of
action is one of:

gtk.gdk.ACTION_DEFAULT

gtk.gdk.ACTION_COPY Copy the data.

gtk.gdk.ACTION_MOVE
Move the data, i.e. first copy it, then delete it from the source using
the DELETE target of the X selection protocol.

gtk.gdk.ACTION_LINK
Add a link to the data. Note that this is only useful if source and
destination agree on what it means.

gtk.gdk.ACTION_PRIVATE
Special action which tells the source that the destination will do
something that the source doesn't understand.

gtk.gdk.ACTION_ASK Ask the user what to do with the data.
The time the action occurred is specified by time. This method is called by the drag destination in response
to drag_motion() called by the drag source.

gtk.gdk.DragContext.drop_reply

 def drop_reply(ok, time)

ok : if TRUE the drop is accepted by the destination
time : the timestamp
The drop_reply() method determines if the drop is accepted or rejected according to the value specified by
ok. If ok is TRUE the drop is accepted. time specifies the time that the drop reply occurred. This method is
called by the drag destination when a drop is initiated by the drag source.

gtk.gdk.DragContext.drop_finish

 def drop_finish(success, time)

success : if TRUE the data was received
time : the time of the finish
The drop_finish() method ends a drag operation and indicates if the drop was successful by setting the
value of success. time indicates the time of the drop finish. This method is called by the drag destination.

gtk.gdk.DragContext.drag_get_selection

 def drag_get_selection()

Returns : the selection atom
The drag_get_selection() method returns the selection atom for the current source window.

PyGTK 2.0 Reference Manual

Methods 29

gtk.gdk.DragContext.drag_find_window

 def drag_find_window(drag_window, x_root, y_root)

drag_window : a gtk.gdk.Window
x_root : the x position of the pointer in root coordinates.
y_root : the y position of the pointer in root coordinates.
Returns : a 2−tuple containing the drag destination gtk.gdk.Window and the drag protocol
The drag_find_window() method returns a 2−tuple containing the drag destination gtk.gdk.Window
and the drag protocol being used. The drag protocol is one of:

gtk.gdk.DRAG_PROTO_MOTIF The Motif DND protocol.
gtk.gdk.DRAG_PROTO_XDND The Xdnd protocol.

gtk.gdk.DRAG_PROTO_ROOTWIN
An extension to the Xdnd protocol for unclaimed root
window drops.

gtk.gdk.DRAG_PROTO_NONE no protocol.
gtk.gdk.DRAG_PROTO_WIN32_DROPFILES The simple WM_DROPFILES protocol.
gtk.gdk.DRAG_PROTO_OLE2 The complex OLE2 DND protocol (not implemented).
gtk.gdk.DRAG_PROTO_LOCAL Intra−application DND.
drag_window is a gtk.gdk.Window and x_root and y_root specify the location of the mouse
pointer in the root window.

gtk.gdk.DragContext.drag_find_window_for_screen

 def drag_find_window_for_screen(drag_window, screen, x_root, y_root)

drag_window : a gtk.gdk.Window
screen : a gtk.gdk.Screen
x_root : the x position of the pointer in root coordinates.
y_root : the y position of the pointer in root coordinates.
Returns : a 2−tuple containing the drag destination gtk.gdk.Window and the drag protocol

Note

This method is available in PyGTK 2.2 and above.

The drag_find_window_for_screen() method returns a 2−tuple containing the drag destination
gtk.gdk.Window and the drag protocol being used. The drag protocol is one of:

gtk.gdk.DRAG_PROTO_MOTIF The Motif DND protocol.
gtk.gdk.DRAG_PROTO_XDND The Xdnd protocol.

gtk.gdk.DRAG_PROTO_ROOTWIN
An extension to the Xdnd protocol for unclaimed root
window drops.

gtk.gdk.DRAG_PROTO_NONE no protocol.
gtk.gdk.DRAG_PROTO_WIN32_DROPFILES The simple WM_DROPFILES protocol.
gtk.gdk.DRAG_PROTO_OLE2 The complex OLE2 DND protocol (not implemented).
gtk.gdk.DRAG_PROTO_LOCAL Intra−application DND.
drag_window is a gtk.gdk.Window and x_root and y_root specify the location of the mouse
pointer in the root window.

PyGTK 2.0 Reference Manual

gtk.gdk.DragContext.drag_find_window 30

gtk.gdk.DragContext.drag_motion

 def drag_motion(dest_window, protocol, x_root, y_root, suggested_action, possible_actions, time)

dest_window : the destination gtk.gdk.Window the drag is moving over
protocol : the drag protocol in use
x_root : the x root coordinate of the mouse pointer
y_root : the y root coordinate of the mouse pointer
suggested_action : the suggest drag action
possible_actions : the possible drag actions
time : the timestamp of the drag motion

Returns : TRUE if there is a drag destination window and the drag has paused or a drop has
occurred.

The drag_motion() method updates the drag context when the pointer moves or the set of actions changes.
This method is called by the drag source. dest_window specifies the drag destination gtk.gdk.Window;
protocol specifies the drag protocol being used (see the drag_find_window() method for details);
x_root and y_root specify the root window coordinates of the mouse pointer; suggested_action
specifies the suggested drag action (see the drag_status() method for more detail); possible_actions
specifies the possible drag actions for the drag (see the drag_status() method for more detail); and, time
specifies the timestamp of the drag motion.

gtk.gdk.DragContext.drag_drop

 def drag_drop(time)

time : the timestamp of the drag drop.
The drag_drop() method initiates a drop on the current drag destination at the time specified by time.
This method is called by the drag source.

gtk.gdk.DragContext.drag_abort

 def drag_abort(time)

time : the time of the drag abort operation
The drag_abort() method aborts the current drag operation at the specified time. No drop operation is
initiated. This method is called by the drag source.

gtk.gdk.DragContext.finish

 def finish(success, del_, time)

success : if TRUE the drop was completed
del_ : if TRUE the drag source should delete the source data
time : the time of the drag finish operation.
The finish() method informs the drag source that the drop is finished, and that the data of the drag will no
longer be required. If success is TRUE the drag drop completed successfully; if del_ is TRUE the source
data should be deleted; time is the timestamp of the finish operation. This method is called by the drag
destination.

PyGTK 2.0 Reference Manual

gtk.gdk.DragContext.drag_motion 31

gtk.gdk.DragContext.get_source_widget

 def get_source_widget()

Returns : the source gtk.Widget if the drag is within the same application or None otherwise.
The get_source_widget() method returns the source gtk.Widget if the drag is within the application;
otherwise None is returned.

gtk.gdk.DragContext.set_icon_widget

 def set_icon_widget(widget, hot_x, hot_y)

widget : a toplevel window to use as an icon.
hot_x : the X offset within widget of the hotspot.
hot_y : the Y offset within widget of the hotspot.
The set_icon_widget() method changes the icon for a drag source to the specified widget with its hot
spot at the offset specified by hot_x and hot_y. PyGTK will not destroy the icon, so if you don't want it to
persist, you should connect to the "drag_end" signal and destroy it yourself.

gtk.gdk.DragContext.set_icon_pixmap

 def set_icon_pixmap(colormap, pixmap, mask, hot_x, hot_y)

colormap : the colormap of the icon
pixmap : the gtk.gdk.Pixmap image data for the icon
mask : the gtk.gdk.Pixmap transparency mask for the icon
hot_x : the X offset within pixmap of the hotspot.
hot_y : the Y offset within pixmap of the hotspot.
The set_icon_pixmap() method sets pixmap as the icon for the drag. mask is a bitmap mask for
pixmap and hot_x and hot_y specify the offset of the hot spot in pixmap. In general,
gtk.gdk.DragContext.set_icon_pixbuf() will be more convenient to use.

gtk.gdk.DragContext.set_icon_pixbuf

 def set_icon_pixbuf(pixbuf, hot_x, hot_y)

pixbuf : the gtk.gdk.Pixbuf to use as the drag icon.
hot_x : the X offset within pixbuf of the hotspot.
hot_y : the Y offset within pixbuf of the hotspot.
The set_icon_pixbuf() method sets pixbuf as the icon for the drag. hot_x and hot_y specify the
offset of the hot spot within pixbuf.

gtk.gdk.DragContext.set_icon_stock

 def set_icon_stock(stock_id, hot_x, hot_y)

stock_id : the ID of the stock icon to use for the drag.
hot_x : the X offset within the icon of the hotspot.
hot_y : the Y offset within the icon of the hotspot.
The set_icon_stock() method sets the the icon for a given drag from a stock ID specified by
stock_id. hot_x and hot_y specify the offset of the hot spot within the stock icon.

PyGTK 2.0 Reference Manual

gtk.gdk.DragContext.get_source_widget 32

gtk.gdk.DragContext.set_icon_default

 def set_icon_default()

The set_icon_default() method sets the icon for the drag to the default icon.

gtk.gdk.DragContext.drag_drop_succeeded

 def drag_drop_succeeded()

Returns : TRUE if the drop was successful.
The drag_drop_succeeded() method returns TRUE if the dropped data has been successfully transferred.
This method is intended to be used while handling a gtk.gdk.DROP_FINISHED event, its return value is
meaningless at other times.

Prev Up Next
gtk.gdk.DisplayManager Home gtk.gdk.Drawable

gtk.gdk.Drawable
Prev The gtk.gdk Class Reference Next

gtk.gdk.Drawable

gtk.gdk.Drawable � a base class for drawing methods

Synopsis

class gtk.gdk.Drawable(gobject.GObject):
 def get_size()
 def set_colormap(colormap)
 def get_colormap()
 def get_visual()
 def get_depth()
 def get_screen()
 def get_display()
 def draw_point(gc, x, y)
 def draw_line(gc, x1, y1, x2, y2)
 def draw_rectangle(gc, filled, x, y, width, height)
 def draw_arc(gc, filled, x, y, width, height, angle1, angle2)
 def draw_polygon(gc, filled, points)
 def draw_drawable(gc, src, xsrc, ysrc, xdest, ydest, width, height)
 def draw_image(gc, image, xsrc, ysrc, xdest, ydest, width, height)
 def draw_points(gc, points)
 def draw_segments(gc, segs)
 def draw_lines(gc, points)
 def draw_pixbuf(gc, pixbuf, src_x, src_y, dest_x, dest_y, width=−1, height=−1, dither=gtk.gdk.RGB_DITHER_NORMAL, x_dither=0, y_dither=0)
 def draw_glyphs(gc, font, x, y, glyphs)
 def draw_layout(gc, x, y, layout, foreground=None, background=None)
 def get_image(x, y, width, height)
 def new_gc(foreground, background, font, function, fill, tile, stipple, clip_mask, subwindow_mode, ts_x_origin, ts_y_origin, clip_x_origin, clip_y_origin, graphics_exposures, line_width, line_style, cap_style, join_style>)
 def draw_rgb_image(gc, x, y, width, height, dith, rgb_buf, rowstride=−1, xdith=0, ydith=0)
 def draw_rgb_32_image(gc, x, y, width, height, dith, rgb_buf, rowstride=−1, xdith=0, ydith=0)
 def draw_gray_image(gc, x, y, width, height, dith, buf, rowstride=−1)

PyGTK 2.0 Reference Manual

gtk.gdk.DragContext.set_icon_default 33

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Drawable

Attributes

"handle" Read The handle of the MS Windows window associated with the drawable. Not supported on
X11.

"xid" Read The id of the X window available with the drawable. Not supported on MS Windows

Description

A gtk.gdk.Drawable is a base class providing drawing primitives for its subclasses:
gtk.gdk.Pixmap and gtk.gdk.Window.

These methods provide support for drawing points, lines, arcs and text onto what are called 'drawables'.
Drawables, as the name suggests, are things which support drawing onto them, and are either
gtk.gdk.Window or gtk.gdk.Pixmap objects.

Many of the drawing operations take a gtk.gdk.GC argument, which represents a graphics context. This
gtk.gdk.GC contains a number of drawing attributes such as foreground color, background color and line
width, and is used to reduce the number of arguments needed for each drawing operation. See the Graphics
Contexts section for more information.

Some of the drawing operations take Pango objects like pango.Context or pango.Layout as
arguments. Use the gtk.Widget.create_pango_context() or
gtk.Widget.create_pango_layout() methods to obtain these objects.

Methods

gtk.gdk.Drawable.get_size

 def get_size()

Returns : a tuple containing the drawable's width and height
The get_size() method returns a tuple containing the width and height of the drawable.

On the X11 platform, if the drawable is a gtk.gdk.Window, the returned size is the size reported in the
most−recently−processed configure event, rather than the current size on the X server.

gtk.gdk.Drawable.set_colormap

 def set_colormap(colormap)

colormap : a gtk.gdk.Colormap
The set_colormap() method sets the gtk.gdk.Colormap associated with the drawable to the value
specified by colormap. Normally this will happen automatically when the drawable is created; you only
need to use this function if the drawable−creating function did not have a way to determine the colormap, and

PyGTK 2.0 Reference Manual

Ancestry 34

you then use drawable operations that require a colormap. The colormap for all drawables and graphics
contexts you intend to use together should match. i.e. when using a gtk.gdk.GC to draw to a drawable, or
copying one drawable to another, the colormaps should match.

gtk.gdk.Drawable.get_colormap

 def get_colormap()

Returns : the colormap, or None
The get_colormap() method returns the gtk.gdk.Colormap for the drawable or None if no colormap
is set.

gtk.gdk.Drawable.get_visual

 def get_visual()

Returns : a gtk.gdk.Visual
The get_visual() method returns the gtk.gdk.Visual describing the pixel format of the drawable.

gtk.gdk.Drawable.get_depth

 def get_depth()

Returns : the number of bits per pixel
The get_depth() method returns the bit depth of the drawable, that is, the number of bits that make up a
pixel in the drawable's visual. Examples are 8 bits per pixel, 24 bits per pixel, etc.

gtk.gdk.Drawable.get_screen

 def get_screen()

Returns : the gtk.gdk.Screen associated with the drawable

Note

This method is available in PyGTK 2.2 and above.

The get_screen() method returns the gtk.gdk.Screen associated with the drawable.

gtk.gdk.Drawable.get_display

 def get_display()

Returns : the gtk.gdk.Display associated with the drawable

Note

This method is available in PyGTK 2.2 and above.

The get_display() method returns the gtk.gdk.Display associated with the drawable.

PyGTK 2.0 Reference Manual

gtk.gdk.Drawable.set_colormap 35

gtk.gdk.Drawable.draw_point

 def draw_point(gc, x, y)

gc : a graphics context
x : the X coordinate of the point in drawable coordinates
y : the Y coordinate of the point in drawable coordinates
The draw_point() method draws a point at the location specified by x and y in the drawable using the
gtk.gdk.GC graphics context specified by gc.

gtk.gdk.Drawable.draw_line

 def draw_line(gc, x1, y1, x2, y2)

gc : a graphics context
x1 : the X coordinate of the first point
y1 : the Y coordinate of the first point
x2 : the X coordinate of the second point
y2 : the Y coordinate of the second point
The draw_line() method draws a line between the two points specified by (x1, y1) and (x2, y2) using the
gtk.gdk.GC graphics context specified by gc.

gtk.gdk.Drawable.draw_rectangle

 def draw_rectangle(gc, filled, x, y, width, height)

gc : a graphics context
filled : if TRUE the rectangle will be filled with the foreground color
x : the X coordinate of the top left corner
y : the Y coordinate of the top left corner
width : the width of the rectangle
height : the height of the rectangle
The draw_rectangle() method draws a rectangle of the specified width and height with its top left
corner at the location specified by (x, y) using the gtk.gdk.GC graphics context specified by gc. If
filled is TRUE the rectangle will be filled with the foreground color.

Note

A rectangle drawn filled is 1 pixel smaller in both dimensions than a rectangle outlined. Calling:

 window.draw_rectangle(gc, TRUE, 0, 0, 20, 20)

results in a filled rectangle 20 pixels wide and 20 pixels high. Calling:

 window.draw_rectangle(gc, FALSE, 0, 0, 20, 20)

results in an outlined rectangle with corners at (0, 0), (0, 20), (20, 20), and (20, 0), which makes it 21 pixels
wide and 21 pixels high.

PyGTK 2.0 Reference Manual

gtk.gdk.Drawable.draw_point 36

gtk.gdk.Drawable.draw_arc

 def draw_arc(gc, filled, x, y, width, height, angle1, angle2)

gc : a graphics context
filled : if TRUE the arc will be filled with the foreground color creating a "pie slice"
x : the X coordinate of the left edge of the bounding rectangle.
y : the Y coordinate of the top edge of the bounding rectangle.
width : the width of the bounding rectangle.
height : the height of the bounding rectangle.

angle1 : the start angle of the arc, relative to the 3 o'clock position, counter−clockwise, in
1/64ths of a degree.

angle2 : the end angle of the arc, relative to angle1, counter−clockwise, in 1/64ths of a degree.
The draw_arc() method draws an arc or a filled 'pie slice' if filled is TRUE. The arc is defined by the
bounding rectangle of the entire ellipse (specified by x, y, width and height), and the start and end angles
of the part of the ellipse to be drawn (specified by angle1 and angle2). The gtk.gdk.GC graphics
context specified by gc is used to determine the drawing attributes.

gtk.gdk.Drawable.draw_polygon

 def draw_polygon(gc, filled, points)

gc : a graphics context
filled : if TRUE the polygon will be filled with the foreground color
points : a sequence of 2−tuples
The draw_polygon() method draws an outlined or filled polygon using the points specified by points.
points is a sequence of 2−tuples that each contain an x and y coordinate of a point. The points are
connected in the order that they are specified and the last point is automatically connected to the first point.
The gtk.gdk.GC graphics context specified by gc is used to determine the drawing attributes.

gtk.gdk.Drawable.draw_drawable

 def draw_drawable(gc, src, xsrc, ysrc, xdest, ydest, width, height)

gc : a gtk.gdk.GC sharing the drawable's visual and colormap
src : another gtk.gdk.Drawable
xsrc : the X position in src of rectangle to draw
ysrc : the Y position in src of rectangle to draw
xdest : the X position in the drawable where the rectangle should be drawn
ydest : the Y position in the drawable where the rectangle should be drawn
width : the width of rectangle to draw, or −1 for entire src width
height : the height of rectangle to draw, or −1 for entire src height
The draw_drawable() method copies the specified width x height area of the drawable specified by src
at the specified coordinates (xsrc, ysrc) to the specified coordinates (xdest, ydest) in the drawable.
width and height may be given as −1, to copy the entire src drawable. Most fields in the gtk.gdk.GC
specified by gc are not used for this operation, but the clip mask or clip region will be honored.

The source and destination drawables must have the same visual and colormap, or errors will result. (On X11,
failure to match visual and colormap results in a BadMatch error from the X server.) A common cause of
this problem is an attempt to draw a bitmap to a color drawable. The way to draw a bitmap is to set the bitmap
as a clip mask on your gtk.gdk.GC, then use the draw_rectangle() method to draw a rectangle clipped

PyGTK 2.0 Reference Manual

gtk.gdk.Drawable.draw_arc 37

to the bitmap.

gtk.gdk.Drawable.draw_image

 def draw_image(gc, image, xsrc, ysrc, xdest, ydest, width, height)

gc : a graphics context
image : a gtk.gdk.Image
xsrc : the left edge of the source rectangle within image.
ysrc : the top edge of the source rectangle within image.
xdest : the left edge of the destination within drawable.
ydest : the top edge of the destination within drawable.
width : the width of the area to be copied, or −1 to make the area extend to the right edge of image.
height : the height of the area to be copied, or −1 to make the area extend to the bottom edge of image.
The draw_image() method draws the portion of the gtk.gdk.Image specified by the rectangle (xsrc,
ysrc, width and height) onto the drawable at the location specified by xdest and ydest. The depth of
the gtk.gdk.Image must match the depth of the gtk.gdk.Drawable. The gtk.gdk.GC graphics
context specified by gc is used to determine the drawing attributes.

gtk.gdk.Drawable.draw_points

 def draw_points(gc, points)

gc : a graphics context
points : a sequence of 2−tuples
The draw_points() method draws the set of points specified by points on the drawable using the
gtk.gdk.GC graphics context specified by gc. points is a sequence of 2−tuples each containing a pair of
x and y coordinates of a point location in the drawable.

gtk.gdk.Drawable.draw_segments

 def draw_segments(gc, segs)

gc : a graphics context
segs : a sequence of 4−tuples
The draw_segments() method draws a set of line segments specified by segs on the drawable using the
gtk.gdk.GC graphics context specified by gc to specify the drawing attributes. segs is a sequence of
4−tuples each containing the coordinates of the start and end points of the line segment in the format (x1, y1,
x2, y2).

gtk.gdk.Drawable.draw_lines

 def draw_lines(gc, points)

gc : a graphics context
points : a sequence of 2−tuples
The draw_lines() method draws a series of lines connecting the points specified by points. points is
a sequence of 2−tuples each containing the x and y coordinates of a point location. The gtk.gdk.GC
graphics context specified by gc is used to determine the drawing attributes.The style of joins between lines is
determined by the cap style attribute in the gtk.gdk.GC. This can be set with the

PyGTK 2.0 Reference Manual

gtk.gdk.Drawable.draw_drawable 38

gtk.gdk.GC.set_line_attributes() method.

gtk.gdk.Drawable.draw_pixbuf

 def draw_pixbuf(gc, pixbuf, src_x, src_y, dest_x, dest_y, width=−1, height=−1, dither=gtk.gdk.RGB_DITHER_NORMAL, x_dither=0, y_dither=0)

gc : a gtk.gdk.GC, used for clipping, or None
pixbuf : a gtk.gdk.Pixbuf
src_x : Source X coordinate within pixbuf.
src_y : Source Y coordinate within pixbuf.
dest_x : Destination X coordinate within drawable.
dest_y : Destination Y coordinate within drawable.

width : Width of region to render, in pixels, or −1 to use pixbuf width. Must be specified in PyGTK
2.2.

height : Height of region to render, in pixels, or −1 to use pixbuf height. Must be specified in PyGTK
2.2

dither : Dithering mode for GdkRGB.
x_dither : X offset for dither.
y_dither : Y offset for dither.

Note

This method is available in PyGTK 2.2 and above.

The draw_pixbuf() method renders a rectangular portion of a gtk.gdk.Pixbuf specified by pixbuf
to the drawable using the gtk.gdk.GC specified by gc. The portion of pixbuf that is rendered is specified
by the origin point (src_x src_y) and the width and height arguments. pixbuf is rendered to the
location in the drawable specified by (dest_x dest_y). dither specifies the dithering mode as one of:

gtk.gdk.RGB_DITHER_NONE Never use dithering.
gtk.gdk.RGB_DITHER_NORMAL Use dithering in 8 bits per pixel (and below) only.
gtk.gdk.RGB_DITHER_MAX Use dithering in 16 bits per pixel and below.
The destination drawable must have a colormap. All windows have a colormap, however, pixmaps only have
colormap by default if they were created with a non−None window argument. Otherwise a colormap must be
set on them with the gtk.gdk.Drawable.set_colormap() method.

On older X servers, rendering pixbufs with an alpha channel involves round trips to the X server, and may be
somewhat slow. The clip mask of gc is ignored, but clip rectangles and clip regions work fine.

gtk.gdk.Drawable.draw_glyphs

 def draw_glyphs(gc, font, x, y, glyphs)

gc : a gtk.gdk.GC
font : the font to be used
x : the X coordinate of baseline origin
y : the Y coordinate of baseline origin
glyphs : the glyphs to render
The draw_glyphs() method draws the sequence of glyphs (characters in a font) specified by glyphs at
the location specified by x and y using the font specified by font. Instead of using this method 99% of text
rendering should be done using the draw_layout() method.

PyGTK 2.0 Reference Manual

gtk.gdk.Drawable.draw_lines 39

gtk.gdk.Drawable.draw_layout

 def draw_layout(gc, x, y, layout, foreground=None, background=None)

gc : base graphics context to use
x : the X position of the left of the layout (in pixels)
y : the Y position of the top of the layout (in pixels)
layout : a pango.Layout
foreground : a gtk.gdk.Color to override the foreground color or None
background : a gtk.gdk.Color to override the background color or None
The draw_layout() method renders the pango.Layout specified by layout onto the drawable at the
location specified by x and y. If foreground or background has a value other than None it is used to
override the corresponding attribute specified by gc.

gtk.gdk.Drawable.get_image

 def get_image(x, y, width, height)

x : the X coordinate on the drawable
y : the Y coordinate on the drawable
width : the width of region to get
height : the height or region to get
Returns : a gtk.gdk.Image containing the contents of the drawable
The get_image() method returns a gtk.gdk.Image object containing a copy of the region in the
drawable specified by x, y, width and height. A gtk.gdk.Image stores client−side image data
(pixels). In contrast, a gtk.gdk.Pixmap and gtk.gdk.Window are server−side objects. The
get_image() method retrieves the pixels from a server−side drawable as a client−side gtk.gdk.Image.
The format of a gtk.gdk.Image depends on the gtk.gdk.Visual of the current display, which makes
manipulating gtk.gdk.Image extremely difficult; therefore, in most cases you should use the
gtk.gdk.Pixbuf.get_from_drawable() method instead of this lower−level function. A
gtk.gdk.Pixbuf contains image data in a canonicalized RGB format, rather than a display−dependent
format. Of course, there's a convenience vs. speed tradeoff here, so you'll want to think about what makes
sense for your application.

You would usually copy image data to the client side if you intend to examine the values of individual pixels,
for example to darken an image or add a red tint. It would be prohibitively slow to make a round−trip request
to the windowing system for each pixel, so instead you get all of them at once, modify them, then copy them
all back at once. If the X server or other windowing system backend is on the local machine, this function may
use shared memory to avoid copying the image data. If the source drawable is a gtk.gdk.Window and
partially off screen or obscured, then the obscured portions of the returned image will contain undefined data.

gtk.gdk.Drawable.new_gc

 def new_gc(foreground, background, font, function, fill, tile, stipple, clip_mask, subwindow_mode, ts_x_origin, ts_y_origin, clip_x_origin, clip_y_origin, graphics_exposures, line_width, line_style, cap_style, join_style>)

foreground : the foreground gtk.gdk.Color
background : the background gtk.gdk.Color
font : a font (deprecated and ignored)

function :
the bitwise operator used to combine the existing pixel value and a new pixel
value − usually one of: gtk.gdk.COPY, gtk.gdk.XOR or
gtk.gdk.INVERT.

PyGTK 2.0 Reference Manual

gtk.gdk.Drawable.draw_layout 40

fill : the fill style − one of: gtk.gdk.SOLID, gtk.gdk.TILED,
gtk.gdk.STIPPLED, gtk.gdk.OPAQUE_STIPPLED

tile : a gtk.gdk.Pixmap used for tiling the background
stipple : a gtk.gdk.Pixmap used for stippling the background
clip_mask : a gtk.gdk.Pixmap of depth 1 used to mask pixels to be drawn

subwindow_mode : the mode of drawing on subwindows in a gtk.gdk.Window − one of:
gtk.gdk.CLIP_BY_CHILDREN or gtk.gdk.INCLUDE_INFERIORS

ts_x_origin : the X coordinate of the origin of tile or stipple
ts_y_origin : the Y coordinate of the origin of tile or stipple
clip_x_origin : the X coordinate of the origin of clip_mask
clip_y_origin : the Y coordinate of the origin of clip_mask

graphics_exposures :if TRUE graphics exposures are enabled for calls to the draw_drawable()
method.

line_width : the line width in pixels

line_style : the line style − one of: gtk.gdk.LINE_SOLID,
gtk.gdk.LINE_ON_OFF_DASH, gtk.gdk.LINE_DOUBLE_DASH

cap_style :
the style of line ends − one of: gtk.gdk.CAP_NOT_LAST,
gtk.gdk.CAP_BUTT, gtk.gdk.CAP_ROUND,
gtk.gdk.CAP_PROJECTING

join_style : the style of line joins − one of: gtk.gdk.JOIN_MITER,
gtk.gdk.JOIN_ROUND, gtk.gdk.JOIN_BEVEL

Returns : a graphics context
The new_gc() method creates a new gtk.gdk.GC object with the attributes as specified by the arguments.
Since there are a large number of parameters it's probably best to specify the attributes using keywords. Any
attributes not specified will use a default value.

gtk.gdk.Drawable.draw_rgb_image

 def draw_rgb_image_dithalign(gc, x, y, width, height, dith, rgb_buf, rowstride=−1, xdith=0, ydith=0)

gc : a graphics context
x : the X coordinate of the top−left corner in the drawable.
y : the Y coordinate of the top−left corner in the drawable.
width : the width of the image to be drawn.
height : the height of the image to be drawn.

dith : a dither value − one of: gtk.gdk.RGB_DITHER_NONE,
gtk.gdk.RGB_DITHER_NORMAL, gtk.gdk.RGB_DITHER_MAX

rgb_buf : the pixel data, represented as packed 24−bit data.

rowstride : the number of bytes from the start of one row in rgb_buf to the start of the next or −1 to
calculate the number of bytes.

xdith : an X offset for dither alignment.
ydith : a Y offset for dither alignment.
The draw_rgb_image() method draws an RGB image in the drawable, with an adjustment for dither
alignment. This method is useful when drawing dithered images into a window that may be scrolled. Pixel (x,
y) will be drawn dithered as if its actual location is (x + xdith, y + ydith). Thus, if you draw an image into a
window using zero dither alignment, then scroll up one pixel, subsequent draws to the window should have
ydith = 1. Setting the dither alignment correctly allows updating of small parts of the screen while avoiding
visible "seams" between the different dither textures.

PyGTK 2.0 Reference Manual

gtk.gdk.Drawable.new_gc 41

gtk.gdk.Drawable.draw_rgb_32_image

 def draw_rgb_32_image(gc, x, y, width, height, dith, rgb_buf, rowstride=−1, xdith=0, ydith=0)

gc : a graphics context
x : the X coordinate of the top−left corner in the drawable.
y : the Y coordinate of the top−left corner in the drawable.
width : the width of the image to be drawn.
height : the height of the image to be drawn.

dith : a dither value − one of: gtk.gdk.RGB_DITHER_NONE,
gtk.gdk.RGB_DITHER_NORMAL, gtk.gdk.RGB_DITHER_MAX

buf : the pixel data, represented as padded 32−bit data.

rowstride : the number of bytes from the start of one row in buf to the start of the next or −1 to calculate
the number of bytes.

xdith : an X offset for dither alignment.
ydith : a Y offset for dither alignment.
The draw_rgb_32_image() method draws a padded RGB image in the drawable. The image is stored as
one pixel per 32−bit word. It is laid out as a red byte, a green byte, a blue byte, and a padding byte. Otherwise
this method works the same as the draw_rgb_image() method.

gtk.gdk.Drawable.draw_gray_image

 def draw_gray_image(gc, x, y, width, height, dith, buf, rowstride=−1)

gc : a graphics context
x : the X coordinate of the top−left corner in the drawable.
y : the Y coordinate of the top−left corner in the drawable.
width : the width of the image to be drawn.
height : the height of the image to be drawn.

dith : a dither value − one of: gtk.gdk.RGB_DITHER_NONE,
gtk.gdk.RGB_DITHER_NORMAL, gtk.gdk.RGB_DITHER_MAX

buf : the pixel data, represented as 8−bit gray values.

rowstride : the number of bytes from the start of one row in buf to the start of the next or −1 to calculate
the number of bytes.

The draw_gray_image() method draws a grayscale image on the drawable at the location specified by x
and y with the image data in buf.

Prev Up Next
gtk.gdk.DragContext Home gtk.gdk.Event

gtk.gdk.Event
Prev The gtk.gdk Class Reference Next

gtk.gdk.Event

gtk.gdk.Event � an object representing an event from the windowing system

PyGTK 2.0 Reference Manual

gtk.gdk.Drawable.draw_rgb_32_image 42

Synopsis

class gtk.gdk.Event(gobject.GBoxed):
gtk.gdk.Event(type)

 def put()
 def copy()
 def free()
 def get_time()
 def get_state(state)
 def get_coords()
 def get_root_coords()
 def get_axis(axis_use)
 def set_screen(screen)
 def get_screen()

Functions

 def gtk.gdk.events_pending()
 def gtk.gdk.event_peek()
 def gtk.gdk.event_get()
 def gtk.gdk.event_get_graphics_expose(window)
 def gtk.gdk.set_show_events(show_events)
 def gtk.gdk.get_show_events()

Attributes

The attributes available for a gtk.gdk.Event are dependent on the type of the event. The event types are
described in the Description section.

The following attributes are available to all different kind of events:

"type" Read The event type − see the list below in the Description section

"window" Read/Write The gtk.gdk.Window the event occurred on.

"send_event" Read/Write TRUE if the event was sent explicitly.

gtk.gdk.EXPOSE

"area" Read/Write The bounding box of the area to be redrawn

"count" Read/Write The number of contiguous gtk.gdk.EXPOSE events following this one. The only use
for this is "exposure compression", i.e. handling all contiguous gtk.gdk.EXPOSE
events in one go, though PyGTK performs some exposure compression so this is not
normally needed.

gtk.gdk.MOTION_NOTIFY

PyGTK 2.0 Reference Manual

Synopsis 43

"time" Read/Write The time of the event in milliseconds.

"x" Read/Write The x coordinate of the pointer relative to the window.

"y" Read/Write The y coordinate of the pointer relative to the window.

"axes" Read x, y translated to the axes of device, or None if device is the mouse.

"state" Read/Write A bit−mask representing the state of the modifier keys (e.g. Control, Shift and
Alt) and the pointer buttons.

"is_hint" Read/Write TRUE if the gdk.POINTER_MOTION_HINT_MASK is set.

"device" Read The device where the event originated.

"x_root" Read/Write The x coordinate of the pointer relative to the root of the screen.

"y_root" Read/Write The y coordinate of the pointer relative to the root of the screen.

gtk.gdk.BUTTON_PRESS

gtk.gdk._2BUTTON_PRESS

gtk.gdk._3BUTTON_PRESS

gtk.gdk.BUTTON_RELEASE

"time" Read/Write The time of the event in milliseconds.

"x" Read/Write The x coordinate of the pointer relative to the window.

"y" Read/Write The y coordinate of the pointer relative to the window.

"axes" Read x, y translated to the axes of device, or None if device is the mouse.

"state" Read/Write A bit−mask representing the state of the modifier keys (e.g. Control, Shift and Alt)
and the pointer buttons.

"button" Read/Write The button which was pressed or released, numbered from 1 to 5. Normally button
1 is the left mouse button, 2 is the middle button, and 3 is the right button. On
2−button mice, the middle button can often be simulated by pressing both mouse
buttons together.

"device" Read The device where the event originated.

"x_root" Read/Write The x coordinate of the pointer relative to the root of the screen.

"y_root" Read/Write The y coordinate of the pointer relative to the root of the screen.

gtk.gdk.KEY_PRESS

gtk.gdk.KEY_RELEASE

PyGTK 2.0 Reference Manual

gtk.gdk.MOTION_NOTIFY 44

"time" Read/Write The time of the event in milliseconds.

"state" Read/Write A bit−mask representing the state of the modifier keys (e.g. Control,
Shift and Alt) and the pointer buttons.

"keyval" Read/Write The key that was pressed or released.

"string" Read/Write A multi−byte string containing the composed characters resulting from
the key press. When text is being input, in a gtk.Entry for example,
it is these characters which should be added to the input buffer. When
using Input Methods to support internationalized text input, the
composed characters appear here after the pre−editing has been
completed.

"hardware_keycode" Read/Write The raw code of the key that was pressed or released. Available in
PyGTK 2.2 and above.

"group" Read/Write the keyboard group. Available in PyGTK 2.4 and above.

gtk.gdk.ENTER_NOTIFY

gtk.gdk.LEAVE_NOTIFY

"subwindow" Read The window that was entered or left.

"time" Read/Write The time of the event in milliseconds.

"x" Read/Write The x coordinate of the pointer relative to the window.

"y" Read/Write The y coordinate of the pointer relative to the window.

"x_root" Read/Write The x coordinate of the pointer relative to the root of the
screen.

"y_root" Read/Write The y coordinate of the pointer relative to the root of the
screen.

"mode" Read/Write The crossing mode (gtk.gdk.CROSSING_NORMAL,
gtk.gdk.CROSSING_GRAB or
gtk.gdk.CROSSING_UNGRAB).

"detail" Read/Write The kind of crossing that happened
(gtk.gdk.NOTIFY_INFERIOR,
gtk.gdk.NOTIFY_ANCESTOR,
gtk.gdk.NOTIFY_VIRTUAL,
gtk.gdk.NOTIFY_NONLINEAR or
gtk.gdk.NOTIFY_NONLINEAR_VIRTUAL).

"focus" Read/Write TRUE if window is the focus window or an inferior.

"state" Read/Write A bit−mask representing the state of the modifier keys
(e.g. Control, Shift and Alt) and the pointer buttons.

gtk.gdk.FOCUS_CHANGE

"in_" Read/Write TRUE if the window has gained the keyboard focus, FALSE if it has lost the focus.

PyGTK 2.0 Reference Manual

gtk.gdk.KEY_RELEASE 45

gtk.gdk.CONFIGURE

"x" Read/Write The new x coordinate of the window relative to its parent.

"y" Read/Write The new y coordinate of the window relative to its parent.

"width" Read/Write The new width of the window.

"height" Read/Write The new height of the window.

gtk.gdk.PROPERTY_NOTIFY

"atom" Read The property that was changed.

"time" Read/Write The time of the event in milliseconds.

"state" Read/Write The property was changed (gtk.gdk.PROPERTY_NEW_VALUE) or deleted
(gtk.gdk.PROPERTY_DELETE).

gtk.gdk.SELECTION_CLEAR

gtk.gdk.SELECTION_REQUEST

gtk.gdk.SELECTION_NOTIFY

"selection" Read The selection.

"target" Read The target to which the selection should be converted.

"property" Read The property in which to place the result of the conversion.

"requestor" Read/Write the native window ID on which to place property.

"time" Read/Write The time of the event in milliseconds.

gtk.gdk.PROXIMITY_IN

gtk.gdk.PROXIMITY_OUT

"time" Read/Write The time of the event in milliseconds.

"device" Read/Write The device where the event originated.

gtk.gdk.DRAG_ENTER

gtk.gdk.DRAG_LEAVE

gtk.gdk.DRAG_MOTION

gtk.gdk.DRAG_STATUS

PyGTK 2.0 Reference Manual

gtk.gdk.CONFIGURE 46

gtk.gdk.DRAG_START

gtk.gdk.DRAG_FINISHED

"context" Read The gtk.gdk.DragContext for the current DND
operation.

"time" Read/Write The time of the event in milliseconds.

"x_root" Read/Write The x coordinate of the pointer relative to the root of the screen
only set for gtk.gdk.DRAG_MOTION and
gtk.gdk.DROP_START.

"y_root" Read/Write The y coordinate of the pointer relative to the root of the screen
only set for gtk.gdk.DRAG_MOTION and
gtk.gdk.DROP_START.

gtk.gdk.CLIENT_EVENT

"message_type" Read/Write The type of the message, which can be defined by the application.

"data_format" Read/Write The format of the data, given as the number of bits in each data element, i.e.
8, 16, or 32.

"data" Read/Write The data as a string of 8−bit characters.

gtk.gdk.VISIBILITY_NOTIFY

"state" Read/Write The new visibility state
(gtk.gdk.VISIBILITY_FULLY_OBSCURED,
gtk.gdk.VISIBILITY_PARTIAL or
gtk.gdk.VISIBILITY_UNOBSCURED).

gtk.gdk.SCROLL

"time" Read/Write The time of the event in milliseconds.

"x" Read/Write The x coordinate of the pointer relative to the window.

"y" Read/Write The y coordinate of the pointer relative to the window.

"state" Read/Write A bit−mask representing the state of the modifier keys (e.g.
Control, Shift and Alt) and the pointer buttons.

"direction" Read/Write The direction to scroll to (one of gtk.gdk.SCROLL_UP,
gtk.gdk.SCROLL_DOWN, gtk.gdk.SCROLL_LEFT or
gtk.gdk.SCROLL_RIGHT).

"device" Read The device where the event originated.

"x_root" Read/Write The x coordinate of the pointer relative to the root of the
screen.

"y_root" Read/Write

PyGTK 2.0 Reference Manual

gtk.gdk.DRAG_START 47

The y coordinate of the pointer relative to the root of the
screen.

gtk.gdk.WINDOW_STATE

"changed_mask" Read/Write The mask specifying what flags have changed − a
combination of:
gtk.gdk.WINDOW_STATE_WITHDRAWN,
gtk.gdk.WINDOW_STATE_ICONIFIED,
gtk.gdk.WINDOW_STATE_MAXIMIZED and
gtk.gdk.WINDOW_STATE_STICKY

"new_window_state" Read/Write The new window state − a combination of:
gtk.gdk.WINDOW_STATE_WITHDRAWN,
gtk.gdk.WINDOW_STATE_ICONIFIED,
gtk.gdk.WINDOW_STATE_MAXIMIZED and
gtk.gdk.WINDOW_STATE_STICKY

gtk.gdk.SETTING

"action" Read/Write What happened to the setting (gtk.gdk.SETTING_ACTION_NEW,
gtk.gdk.SETTING_ACTION_CHANGED or
gtk.gdk.SETTING_ACTION_DELETED).

"name" Read/Write The name of the setting.

Description

A gtk.gdk.Event represents an event from the windowing system. The gtk.gdk.Event methods are
usually not used by applications since the PyGTK main loop generates signals and invokes the appropriate
signal handler. The event types are:

gtk.gdk.NOTHING a special code to indicate a null event.

gtk.gdk.DELETE
the window manager has requested that the toplevel window be hidden
or destroyed, usually when the user clicks on a special icon in the title
bar.

gtk.gdk.DESTROY the window has been destroyed.
gtk.gdk.EXPOSE all or part of the window has become visible and needs to be redrawn.
gtk.gdk.MOTION_NOTIFY the pointer (usually a mouse) has moved.
gtk.gdk.BUTTON_PRESS a mouse button has been pressed.

gtk.gdk._2BUTTON_PRESS
a mouse button has been double−clicked (clicked twice within a short
period of time). Note that each click also generates a
gtk.gdk.BUTTON_PRESS event.

gtk.gdk._3BUTTON_PRESS
a mouse button has been clicked 3 times in a short period of time. Note
that each click also generates a gtk.gdk.BUTTON_PRESS event.

gtk.gdk.BUTTON_RELEASE a mouse button has been released.
gtk.gdk.KEY_PRESS a key has been pressed.
gtk.gdk.KEY_RELEASE a key has been released.

PyGTK 2.0 Reference Manual

gtk.gdk.SCROLL 48

gtk.gdk.ENTER_NOTIFY the pointer has entered the window.
gtk.gdk.LEAVE_NOTIFY the pointer has left the window.
gtk.gdk.FOCUS_CHANGE the keyboard focus has entered or left the window.

gtk.gdk.CONFIGURE
the size, position or stacking order of the window has changed. Note
that PyGTK discards these events for gtk.gdk.WINDOW_CHILD
windows.

gtk.gdk.MAP the window has been mapped.
gtk.gdk.UNMA the window has been unmapped.
gtk.gdk.PROPERTY_NOTIFY a property on the window has been changed or deleted.
gtk.gdk.SELECTION_CLEAR the application has lost ownership of a selection.
gtk.gdk.SELECTION_REQUEST another application has requested a selection.
gtk.gdk.SELECTION_NOTIFY a selection has been received.

gtk.gdk.PROXIMITY_IN
an input device has moved into contact with a sensing surface (e.g. a
touchscreen or graphics tablet).

gtk.gdk.PROXIMITY_OUT an input device has moved out of contact with a sensing surface.
gtk.gdk.DRAG_ENTER the mouse has entered the window while a drag is in progress.
gtk.gdk.DRAG_LEAVE the mouse has left the window while a drag is in progress
gtk.gdk.DRAG_MOTION the mouse has moved in the window while a drag is in progress.
gtk.gdk.DRAG_STATUS the status of the drag operation initiated by the window has changed.
gtk.gdk.DROP_START a drop operation onto the window has started.
gtk.gdk.DROP_FINISHED the drop operation initiated by the window has completed.
gtk.gdk.CLIENT_EVENT a message has been received from another application.
gtk.gdk.VISIBILITY_NOTIFY the window visibility status has changed.

gtk.gdk.NO_EXPOSE
indicates that the source region was completely available when parts of
a drawable were copied. This is not very useful.

gtk.gdk.SCROLL a scroll had occurred for a window
gtk.gdk.WINDOW_STATE the window state has changed
gtk.gdk.SETTING a setting has changed
A set of bit−flags is used to indicate which events a window is to receive. Most of these masks map onto one
or more of the event types above.

The gtk.gdk.POINTER_MOTION_HINT_MASK is a special mask which is used to reduce the number of
gtk.gdk.MOTION_NOTIFY events received. Normally a gtk.gdk.MOTION_NOTIFY event is received
each time the mouse moves. However, if the application spends a lot of time processing the event (updating
the display, for example), it can easily lag behind the position of the mouse. When using the
gtk.gdk.POINTER_MOTION_HINT_MASK the server will only send a single
gtk.gdk.MOTION_NOTIFY event (which is marked as a hint) until the application asks for more, by
calling the gtk.gdk.Window.get_pointer() method. The masks are:

gtk.gdk.EXPOSURE_MASK•
gtk.gdk.POINTER_MOTION_MASK•
gtk.gdk.POINTER_MOTION_HINT_MASK•
gtk.gdk.BUTTON_MOTION_MASK•
gtk.gdk.BUTTON1_MOTION_MASK•
gtk.gdk.BUTTON2_MOTION_MASK•
gtk.gdk.BUTTON3_MOTION_MASK•
gtk.gdk.BUTTON_PRESS_MASK•
gtk.gdk.BUTTON_RELEASE_MASK•
gtk.gdk.KEY_PRESS_MASK•

PyGTK 2.0 Reference Manual

Description 49

gtk.gdk.KEY_RELEASE_MASK•
gtk.gdk.ENTER_NOTIFY_MASK•
gtk.gdk.LEAVE_NOTIFY_MASK•
gtk.gdk.FOCUS_CHANGE_MASK•
gtk.gdk.STRUCTURE_MASK•
gtk.gdk.PROPERTY_CHANGE_MASK•
gtk.gdk.VISIBILITY_NOTIFY_MASK•
gtk.gdk.PROXIMITY_IN_MASK•
gtk.gdk.PROXIMITY_OUT_MASK•
gtk.gdk.SUBSTRUCTURE_MASK•
gtk.gdk.SCROLL_MASK•
gtk.gdk.ALL_EVENTS_MASK•

gtk.gdk.ALL_EVENTS_MASK is a combination of all the event masks.

Constructor

gtk.gdk.Event(type)

type : a event type − see the Description above

Returns : a newly−allocated gtk.gdk.Event. The returned gtk.gdk.Event should be freed with
gtk.gdk.Event.free().

Note

This constructor is available in PyGTK 2.2 and above.

Creates a new gtk.gdk.Event of the given type. All fields are set to 0.

Methods

gtk.gdk.Event.put

 def put()

The put() method appends a copy of the given event onto the tail of the event queue.

gtk.gdk.Event.copy

 def copy()

Returns : a copy of the event
The copy() method copies the event, copying or incrementing the reference count of the resources associated
with it (e.g. windows and strings). The new gtk.gdk.Event must be freed with the free() method.

gtk.gdk.Event.free

 def free()

The free() method frees the event, freeing or decrementing any resources associated with it. Note that this
method should only be called on gtk.gdk.Event objects returned from methods or functions such as
gtk.gdk.event_peek(), gtk.gdk.event_get(), gtk.gdk.event_get_graphics_expose()

PyGTK 2.0 Reference Manual

Constructor 50

and copy().

gtk.gdk.Event.get_time

 def get_time()

Returns : the time stamp field from the event
The get_time() method returns the time stamp from the event, if there is one; otherwise returns 0.

gtk.gdk.Event.get_state

 def get_state()

Returns : the modifier state

Note

This method is available in PyGTK 2.4 and above.

The get_state() method returns the value of the modifier "state" field. If the event has no "state" field the
empty state value (0) is returned. The "state" field contains a modifier type: a combination of:

gtk.gdk.SHIFT_MASK The Shift key.

gtk.gdk.LOCK_MASK
A Lock key (depending on the modifier mapping of the X server this may
either be CapsLock or ShiftLock).

gtk.gdk.CONTROL_MASK The Control key.

gtk.gdk.MOD1_MASK
The fourth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier, but normally it is the Alt key).

gtk.gdk.MOD2_MASK
The fifth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD3_MASK
The sixth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD4_MASK
The seventh modifier key (it depends on the modifier mapping of the X
server which key is interpreted as this modifier).

gtk.gdk.MOD5_MASK
The eighth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.BUTTON1_MASK The first mouse button.
gtk.gdk.BUTTON2_MASK The second mouse button.
gtk.gdk.BUTTON3_MASK The third mouse button.
gtk.gdk.BUTTON4_MASK The fourth mouse button.
gtk.gdk.BUTTON5_MASK The fifth mouse button.

gtk.gdk.RELEASE_MASK
Differentiates between (keyval, modifiers) pairs from key press and release
events.

gtk.gdk.MODIFIER_MASK all of the above

gtk.gdk.NOTHING

PyGTK 2.0 Reference Manual

gtk.gdk.Event.free 51

gtk.gdk.DELETE

gtk.gdk.DESTROY

gtk.gdk.MAP

gtk.gdk.UNMAP

gtk.gdk.NO_EXPOSE

These events does not have any additional attributes.

gtk.gdk.Event.get_coords

 def get_coords()

Returns : a tuple containing the event window x and y coordinates or an empty tuple if the event did not
deliver event window coordinates

The get_coords() method returns a tuple containing the x and y coordinates of an event relative to the
event gtk.gdk.Window or an empty tuple if the event did not deliver event window coordinates.

gtk.gdk.Event.get_root_coords

 def get_root_coords()

Returns : a tuple containing the root window x and y coordinates or an empty tuple if the event did not
deliver root window coordinates

The get_root_coords() method returns a tuple containing the x and y coordinates from an event relative
to the root window or an empty tuple if the event did not deliver root window coordinates.

gtk.gdk.Event.get_axis

 def get_axis(axis_use)

axis_use : the axis use to look for
Returns : the value found or None if the axis was not found.
The get_axis() method returns the axis value for the axis use specified by axis_use from an event
structure. The value of axis_use must be one of:

gtk.gdk.AXIS_IGNORE the axis is ignored.
gtk.gdk.AXIS_X the axis is used as the x axis.
gtk.gdk.AXIS_Y the axis is used as the y axis.
gtk.gdk.AXIS_PRESSURE the axis is used for pressure information.
gtk.gdk.AXIS_XTILT the axis is used for x tilt information.
gtk.gdk.AXIS_YTILT the axis is used for y tilt information.
gtk.gdk.AXIS_WHEEL the axis is used for wheel information.
gtk.gdk.AXIS_LAST a constant equal to the numerically highest axis value.
If an axis with the specified axis use is not found, this method returns None.

PyGTK 2.0 Reference Manual

gtk.gdk.DELETE 52

gtk.gdk.Event.set_screen

 def set_screen(screen)

screen : a gtk.gdk.Screen

Note

This method is available in PyGTK 2.2 and above.

The set_screen() method sets the gtk.gdk.Screen to the value of screen. The event must have
been allocated by PyGTK, for instance, by the gtk.gdk.Event.copy() method.

gtk.gdk.Event.get_screen

 def get_screen()

Returns : the screen for the event

Note

This method is available in PyGTK 2.2 and above.

The get_screen() method returns the gtk.gdk.Screen for the event. The screen is typically the screen
for the event window, but for events such as mouse events, it is the screen where the the pointer was when the
event occurs − that is, the screen that has the root window for the event.

Functions

gtk.gdk.events_pending

 def gtk.gdk.events_pending()

Returns : TRUE if any events are pending
The gtk.gdk.events_pending() function returns TRUE if any events are ready to be processed.

gtk.gdk.event_peek

 def gtk.gdk.event_peek()

Returns : a copy of the first gtk.gdk.Event on the event queue or None if there is no event in the queue.
The gtk.gdk.event_peek() function returns a copy of the first gtk.gdk.Event on the event queue or
None if there is no event on the event queue. The returned gtk.gdk.Event should be freed with the
free() method.

gtk.gdk.event_get

 def gtk.gdk.event_get()

Returns : the next gtk.gdk.Event to be processed, or None if no events are pending.
The gtk.gdk.event_get() function returns the next gtk.gdk.Event to be processed or None if no
events are available. The returned gtk.gdk.Event should be freed using the free() method.

PyGTK 2.0 Reference Manual

gtk.gdk.Event.set_screen 53

gtk.gdk.event_get_graphics_expose

 def gtk.gdk.event_get_graphics_expose(window)

window : a gtk.gdk.Window

Returns : an expose gtk.gdk.Event if a GraphicsExpose was received, or None if a NoExpose
event was received.

The gtk.gdk.event_get_graphics_expose() function waits for and returns returns an expose
gtk.gdk.Event if a GraphicsExpose was received, or None if a NoExpose event was received.

gtk.gdk.set_show_events

 def gtk.gdk.set_show_events(show_events)

show_events : if TRUE output event debug information
The gtk.gdk.set_show_events() function sets the debug events flag if show_events is TRUE.
Otherwise the debug events flag is unset.

gtk.gdk.get_show_events

 def gtk.gdk.get_show_events()

Returns : TRUE if the debug events flag is set.
The gtk.gdk.get_show_events() function returns the setting of the internal debug events flag.

Prev Up Next
gtk.gdk.Drawable Home gtk.gdk.GC

gtk.gdk.GC
Prev The gtk.gdk Class Reference Next

gtk.gdk.GC

gtk.gdk.GC � objects to encapsulate drawing properties.

Synopsis

class gtk.gdk.GC(gobject.GObject):
gtk.gdk.GC(drawable, foreground, background, font, function, fill, tile, stipple, clip_mask, subwindow_mode, ts_x_origin, ts_y_origin, clip_x_origin, clip_y_origin, graphics_exposures, line_width, line_style, cap_style, join_style>)

 def set_values(foreground, background, font, function, fill, tile, stipple, clip_mask, subwindow_mode, ts_x_origin, ts_y_origin, clip_x_origin, clip_y_origin, graphics_exposures, line_width, line_style, cap_style, join_style>)
 def set_foreground(color)
 def set_background(color)
 def set_function(function)
 def set_fill(fill)
 def set_tile(tile)
 def set_stipple(stipple)
 def set_ts_origin(x, y)
 def set_clip_origin(x, y)
 def set_clip_mask(mask)
 def set_clip_rectangle(rectangle)
 def set_subwindow(mode)
 def set_exposures(exposures)
 def set_line_attributes(line_width, line_style, cap_style, join_style)
 def set_dashes(dash_offset, dash_list)
 def offset(x_offset, y_offset)

PyGTK 2.0 Reference Manual

gtk.gdk.event_get_graphics_expose 54

 def copy(src_gc)
 def set_colormap(colormap)
 def get_colormap()
 def set_rgb_fg_color(color)
 def set_rgb_bg_color(color)
 def get_screen()

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.GC

Attributes

"background" Read−Write The background gtk.gdk.Color.

"cap_style" Read−Write The style of drawing the ends of lines − one of:
gtk.gdk.CAP_NOT_LAST, gtk.gdk.CAP_BUTT,
gtk.gdk.CAP_ROUND or gtk.gdk.CAP_PROJECTING.

"clip_mask" Read−Write A gtk.gdk.Pixmap bitmap used to clip the drawing operation.

"clip_x_origin" Read−Write The x origin of the clip mask.

"clip_y_origin" Read−Write The y origin of the clip mask.

"fill" Read−Write The fill style − one of: gtk.gdk.SOLID, gtk.gdk.TILED,
gtk.gdk.STIPPLED or gtk.gdk.OPAQUE_STIPPLED.

"font" Read−Write The default font (deprecated and unused)

"foreground" Read−Write The foreground gtk.gdk.Color.

"function" Read−Write A bitwise operation type to combine source and destination pixels −
one of: gtk.gdk.COPY, gtk.gdk.INVERT, gtk.gdk.XOR,
gtk.gdk.CLEAR, gtk.gdk.AND, gtk.gdk.AND_REVERSE,
gtk.gdk.AND_INVERT, gtk.gdk.NOOP, gtk.gdk.OR,
gtk.gdk.EQUIV, gtk.gdk.OR_REVERSE,
gtk.gdk.COPY_INVERT, gtk.gdk.OR_INVERT,
gtk.gdk.NAND, gtk.gdk.NOR or gtk.gdk.SET.

"graphics_exposures" Read−Write If TRUE graphics exposures are enabled.

"join_style" Read−Write The style used to join lines − one of: gtk.gdk.JOIN_MITER,
gtk.gdk.JOIN_ROUND or gtk.gdk.JOIN_BEVEL.

"line_style" Read−Write The style of drawing lines − one of: gtk.gdk.LINE_SOLID,
gtk.gdk.LINE_ON_OFF_DASH or
gtk.gdk.LINE_DOUBLE_DASH.

"line_width" Read−Write The width of a line in pixels.

"stipple" Read−Write The gtk.gdk.Pixmap bitmap used to stipple the background.

"sub_window" Read−Write The mode of drawing in a gtk.gdk.Window with subwindows −
one of: gtk.gdk.CLIP_BY_CHILDREN or
gtk.gdk.INCLUDE_INFERIORS.

"tile" Read−Write The gtk.gdk.Pixmap used to tile the background.

PyGTK 2.0 Reference Manual

Synopsis 55

"ts_x_origin" Read−Write The x origin of the tile or stipple.

"ts_y_origin" Read−Write The y origin of the tile or stipple.

Description

All drawing operations in PyGTK take a graphics context (gtk.gdk.GC) argument (See the
gtk.gdk.Drawable description). A graphics context encapsulates information about the way things are
drawn, such as the foreground color or line width. By using graphics contexts, the number of arguments to
each drawing call is greatly reduced, and communication overhead is minimized, since identical arguments do
not need to be passed repeatedly. Most values of a graphics context can be set at creation time by using
gtk.gdk.Drawable.new_gc(), or can be set one−by−one using functions such as set_foreground()
or by setting a gtk.gdk.GC attribute. A few of the values in the gtk.gdk.GC, such as the dash pattern,
can only be set by the latter method.

Constructor

gtk.gdk.GC(drawable, foreground, background, font, function, fill, tile, stipple, clip_mask, subwindow_mode, ts_x_origin, ts_y_origin, clip_x_origin, clip_y_origin, graphics_exposures, line_width, line_style, cap_style, join_style>)

drawable : A gtk.gdk.Drawable (gtk.gdk.Window or
gtk.gdk.Pixmap)

foreground : the foreground gtk.gdk.Color
background : the background gtk.gdk.Color
font : a font (deprecated and ignored)

function :
the bitwise operator used to combine the existing pixel value
and a new pixel value − usually one of: gtk.gdk.COPY,
gtk.gdk.XOR or gtk.gdk.INVERT.

fill : the fill style − one of: gtk.gdk.SOLID, gtk.gdk.TILED,
gtk.gdk.STIPPLED, gtk.gdk.OPAQUE_STIPPLED

tile : a gtk.gdk.Pixmap used for tiling the background
stipple : a gtk.gdk.Pixmap used for stippling the background

clip_mask : a gtk.gdk.Pixmap of depth 1 used to mask pixels to be
drawn

subwindow_mode :
the mode of drawing on subwindows in a gtk.gdk.Window
− one of: gtk.gdk.CLIP_BY_CHILDREN or
gtk.gdk.INCLUDE_INFERIORS

ts_x_origin : the X coordinate of the origin of tile or stipple
ts_y_origin : the Y coordinate of the origin of tile or stipple
clip_x_origin : the X coordinate of the origin of clip_mask
clip_y_origin : the Y coordinate of the origin of clip_mask

graphics_exposures : if TRUE graphics exposures are enabled for calls to the
gtk.gdk.Drawable.draw_drawable() method.

line_width : the line width in pixels

line_style :
the line style − one of: gtk.gdk.LINE_SOLID,
gtk.gdk.LINE_ON_OFF_DASH,
gtk.gdk.LINE_DOUBLE_DASH

cap_style :
the style of line ends − one of: gtk.gdk.CAP_NOT_LAST,
gtk.gdk.CAP_BUTT, gtk.gdk.CAP_ROUND,
gtk.gdk.CAP_PROJECTING

PyGTK 2.0 Reference Manual

Attributes 56

join_style : the style of line joins − one of: gtk.gdk.JOIN_MITER,
gtk.gdk.JOIN_ROUND, gtk.gdk.JOIN_BEVEL

Returns : a new gtk.gdk.GC object
Creates a new gtk.gdk.GC object for the gtk.gdk.Drawable specified by drawable with the
optional attributes as specified by the arguments. The drawable parameter must be specified but the rest of the
parameters are optional. Any attributes not specified will use a default value. This is an alternative to the
gtk.gdk.Drawable.new_gc() method. Since there are a large number of optional attribute parameters
it's probably best to specify the attribute values using keywords.

Methods

gtk.gdk.GC.set_values

 def set_values(values, foreground, background, font, function, fill, tile, stipple, clip_mask, subwindow_mode, ts_x_origin, ts_y_origin, clip_x_origin, clip_y_origin, graphics_exposures, line_width, line_style, cap_style, join_style>)

foreground : the foreground gtk.gdk.Color
background : the background gtk.gdk.Color
font : a font (deprecated and ignored)

function :
the bitwise operator used to combine the existing pixel value
and a new pixel value − usually one of: gtk.gdk.COPY,
gtk.gdk.XOR or gtk.gdk.INVERT.

fill : the fill style − one of: gtk.gdk.SOLID, gtk.gdk.TILED,
gtk.gdk.STIPPLED, gtk.gdk.OPAQUE_STIPPLED

tile : a gtk.gdk.Pixmap used for tiling the background
stipple : a gtk.gdk.Pixmap used for stippling the background

clip_mask : a gtk.gdk.Pixmap of depth 1 used to mask pixels to be
drawn

subwindow_mode :
the mode of drawing on subwindows in a gtk.gdk.Window
− one of: gtk.gdk.CLIP_BY_CHILDREN or
gtk.gdk.INCLUDE_INFERIORS

ts_x_origin : the X coordinate of the origin of tile or stipple
ts_y_origin : the Y coordinate of the origin of tile or stipple
clip_x_origin : the X coordinate of the origin of clip_mask
clip_y_origin : the Y coordinate of the origin of clip_mask

graphics_exposures : if TRUE graphics exposures are enabled for calls to the
gtk.gdk.Drawable.draw_drawable() method.

line_width : the line width in pixels

line_style :
the line style − one of: gtk.gdk.LINE_SOLID,
gtk.gdk.LINE_ON_OFF_DASH,
gtk.gdk.LINE_DOUBLE_DASH

cap_style :
the style of line ends − one of: gtk.gdk.CAP_NOT_LAST,
gtk.gdk.CAP_BUTT, gtk.gdk.CAP_ROUND,
gtk.gdk.CAP_PROJECTING

join_style : the style of line joins − one of: gtk.gdk.JOIN_MITER,
gtk.gdk.JOIN_ROUND, gtk.gdk.JOIN_BEVEL

The set_values() method sets the attributes of a graphics context in bulk using the optional parameters.
Since there are a large number of attribute parameters it's probably best to specify the attribute values using
keywords. Any attributes not specified will be left as is.

PyGTK 2.0 Reference Manual

Constructor 57

gtk.gdk.GC.set_foreground

 def set_foreground(color)

color : the new foreground gtk.gdk.Color
The set_foreground() method sets the foreground gtk.gdk.Color to the value specified by color.

gtk.gdk.GC.set_background

 def set_background(color)

color : the new background gtk.gdk.Color
The set_background() method sets the background gtk.gdk.Color to the value specified by color.

gtk.gdk.GC.set_function

 def set_function(function)

function : the bitwise operator used to combine the existing pixel value and a new pixel value − usually
one of: gtk.gdk.COPY, gtk.gdk.XOR or gtk.gdk.INVERT.

The set_function() method sets the function attribute to the value specified by function. The value of
function must be one of:

gtk.gdk.COPY•
gtk.gdk.INVERT•
gtk.gdk.XOR•
gtk.gdk.CLEAR•
gtk.gdk.AND•
gtk.gdk.AND_REVERSE.•
gtk.gdk.AND_INVERT•
gtk.gdk.NOOP•
gtk.gdk.OR•
gtk.gdk.EQUIV•
gtk.gdk.OR_REVERSE•
gtk.gdk.COPY_INVERT•
gtk.gdk.OR_INVERT•
gtk.gdk.NAND•
gtk.gdk.NOR•
gtk.gdk.SET•

Only a couple of these values are usually useful. For colored images, only gtk.gdk.COPY, gtk.gdk.XOR
and gtk.gdk.INVERT are generally useful. For bitmaps, gtk.gdk.AND and gtk.gdk.OR are also
useful.

gtk.gdk.GC.set_fill

 def set_fill(fill)

fill : the new fill mode
The set_fill() method sets the fill mode for the graphics context to the value specified by fill. The
value of fill must be one of:

gtk.gdk.SOLID draw with the foreground color.

PyGTK 2.0 Reference Manual

gtk.gdk.GC.set_foreground 58

gtk.gdk.TILED draw with a tiled pixmap.

gtk.gdk.STIPPLED
draw using the stipple bitmap. Pixels corresponding to bits in the
stipple bitmap that are set will be drawn in the foreground color;
pixels corresponding to bits that are not set will be left untouched.

gtk.gdk.OPAQUE_STIPPLED

draw using the stipple bitmap. Pixels corresponding to bits in the
stipple bitmap that are set will be drawn in the foreground color;
pixels corresponding to bits that are not set will be drawn with the
background color.

gtk.gdk.GC.set_tile

 def set_tile(tile)

tile : a gtk.gdk.Pixmap
The set_tile() method sets the gtk.gdk.Pixmap specified by tile to be used for filling the
background when the fill mode is gtk.gdk.TILED.

gtk.gdk.GC.set_stipple

 def set_stipple(stipple)

stipple : a gtk.gdk.Pixmap bitmap
The set_stipple() method sets the gtk.gdk.Pixmap bitmap specified by stipple to be used for
stippling the background. stipple will only be used if the fill mode is gtk.gdk.STIPPLED or
gtk.gdk.OPAQUE_STIPPLED.

gtk.gdk.GC.set_ts_origin

 def set_ts_origin(x, y)

x : the x origin of the tile or stipple
y : the y origin of the tile or stipple
The set_ts_origin() method sets the origin of the tile or stipple to the value specified by x and y. The
tile or stipple will be aligned such that the upper left corner of the tile or stipple will coincide with this point.

gtk.gdk.GC.set_clip_origin

 def set_clip_origin(x, y)

x : the x origin of the clip mask
y : the y origin of the clip mask
The set_clip_origin() method sets the origin of the clip mask to the value specified by x and y. The
coordinates are interpreted relative to the upper−left corner of the destination drawable of the current
operation.

gtk.gdk.GC.set_clip_mask

 def set_clip_mask(mask)

mask : a gtk.gdk.Pixmap

PyGTK 2.0 Reference Manual

gtk.gdk.GC.set_fill 59

The set_clip_mask() method sets the clip mask (a gtk.gdk.Pixmap bit map) to the value specified by
mask. The clip mask is interpreted relative to the clip origin. See the set_clip_origin() method.

gtk.gdk.GC.set_clip_rectangle

 def set_clip_rectangle(rectangle)

rectangle : a gtk.gdk.Rectangle to use for clipping
The set_clip_rectangle() method sets the clip mask for the graphics context from the
gtk.gdk.Rectangle specified by rectangle and sets the clip origin to (0, 0). The clip origin can be
changed using the set_clip_origin() method.

gtk.gdk.GC.set_subwindow

 def set_subwindow(mode)

mode : the new subwindow mode
The set_subwindow() method sets the mode of drawing on subwindows when drawing on a
gtk.gdk.Window to the value specified by mode. The value of mode must be one of:

gtk.gdk.CLIP_BY_CHILDREN only draw onto the window itself not the subwindows.
gtk.gdk.INCLUDE_INFERIORS draw onto the window and child windows.

gtk.gdk.GC.set_exposures

 def set_exposures(exposures)

exposures : if TRUE exposure events will be generated for non−visible areas
The set_exposures() method sets an attribute that determines if copying non−visible portions of a
drawable using this graphics context will generate exposure events for the corresponding regions of the
destination drawable. If exposures is TRUE exposure events will be generated for non−visible areas. See
the gtk.gdk.Drawable.draw_drawable() method.

gtk.gdk.GC.set_line_attributes

 def set_line_attributes(line_width, line_style, cap_style, join_style)

line_width : the new line width in pixels
line_style : the new line style
cap_style : the new line end style
join_style : the new line join style
The set_line_attributes() method sets the attributes to be used when drawing a line using the
graphics context to the values specified by line_width, line_style, cap_style and join_style.
The value of line_style must be one of:

gtk.gdk.LINE_SOLID Lines are drawn solid.

gtk.gdk.LINE_ON_OFF_DASH
Lines are drawn dashed where even segments are drawn but
odd segments are not drawn.

gtk.gdk.LINE_DOUBLE_DASH Lines are drawn dashed where even segments are drawn
normally but odd segments are drawn in the background
color if the fill style is gtk.gdk.SOLID, or in the

PyGTK 2.0 Reference Manual

gtk.gdk.GC.set_clip_mask 60

background color masked by the stipple if the fill style is
gtk.gdk.STIPPLED.

The value of cap_style must be one of:

gtk.gdk.CAP_NOT_LAST
The same as gtk.gdk.CAP_BUTT for lines of non−zero
width but for zero width lines, the final point on the line will
not be drawn.

gtk.gdk.CAP_BUTT
The ends of the lines are drawn squared off and extending to
the coordinates of the end point.

gtk.gdk.CAP_ROUND
The ends of the lines are drawn as semicircles with the diameter
equal to the line width and centered at the end point.

gtk.gdk.CAP_PROJECTING
The ends of the lines are drawn squared off and extending half
the width of the line beyond the end point.

The value of join_style must be one of:

gtk.gdk.JOIN_MITER The sides of each line are extended to meet at an angle.
gtk.gdk.JOIN_ROUND The sides of the two lines are joined by a circular arc.

gtk.gdk.JOIN_BEVEL
The sides of the two lines are joined by a straight line which makes an equal
angle with each line.

gtk.gdk.GC.set_dashes

 def set_dashes(dash_offset, dash_list, n)

dash_offset : the index of the length in dash_list to use as the firstst dash
dash_list : the tuple or list of dash lengths in pixels
The set_dashes() method sets the pattern for drawing dashed lines using the tuple or list of dash lengths
specified by dash_list with the index of the starting dash length specified by dash_offset. The dashes
are drawn starting with the number of pixels at the offset position; then the next number of pixels is skipped;
and then the next number is drawn; and so on rotating through all the dash_list numbers and starting over
when the end is reached. For example, if dash_list is (2, 4, 8, 16) and the offset is 1, the dashes will be
drawn as: draw 4 pixels, skip 8 pixels, draw 16 pixels, skip 2 pixels, draw 4 pixels and so on.

gtk.gdk.GC.offset

 def offset(x_offset, y_offset)

x_offset : the amount by which to offset the graphics context in the X direction
y_offset : the amount by which to offset the graphics context in the Y direction
The offset() method sets offset attributes such as the clip and tile−stipple origins of the graphics context so
that drawing at x − x_offset, y − y_offset with the offset graphics context has the same effect as
drawing at x, y with the original graphics context.

gtk.gdk.GC.copy

 def copy(src_gc)

src_gc : the gtk.gdk.GC to copy
The copy() method copies the attributes of the gtk.gdk.GC specified by src_gc into this graphics
context.

PyGTK 2.0 Reference Manual

gtk.gdk.GC.set_line_attributes 61

gtk.gdk.GC.set_colormap

 def set_colormap(colormap)

colormap : a gtk.gdk.Colormap
The set_colormap() method sets the colormap for the graphics context to the specified colormap. The
depth of the colormap's visual must match the depth of the drawable for which the graphics context was
created.

gtk.gdk.GC.get_colormap

 def get_colormap()

Returns : the colormap used by the graphics context
The get_colormap() method returns the colormap for the graphics context, if it exists. A graphics context
will have a colormap if the drawable for which it was created has a colormap, or if a colormap was set
explicitly with the set_colormap() method.

gtk.gdk.GC.set_rgb_fg_color

 def set_rgb_fg_color(color)

color : an unallocated gtk.gdk.Color.
The set_rgb_fg_color() method sets the foreground color of a graphics context using the specified
unallocated color. The pixel value for color will be determined using GdkRGB. If the colormap for the
graphics context has not previously been initialized for GdkRGB, then for pseudo−color colormaps
(colormaps with a small modifiable number of colors), a colorcube will be allocated in the colormap. Calling
this method for a graphics context without a colormap is an error.

gtk.gdk.GC.set_rgb_bg_color

 def set_rgb_bg_color(color)

color : an unallocated gtk.gdk.Color.
The set_rgb_bg_color() method sets the background color of a graphics context using the specified
unallocated color. The pixel value for color will be determined using GdkRGB. If the colormap for the
graphics context has not previously been initialized for GdkRGB, then for pseudo−color colormaps
(colormaps with a small modifiable number of colors), a colorcube will be allocated in the colormap. Calling
this method for a graphics context without a colormap is an error.

gtk.gdk.GC.get_screen

 def get_screen()

Returns : the gtk.gdk.Screen for the gc

Note

This method is available in PyGTK 2.2. and above.

The get_screen() method returns the gtk.gdk.Screen on which the gc was created.

Prev Up Next

PyGTK 2.0 Reference Manual

gtk.gdk.GC.set_colormap 62

gtk.gdk.Event Home gtk.gdk.Image
gtk.gdk.Image

Prev The gtk.gdk Class Reference Next

gtk.gdk.Image

gtk.gdk.Image � an area for bit−mapped graphics stored on the X Windows client.

Synopsis

class gtk.gdk.Image(gobject.GObject):
gtk.gdk.Image(type, visual, width, height)

 def put_pixel(x, y, pixel)
 def get_pixel(x, y)
 def set_colormap(colormap)
 def get_colormap()

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Image

Description

The gtk.gdk.Image type represents an area for drawing graphics. It has now been superseded to a large
extent by the much more flexible RGB methods (see gtk.gdk.Drawable).

Constructor

gtk.gdk.Image(type, visual, width, height)

type : a gtk.gdk.Image type
visual : a gtk.gdk.Visual
width : the width in pixels of the image
height : the height in pixels of the image
Returns : a new gtk.gdk.Image object
Creates a new gtk.gdk.Image object of the specified type, width and height and using the
gtk.gdk.Visual specified by visual. The value of type must be one of:

gtk.gdk.IMAGE_NORMAL
The original X image type, which is quite slow since the image has to be
transferred from the client to the server to display it.

gtk.gdk.IMAGE_SHARED

A faster image type, which uses shared memory to transfer the image data
between client and server. However this will only be available if client and
server are on the same machine and the shared memory extension is
supported by the server.

gtk.gdk.IMAGE_FASTEST
Specifies that gtk.gdk.IMAGE_SHARED should be tried first, and if that
fails then gtk.gdk.IMAGE_NORMAL will be used.

Usually using gtk.gdk.IMAGE_FASTEST is the best choice.

PyGTK 2.0 Reference Manual

Note 63

Methods

gtk.gdk.Image.put_pixel

 def put_pixel(x, y, pixel)

x : the x coordinate of the pixel to set.
y : the y coordinate of the pixel to set.
pixel : the pixel value to set.
The put_pixel() method sets the value of the pixel in the image at the location specified by x and y to the
value specified by pixel.

gtk.gdk.Image.get_pixel

 def get_pixel(x, y)

x : the x coordinate of the pixel to get.
y : the y coordinate of the pixel to get.
Returns : the pixel value at the image location
The get_pixel() method returns the value of the pixel at the image location specified by x and y.

gtk.gdk.Image.set_colormap

 def set_colormap(colormap)

colormap : a gtk.gdk.Colormap
The set_colormap() method sets the colormap for the image to the specified colormap. Normally
there's no need to use this method since images are created with the correct colormap if you get the image
from a drawable. If you create the image from scratch, use the colormap of the drawable you intend to render
the image to.

gtk.gdk.Image.get_colormap

 def get_colormap()

Returns : the colormap for the image
The get_colormap() method returns the colormap for a given image, if it exists. An image will have a
colormap if the drawable from which it was created has a colormap, or if a colormap was set explicitly with
the set_colormap() method.

Prev Up Next
gtk.gdk.GC Home gtk.gdk.Keymap

gtk.gdk.Keymap
Prev The gtk.gdk Class Reference Next

gtk.gdk.Keymap

gtk.gdk.Keymap � an object containing mappings of keys to key values.

PyGTK 2.0 Reference Manual

Methods 64

Synopsis

class gtk.gdk.Keymap(gobject.GObject):
 def lookup_key(keycode, group, level)
 def translate_keyboard_state(keycode, state, group)
 def get_entries_for_keyval(keyval)
 def get_entries_for_keycode(hardware_keycode)
 def get_direction()

Functions

 def gtk.gdk.keymap_get_default()
 def gtk.gdk.keymap_get_for_display(display)
 def gtk.gdk.keyval_name(keyval)
 def gtk.gdk.keyval_from_name(keyval_name)
 def gtk.gdk.keyval_convert_case(symbol)
 def gtk.gdk.keyval_to_upper(keyval)
 def gtk.gdk.keyval_to_lower(keyval)
 def gtk.gdk.keyval_is_upper(keyval)
 def gtk.gdk.keyval_is_lower(keyval)
 def gtk.gdk.keyval_to_unicode(keyval)
 def gtk.gdk.unicode_to_keyval(wc)

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Keymap

Signal Prototypes

"direction−changed" def callback(gdkkeymap, user_param1, ...)

"keys−changed" def callback(gdkkeymap, user_param1, ...)

Description

A gtk.gdk.Keymap defines the translation from keyboard state (including a hardware key, a modifier
mask, and active keyboard group) to a keyval. This translation has two phases. The first phase is to determine
the effective keyboard group and level for the keyboard state; the second phase is to look up the
keycode/group/level triplet in the keymap and see what keyval it corresponds to. One gtk.gdk.Keymap
object exists for each user display. PyGTK supports only one display, so
gtk.gdk.keymap_get_default()() returns the singleton gtk.gdk.Keymap.

A keymap is a mapping from a Keymap key to key values. You can think of a Keymap key as a representation
of a symbol printed on a physical keyboard key. That is, it contains three pieces of information. First, it
contains the hardware keycode; this is an identifying number for a physical key. Second, it contains the level
of the key. The level indicates which symbol on the key will be used, in a vertical direction. So on a standard
US keyboard, the key with the number "1" on it also has the exclamation point ("!") character on it. The level
indicates whether to use the "1" or the "!" symbol. The letter keys are considered to have a lowercase letter at
level 0, and an uppercase letter at level 1, though only the uppercase letter is printed. Third, the Keymap key
contains a group; groups are not used on standard US keyboards, but are used in many other countries. On a
keyboard with groups, there can be 3 or 4 symbols printed on a single key. The group indicates movement in a
horizontal direction. Usually groups are used for two different languages. In group 0, a key might have two
English characters, and in group 1 it might have two Hebrew characters. The Hebrew characters will be
printed on the key next to the English characters.

PyGTK 2.0 Reference Manual

Synopsis 65

Methods

gtk.gdk.Keymap.lookup_key

 def lookup_key(keycode, group, level)

keycode : the hardware keycode.
group : the key group
level : the key level
Returns : a keyval, or 0 if none was mapped to the (keycode, group, level) triplet.

Note

This method is available in PyGTK 2.4 and above.

The lookup_key() method returns the keyval mapped to the specified (keycode, group, level) triplet.
This method returns 0 if no keyval is found. For normal user input, you want to use the
translate_keyboard_state() method instead of this method, since the effective group or level may
not be the same as the current keyboard state.

The parameters to this method are:

keycode : the hardware keycode. This is an identifying number for a physical key.

group :

indicates movement in a horizontal direction. Usually groups are used for two different
languages. In group 0, a key might have two English characters, and in group 1 it might
have two Hebrew characters. The Hebrew characters will be printed on the key next to the
English characters.

level :

indicates which symbol on the key will be used, in a vertical direction. So on a standard US
keyboard, the key with the number "1" on it also has the exclamation point ("!") character
on it. The level indicates whether to use the "1" or the "!" symbol. The letter keys are
considered to have a lowercase letter at level 0, and an uppercase letter at level 1, though
only the uppercase letter is printed.

gtk.gdk.Keymap.translate_keyboard_state

 def translate_keyboard_state(keycode, state, group)

keycode : a keycode
state : a modifier state
group : an active keyboard group

Returns : a 4−tuple containing the keyval, the effective group, the level and the modifiers that were used to
determine the group or level

Note

This method is available in PyGTK 2.4 and above.

The translate_keyboard_state() method translates the contents of a keyboard gtk.gdk.Event
(specified by keycode, state and group) into a keyval, effective group, level and consumed modifiers
that affected the translation (and are unavailable for application use) which are returned in a 4−tuple. See the
lookup_key() method for an explanation of groups and levels. The effective group is the group that was
actually used for the translation; some keys such as Enter are not affected by the active keyboard group. The
level is derived from state. For convenience, the keyboard gtk.gdk.Event already contains the

PyGTK 2.0 Reference Manual

Methods 66

translated keyval, so this method isn't as useful as you might think.

The value of state or the consumed modifiers is a combination of:

gtk.gdk.SHIFT_MASK The Shift key.

gtk.gdk.LOCK_MASK
A Lock key (depending on the modifier mapping of the X server this may
either be CapsLock or ShiftLock).

gtk.gdk.CONTROL_MASK The Control key.

gtk.gdk.MOD1_MASK
The fourth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier, but normally it is the Alt key).

gtk.gdk.MOD2_MASK
The fifth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD3_MASK
The sixth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD4_MASK
The seventh modifier key (it depends on the modifier mapping of the X
server which key is interpreted as this modifier).

gtk.gdk.MOD5_MASK
The eighth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.BUTTON1_MASK The first mouse button.
gtk.gdk.BUTTON2_MASK The second mouse button.
gtk.gdk.BUTTON3_MASK The third mouse button.
gtk.gdk.BUTTON4_MASK The fourth mouse button.
gtk.gdk.BUTTON5_MASK The fifth mouse button.

gtk.gdk.RELEASE_MASK
Differentiates between (keyval, modifiers) pairs from key press and release
events.

gtk.gdk.MODIFIER_MASK all of the above

Consumed Modifiers

The consumed_modifiers are modifiers that should be masked out from state when comparing this key press
to a hot key. For instance, on a US keyboard, the plus symbol is shifted, so when comparing a key press to a
Control−plus accelerator Shift should be masked out. For example:

 # We want to ignore irrelevant modifiers like ScrollLock
 ALL_ACCELS_MASK = (gtk.gdk.CONTROL_MASK | gtk.gdk.SHIFT_MASK
 | gtk.gdk.MOD1_MASK)
 keyval, egroup, level, consumed = keymap.translate_keyboard_state(
 keymap, event.hardware_keycode, event.state, event.group)
 if (keyval == ord('+') and
 (event.state & ~consumed & ALL_ACCELS_MASK) == gtk.gdk.CONTROL_MASK):
 # Control was pressed

All single modifier combinations that could affect the key for any combination of modifiers will be returned
in consumed_modifiers. Multi−modifier combinations are returned only when actually found in state.
When you store accelerators, you should always store them with consumed modifiers removed. Store
<Control>plus, not <Control><Shift>plus,

gtk.gdk.Keymap.get_entries_for_keyval

 def get_entries_for_keyval(keyval)

keyval : a keyval, such as GDK_a, GDK_Up, GDK_Return, etc.

PyGTK 2.0 Reference Manual

Note 67

Returns : a tuple containing 3−tuple containing a keycode, a group and a level that will generate keyval.

Note

This method is available in PyGTK 2.4 and above.

The get_entries_for_keyval() method returns a tuple of (keycode, group, level) 3−tuples that will
generate keyval. Groups and levels are two kinds of keyboard mode; in general, the level determines
whether the top or bottom symbol on a key is used, and the group determines whether the left or right symbol
is used. On US keyboards, the shift key changes the keyboard level, and there are no groups. A group switch
key might convert a keyboard between Hebrew to English modes, for example, the gtk.gdk.KEY_PRESS
and gtk.gdk.KEY_RELEASE gtk.gdk.Event objects contain a group attribute that indicates the
active keyboard group. The level is computed from the modifier mask.

gtk.gdk.Keymap.get_entries_for_keycode

 def get_entries_for_keycode(hardware_keycode)

hardware_keycode : a keycode
Returns : a tuple containing 4−tuples: (keyval, keycode, group, level)

Note

This method is available in PyGTK 2.4 and above.

The get_entries_for_keycode() method returns a tuple containing 4−tuples with: the keyvals bound
to hardware_keycode, the keycode, the group and the level. When a keycode is pressed by the user, the
keyval from this list of entries is selected by considering the effective keyboard group and level. See the
translate_keyboard_state() method for more information.

gtk.gdk.Keymap.get_direction

 def get_direction()

Returns : a Pango direction: pango.DIRECTION_LTR or pango.DIRECTION_RTL.
The get_direction() method returns the direction of the keymap.

Functions

gtk.gdk.keymap_get_default

 def gtk.gdk.keymap_get_default()

Returns : the default gdk keymap for the display.
The gtk.gdk.keymap_get_default() function returns the default gtk.gdk.Keymap for the display.

gtk.gdk.keymap_get_for_display

 def gtk.gdk.keymap_get_for_display(display)

display : a gtk.gdk.Display
Returns : the keymap for display.

PyGTK 2.0 Reference Manual

gtk.gdk.Keymap.get_entries_for_keyval 68

Note

This function is available in PyGTK 2.2 and above.

The gtk.gdk.keymap_get_for_display() function returns the gtk.gdk.Keymap for the
gtk.gdk.Display specified by display.

gtk.gdk.keyval_name

 def gtk.gdk.keyval_name(keyval)

keyval : a key value
Returns : a string containing the name of the key, or None if keyval is not a valid key.
The gtk.gdk.keyval_name() function converts the key value specified by keyval into a symbolic
name.

gtk.gdk.keyval_from_name

 def gtk.gdk.keyval_from_name(keyval_name)

keyval_name : a key name
Returns : the corresponding key value or 0 if the key name is not a valid key.
The gtk.gdk.keyval_from_name() function converts the key name specified by keyval_name to a
key value.

gtk.gdk.keyval_convert_case

 def gtk.gdk.keyval_convert_case(symbol)

symbol : a keyval
Returns : a 2−tuple containing the lowercase and uppercase versions of symbol

Note

This function is available in PyGTK 2.4 and above.

The gtk.gdk.keyval_convert_case() function returns the lowercase and uppercase versions of the
keyval specified by symbol.

gtk.gdk.keyval_to_upper

 def gtk.gdk.keyval_to_upper(keyval)

keyval : a key value.

Returns : the upper case form of keyval, or keyval itself if it is already in upper case or it is not subject to
case conversion.

The gtk.gdk.keyval_to_upper() function converts the key value specified by keyval to upper case,
if applicable.

PyGTK 2.0 Reference Manual

Note 69

gtk.gdk.keyval_to_lower

 def gtk.gdk.keyval_to_lower(keyval)

keyval : the key value

Returns : the lower case form of keyval, or keyval itself if it is already in lower case or it is not subject to
case conversion.

The gtk.gdk.keyval_to_lower() function converts the key value specified by keyval to lower case,
if applicable.

gtk.gdk.keyval_is_upper

 def gtk.gdk.keyval_is_upper(keyval)

keyval : the key value
Returns : TRUE if keyval is in upper case or if keyval is not subject to case conversion.
The gtk.gdk.keyval_is_upper() function returns TRUE if the key value specified by keyval is in
upper case or not subject to case conversion.

gtk.gdk.keyval_is_lower

 def gtk.gdk.keyval_is_lower(keyval)

keyval : the key value
Returns : TRUE if keyval is in lower case, or if keyval is not subject to case conversion.
The gtk.gdk.keyval_is_lower() function returns TRUE if the key value specified by keyval is in
lower case or is not subject to case conversion.

gtk.gdk.keyval_to_unicode

 def gtk.gdk.keyval_to_unicode(keyval)

keyval : the key value
Returns : the corresponding unicode character, or 0 if there is no corresponding character.
The gtk.gdk.keyval_to_unicode() function converts the key value specified by keyval to the
corresponding ISO10646 (Unicode) character.

gtk.gdk.unicode_to_keyval

 def gtk.gdk.unicode_to_keyval(wc)

wc : a ISO10646 encoded (unicode) character

Returns : the corresponding key value, if one exists. or, if there is no corresponding symbol, wc |
0x01000000

The gtk.gdk.unicode_to_keyval() function converts the ISO10646 (unicode) character specified by
wc to a key value.

Signals

PyGTK 2.0 Reference Manual

gtk.gdk.keyval_to_lower 70

The "direction−changed" gtk.gdk.Keymap Signal

 def callback(gdkkeymap, user_param1, ...)

gdkkeymap : the gdkkeymap that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "direction−changed" signal is emitted when the pango text direction of gdkkeymap is changed

The "keys−changed" gtk.gdk.Keymap Signal

 def callback(gdkkeymap, user_param1, ...)

gdkkeymap : the gdkkeymap that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.2 and above.

The "keys−changed" signal is emitted when the mapping represented by keymap changes.

Prev Up Next
gtk.gdk.Image Home gtk.gdk.Pixbuf

gtk.gdk.Pixbuf
Prev The gtk.gdk Class Reference Next

gtk.gdk.Pixbuf

gtk.gdk.Pixbuf � an object containing a client side image.

Synopsis

class gtk.gdk.Pixbuf(gobject.GObject):
gtk.gdk.Pixbuf(colorspace, has_alpha, bits_per_sample, width, height)

 def render_to_drawable(drawable, gc, src_x, src_y, dest_x, dest_y, width, height, dither, x_dither, y_dither)
 def render_to_drawable_alpha(drawable, src_x, src_y, dest_x, dest_y, width, height, alpha_mode, alpha_threshold, dither, x_dither, y_dither)
 def render_pixmap_and_mask(alpha_threshold=127)
 def get_from_drawable(src, cmap, src_x, src_y, dest_x, dest_y, width, height)
 def get_from_image(src, cmap, src_x, src_y, dest_x, dest_y, width, height)
 def get_colorspace()
 def get_n_channels()
 def get_has_alpha()
 def get_bits_per_sample()
 def get_pixels()
 def get_width()
 def get_height()
 def get_rowstride()
 def get_option(key)
 def copy()
 def fill(pixel)
 def save(filename, type, options=None)
 def add_alpha(substitute_color, r, g, b)
 def copy_area(src_x, src_y, width, height, dest_pixbuf, dest_x, dest_y)

PyGTK 2.0 Reference Manual

The "direction−changed" gtk.gdk.Keymap Signal 71

 def saturate_and_pixelate(dest, saturation, pixelate)
 def scale(dest, dest_x, dest_y, dest_width, dest_height, offset_x, offset_y, scale_x, scale_y, interp_type)
 def composite(dest, dest_x, dest_y, dest_width, dest_height, offset_x, offset_y, scale_x, scale_y, interp_type, overall_alpha)
 def composite_color(dest, dest_x, dest_y, dest_width, dest_height, offset_x, offset_y, scale_x, scale_y, interp_type, overall_alpha, check_x, check_y, check_size, color1, color2)
 def scale_simple(dest_width, dest_height, interp_type)
 def composite_color_simple(dest_width, dest_height, interp_type, overall_alpha, check_size, color1, color2)
 def get_pixels_array()
 def subpixbuf(src_x, src_y, width, height)

Functions

 def gtk.gdk.pixbuf_new_from_file(filename)
 def gtk.gdk.pixbuf_new_from_file_at_size(filename, width, height)
 def gtk.gdk.pixbuf_new_from_data(data, colorspace, has_alpha, bits_per_sample, width, height, rowstride)
 def gtk.gdk.pixbuf_new_from_array(array, colorspace, bits_per_sample)
 def gtk.gdk.pixbuf_new_from_xpm_data(data)
 def gtk.gdk.pixbuf_new_from_inline(data_length, data, copy_pixels)
 def gtk.gdk.pixbuf_get_formats()
 def gtk.gdk.pixbuf_get_file_info(filename)

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Pixbuf

Attributes

"pixel_array" Read A numeric array containing the pixel values of the
gtk.gdk.Pixbuf. The contents of the numeric array can be
changed even though the array is read−only. However you cannot
change the pixel data of pixbufs that are backed by a const string such
as stock icon pixbufs. PyGTK must be compiled with Numeric Python
support for this to work.

Properties

"bits−per−sample" Read−Write−Construct
Only

The number of bits per sample. Available in GTK+ 2.4 and
above.

"colorspace" Read−Write−Construct
Only

The colorspace in which the samples are interpreted.Available
in GTK+ 2.4 and above.

"has−alpha" Read−Write−Construct
Only

If TRUE,the pixbuf has an alpha channel. Available in GTK+
2.4 and above.

"height" Read−Write−Construct
Only

The number of rows of the pixbuf. Available in GTK+ 2.4 and
above.

"n−channels" Read−Write−Construct
Only

The number of samples per pixel. Available in GTK+ 2.4 and
above.

"pixels" Read−Write−Construct
Only

A pointer to the pixel data of the pixbuf. Available in GTK+
2.4 and above.

"rowstride" Read−Write−Construct
Only

The number of bytes between the start of a row and the start of
the next row. Available in GTK+ 2.4 and above.

"width" Read−Write−Construct
Only

The number of columns of the pixbuf. Available in GTK+ 2.4
and above.

PyGTK 2.0 Reference Manual

Synopsis 72

Description

A gtk.gdk.Pixbuf object contains the data that describes an image using client side resources. By
contrast a gtk.gdk.Pixmap uses server side resources to hold image data. Manipulating the image data in
a gtk.gdk.Pixmap may involve round trip transfers between a client and a server in X11 while
manipulating image data in a gtk.gdk.Pixbuf involves only client side operations. Therefore using
gtk.gdk.Pixbuf objects may be more efficient than using gtk.gdk.Pixmap objects if a lot of image
manipulation is necessary.

In addition to the methods associated with a gtk.gdk.Pixbuf object there are a number of functions that
can be used to create gtk.gdk.Pixbuf objects from file and inline data.

Constructor

gtk.gdk.Pixbuf(colorspace, has_alpha, bits_per_sample, width, height)

colorspace : the color space for the image − currently only gtk.gdk.COLORSPACE_RGB.
has_alpha : if TRUE the image will have transparency information.
bits_per_sample : the number of bits per color sample − currently must be 8.
width : the width of image in pixels.
height : the height of image in pixels.
Returns : a newly−created gtk.gdk.Pixbuf.
Creates a new gtk.gdk.Pixbuf structure and allocates a buffer for it. The buffer has an optimal rowstride.
Note that the buffer is not cleared; you will have to fill it completely yourself. The size of the image is
specified by width and height.

Methods

gtk.gdk.Pixbuf.render_to_drawable

 def render_to_drawable(drawable, gc, src_x, src_y, dest_x, dest_y, width, height, dither, x_dither, y_dither)

drawable : the destination gtk.gdk.Drawable.
gc : the gtk.gdk.GC used for rendering.
src_x : the X coordinate within the pixbuf.
src_y : the Y coordinate within the pixbuf.
dest_x : the X coordinate within drawable.
dest_y : the Y coordinate within drawable.
width : the width of region to render, in pixels, or −1 to use pixbuf width
height : the height of region to render, in pixels, or −1 to use pixbuf height
dither : the dithering mode.
x_dither : the X offset for dithering.
y_dither : the Y offset for dithering.

Warning

This method is deprecated in PyGTK 2.2 and above. Use the gtk.gdk.Drawable.draw_pixbuf()
method instead.

PyGTK 2.0 Reference Manual

Description 73

The render_to_drawable() method renders a rectangular portion of the pixbuf to a
gtk.gdk.Drawable specified by drawable while using the gtk.gdk.GC specified by gc. This is
done using GdkRGB, so the specified drawable must have the GdkRGB visual and colormap. Note that this
method will ignore the opacity information for images with an alpha channel; the gtk.gdk.GC must already
have the clipping mask set if you want transparent regions to show through.

The dither offset is important when re−rendering partial regions of an image to a rendered version of the full
image, or when the offsets to a base position change, as in scrolling. The dither matrix has to be shifted for
consistent visual results. If you do not have any of these cases, the dither offsets can be both zero.

gtk.gdk.Pixbuf.render_to_drawable_alpha

 def render_to_drawable_alpha(drawable, src_x, src_y, dest_x, dest_y, width, height, alpha_mode, alpha_threshold, dither, x_dither, y_dither)

drawable : the destination gtk.gdk.Drawable.
gc : the gtk.gdk.GC used for rendering.
src_x : the X coordinate within the pixbuf.
src_y : the Y coordinate within the pixbuf.
dest_x : the X coordinate within drawable.
dest_y : the Y coordinate within drawable.
width : the width of region to render, in pixels, or −1 to use pixbuf width
height : the height of region to render, in pixels, or −1 to use pixbuf height
alpha_mode : Ignored. Present for backward compatibility.
alpha_threshold : Ignored. Present for backward compatibility
dither : the dithering mode.
x_dither : the X offset for dithering.
y_dither : the Y offset for dithering.

Warning

This method is deprecated in PyGTK 2.2 and above. Use the gtk.gdk.Drawable.draw_pixbuf()
method instead.

The render_to_drawable_alpha() method renders a rectangular portion of the pixbuf to a
gtk.gdk.Drawable specified by drawable. drawable must have a colormap. All windows have a
colormap; however, pixmaps only have colormap by default if they were created with a window
argument.specifying a gtk.gdk.Window. Otherwise a colormap must be set on them with the
gtk.gdk.Drawable.set_colormap() method. On older X servers, rendering pixbufs with an alpha
channel involves round trips to the X server, and may be somewhat slow.

gtk.gdk.Pixbuf.render_pixmap_and_mask

 def render_pixmap_and_mask(alpha_threshold=127)

alpha_threshold : the threshold value for opacity values.
Returns : a tuple containing the created pixmap and mask.
The render_to_pixmap_and_mask() method returns a tuple containing a pixmap and a mask bitmap
that the pixbuf and its corresponding thresholded alpha mask are rendered to. This is merely a convenience
method; applications that need to render pixbufs with dither offsets or to specific drawables should use the
render_to_drawable_alpha() or render_to_drawable() methods. If the pixbuf does not have an
alpha channel, then the mask returned will be None.

PyGTK 2.0 Reference Manual

Warning 74

gtk.gdk.Pixbuf.get_from_drawable

 def get_from_drawable(src, cmap, src_x, src_y, dest_x, dest_y, width, height)

src : the source gtk.gdk.Drawable.
cmap : a colormap if src doesn't have one set.
src_x : the X coordinate within drawable.
src_y : the Y coordinate within drawable.
dest_x : the X coordinate in the pixbuf.
dest_y : the Y coordinate in the pixbuf.
width : the width in pixels of the region to get.
height : the height in pixels of the region to get.
Returns : the pixbuf or None on error
The get_from_drawable() method transfers image data from the gtk.gdk.Drawable specified by
src and converts it to an RGB(A) representation inside a gtk.gdk.Pixbuf. In other words, copies image
data from a server−side drawable to a client−side RGB(A) buffer. This allows you to efficiently read
individual pixels on the client side. If src has no colormap (the gtk.gdk.Drawable.get_colormap()
method returns None), then a suitable colormap must be specified as cmap. Typically a gtk.gdk.Window
or a pixmap created by passing a gtk.gdk.Window to gtk.gdk.Pixmap() will already have a
colormap associated with it. If src has a colormap, the cmap argument will be ignored. If src is a bitmap (1
bit per pixel pixmap), then a colormap is not required; pixels with a value of 1 are assumed to be white, and
pixels with a value of 0 are assumed to be black. For taking screenshots, the
gtk.gdk.colormap_get_system() function returns the correct colormap to use.

If src is a pixmap, then the requested source rectangle must be completely contained within the pixmap,
otherwise the function will return None. For pixmaps only (not for windows) passing −1 for width or
height is allowed to mean the full width or height of the pixmap. If src is a window, and the window is off
the screen, then there is no image data in the obscured/offscreen regions to be placed in the pixbuf. The
contents of portions of the pixbuf corresponding to the offscreen region are undefined.

If the window you're obtaining data from is partially obscured by other windows, then the contents of the
pixbuf areas corresponding to the obscured regions are undefined. If the target drawable is not mapped
(typically because it's iconified/minimized or not on the current workspace), None will be returned. If
memory can't be allocated for the return value, None will be returned instead. (In short, there are several ways
this method can fail, and if it fails it returns None; so check the return value.)

This method calls the gtk.gdk.Drawable.get_image() method internally and converts the resulting
image to a gtk.gdk.Pixbuf, so the documentation for the gtk.gdk.Drawable.get_image()
method may also be helpful.

gtk.gdk.Pixbuf.get_from_image

 def get_from_image(src, cmap, src_x, src_y, dest_x, dest_y, width, height)

src : the source gtk.gdk.Image.
cmap : a colormap if src doesn't have one set or None.
src_x : the X coordinate within src.
src_y : the Y coordinate within src.
dest_x : the X coordinate in the pixbuf.
dest_y : the Y coordinate in the pixbuf.
width : the width in pixels of the region to get.

PyGTK 2.0 Reference Manual

gtk.gdk.Pixbuf.get_from_drawable 75

height : the height in pixels of the region to get.
Returns : the pixbuf or None on error
The get_from_image() method is the same as the get_from_drawable() method but gets the pixbuf
from the gtk.gdk.Image specified by src.

gtk.gdk.Pixbuf.get_colorspace

 def get_colorspace()

Returns : the color space.
The get_colorspace() method returns the color space of the pixbuf.

gtk.gdk.Pixbuf.get_n_channels

 def get_n_channels()

Returns : the number of channels.
The get_n_channels() method returns the number of channels of a pixbuf.

gtk.gdk.Pixbuf.get_has_alpha

 def get_has_alpha()

Returns : TRUE if the pixbuf has an alpha channel.
The get_has_alpha() method returns TRUE if the pixbuf has an alpha channel (opacity information).

gtk.gdk.Pixbuf.get_bits_per_sample

 def get_bits_per_sample()

Returns : the number of bits per color sample.
The get_bits_per_sample() method returns the number of bits per color sample in a pixbuf.

gtk.gdk.Pixbuf.get_pixels

 def get_pixels()

Returns : a string containing the pixel data of the pixbuf
The get_pixels() method returns a sting containing the pixel data of the pixbuf.

gtk.gdk.Pixbuf.get_width

 def get_width()

Returns : the width in pixels.
The get_width() method returns the width of the pixbuf.

PyGTK 2.0 Reference Manual

gtk.gdk.Pixbuf.get_from_image 76

gtk.gdk.Pixbuf.get_height

 def get_height()

Returns : the height in pixels.
The get_height() method returns the height of the pixbuf.

gtk.gdk.Pixbuf.get_rowstride

 def get_rowstride()

Returns : the number of bytes between rows.
The get_rowstride() method returns the rowstride of a pixbuf, which is the number of bytes between
rows.

gtk.gdk.Pixbuf.get_option

 def get_option(key)

key : a key string
Returns : the value associated with key
The get_option() method looks up key in the list of options that may have been attached to the pixbuf
when it was loaded.

gtk.gdk.Pixbuf.copy

 def copy()

Returns : A newly−created pixbuf or None if not enough memory could be allocated.
The copy() method returns a new gtk.gdk.Pixbuf with a copy of the data in the pixbuf.

gtk.gdk.Pixbuf.fill

 def fill(pixel)

pixel : the RGBA pixel to clear to (0xffffffff is opaque white, 0x00000000 transparent black)
The fill() method clears the pixbuf to the RGBA value specified by pixel, converting the RGBA value
into the pixbuf's pixel format. The alpha will be ignored if the pixbuf doesn't have an alpha channel.

gtk.gdk.Pixbuf.save

 def save(filename, type, options=None)

filename : the name of file to save.
type : the name of the file format.
options : a Python dict containing key−value string pairs or None
The save() method saves the pixbuf to a file in the format specified by type, which may be "jpeg" or "png".
If options is not None it should be a Python dict containing key−value string pairs that modify the save
parameters. For example:

 pixbuf.save(filename, "jpeg", {"quality":"100"})

PyGTK 2.0 Reference Manual

gtk.gdk.Pixbuf.get_height 77

Currently only a few parameters exist. JPEG images can be saved with a "quality" parameter; its value should
be in the range [0,100]. Text chunks can be attached to PNG images by specifying parameters of the form
"tEXt::key", where key is an ASCII string of length 1−79. The values are UTF−8 encoded strings. Note
however that PNG text chunks are stored in ISO−8859−1 encoding, so you can only set texts that can be
represented in this encoding.

This method raises the GError exception if an error occurs during the save operation.

gtk.gdk.Pixbuf.add_alpha

 def add_alpha(substitute_color, r, g, b)

substitute_color : if FALSE, the (r, g, b) arguments will be ignored.
r : the red value to substitute.
g : the green value to substitute.
b : the blue value to substitute.
Returns : a new gtk.gdk.Pixbuf.
The add_alpha() method returns a new gtk.gdk.Pixbuf created from the pixbuf with an alpha channel
added. If the pixbuf already had an alpha channel, the channel values are copied; otherwise, the alpha channel
is initialized to 255 (full opacity).

If substitute_color is TRUE, then the color specified by (r, g, b) will be assigned zero opacity. That is,
if you pass (255, 255, 255) for the substitute color, all white pixels will become fully transparent.

gtk.gdk.Pixbuf.copy_area

 def copy_area(src_x, src_y, width, height, dest_pixbuf, dest_x, dest_y)

src_x : the X coordinate within the pixbuf.
src_y : the Y coordinate within the pixbuf.
width : the width of the area to copy.
height : the height of the area to copy.
dest_pixbuf : the destination pixbuf.
dest_x : the X coordinate within dest_pixbuf.
dest_y : the Y coordinate within dest_pixbuf.
The copy_area() method copies a rectangular area from the pixbuf to the destination gtk.gdk.Pixbuf
specified by dest_pixbuf. Conversion of pixbuf formats is done automatically.

gtk.gdk.Pixbuf.saturate_and_pixelate

 def saturate_and_pixelate(dest, saturation, pixelate)

dest : the gtk.gdk.Pixbuf to write the modified version of the pixbuf
saturation : the saturation factor
pixelate : if TRUE pixelate dest
The saturate_and_pixelate() method modifies the saturation and optionally pixelates the pixbuf,
placing the result in dest. the pixbuf and dest may be the same gtk.gdk.Pixbuf with no ill effects. If
saturation is 1.0 then saturation is not changed. If it's less than 1.0, saturation is reduced (the image is
darkened); if greater than 1.0, saturation is increased (the image is brightened). If pixelate is TRUE, then
pixels are faded in a checkerboard pattern to create a pixelated image. The pixbuf and dest must have the

PyGTK 2.0 Reference Manual

gtk.gdk.Pixbuf.save 78

same image format, size, and rowstride.

gtk.gdk.Pixbuf.scale

 def scale(dest, dest_x, dest_y, dest_width, dest_height, offset_x, offset_y, scale_x, scale_y, interp_type)

dest : the gtk.gdk.Pixbuf the scaling is rendered to.
dest_x : the X coordinate for the rectangle
dest_y : the Y coordinate for the rectangle
dest_width : the width of the rectangle
dest_height : the height of the rectangle
offset_x : the offset in the X direction (currently rounded to an integer)
offset_y : the offset in the Y direction (currently rounded to an integer)
scale_x : the scale factor in the X direction
scale_y : the scale factor in the Y direction
interp_type : the interpolation type for the transformation.
The scale() method creates a transformation of the pixbuf's image by scaling by scale_x and scale_y
and translating by offset_x and offset_y it, then rendering the rectangle (dest_x, dest_y,
dest_width, dest_height) of the resulting image onto the destination image specified by dest
replacing the previous contents. The value of interp_type must be one of:

gtk.gdk.INTERP_NEAREST
Nearest neighbor sampling; this is the fastest and lowest quality mode.
Quality is normally unacceptable when scaling down, but may be OK
when scaling up.

gtk.gdk.INTERP_TILES

This is an accurate simulation of the PostScript image operator without
any interpolation enabled. Each pixel is rendered as a tiny parallelogram
of solid color, the edges of which are implemented with antialiasing. It
resembles nearest neighbor for enlargement, and bilinear for reduction.

gtk.gdk.INTERP_BILINEAR

Best quality/speed balance; use this mode by default. Bilinear
interpolation. For enlargement, it is equivalent to point−sampling the ideal
bilinear−interpolated image. For reduction, it is equivalent to laying down
small tiles and integrating over the coverage area.

gtk.gdk.INTERP_HYPER

This is the slowest and highest quality reconstruction function. It is
derived from the hyperbolic filters in Wolberg's "Digital Image Warping",
and is formally defined as the hyperbolic−filter sampling the ideal
hyperbolic−filter interpolated image (the filter is designed to be
idempotent for 1:1 pixel mapping).

Try the scale_simple() method as an alternative with a simpler interface.

gtk.gdk.Pixbuf.composite

 def composite(dest, dest_x, dest_y, dest_width, dest_height, offset_x, offset_y, scale_x, scale_y, interp_type, overall_alpha)

dest : the output gtk.gdk.Pixbuf
dest_x : the X coordinate for the rectangle
dest_y : the top coordinate for the rectangle
dest_width : the width of the rectangle
dest_height : the height of the rectangle
offset_x : the offset in the X direction (currently rounded to an integer)

PyGTK 2.0 Reference Manual

gtk.gdk.Pixbuf.saturate_and_pixelate 79

offset_y : the offset in the Y direction (currently rounded to an integer)
scale_x : the scale factor in the X direction
scale_y : the scale factor in the Y direction
interp_type : the interpolation type for the transformation.
overall_alpha : overall alpha for source image (0..255)
The composite() method creates a transformation of the pixbuf's image by scaling by scale_x and
scale_y and translating by offset_x and offset_y, then compositing the rectangle (dest_x,
dest_y, dest_width, dest_height) of the resulting image onto the destination image. The value of
interp_type must be one of:

gtk.gdk.INTERP_NEAREST
Nearest neighbor sampling; this is the fastest and lowest quality mode.
Quality is normally unacceptable when scaling down, but may be OK
when scaling up.

gtk.gdk.INTERP_TILES

This is an accurate simulation of the PostScript image operator without
any interpolation enabled. Each pixel is rendered as a tiny parallelogram
of solid color, the edges of which are implemented with antialiasing. It
resembles nearest neighbor for enlargement, and bilinear for reduction.

gtk.gdk.INTERP_BILINEAR

Best quality/speed balance; use this mode by default. Bilinear
interpolation. For enlargement, it is equivalent to point−sampling the ideal
bilinear−interpolated image. For reduction, it is equivalent to laying down
small tiles and integrating over the coverage area.

gtk.gdk.INTERP_HYPER

This is the slowest and highest quality reconstruction function. It is
derived from the hyperbolic filters in Wolberg's "Digital Image Warping",
and is formally defined as the hyperbolic−filter sampling the ideal
hyperbolic−filter interpolated image (the filter is designed to be
idempotent for 1:1 pixel mapping).

gtk.gdk.Pixbuf.composite_color

 def composite_color(dest, dest_x, dest_y, dest_width, dest_height, offset_x, offset_y, scale_x, scale_y, interp_type, overall_alpha, check_x, check_y, check_size, color1, color2)

dest : the output gtk.gdk.Pixbuf
dest_x : the X coordinate for the rectangle
dest_y : the top coordinate for the rectangle
dest_width : the width of the rectangle
dest_height : the height of the rectangle
offset_x : the offset in the X direction (currently rounded to an integer)
offset_y : the offset in the Y direction (currently rounded to an integer)
scale_x : the scale factor in the X direction
scale_y : the scale factor in the Y direction
interp_type : the interpolation type for the transformation.
overall_alpha : overall alpha for source image (0..255)
check_x : the X offset for the checkboard (origin of checkboard is at −check_x, −check_y)
check_y : the Y offset for the checkboard
check_size : the size of checks in the checkboard (must be a power of two)
color1 : the color of check at upper left
color2 : the color of the other check
The composite_color() method creates a transformation of the source image src by scaling by
scale_x and scale_y and translating by offset_x and offset_y, then compositing the rectangle

PyGTK 2.0 Reference Manual

gtk.gdk.Pixbuf.composite 80

(dest_x ,dest_y, dest_width, dest_height) of the resulting image with a checkboard of the colors
color1 and color2 and renders it onto the destination image. The value of interp_type must be one
of:

gtk.gdk.INTERP_NEAREST
Nearest neighbor sampling; this is the fastest and lowest quality mode.
Quality is normally unacceptable when scaling down, but may be OK
when scaling up.

gtk.gdk.INTERP_TILES

This is an accurate simulation of the PostScript image operator without
any interpolation enabled. Each pixel is rendered as a tiny parallelogram
of solid color, the edges of which are implemented with antialiasing. It
resembles nearest neighbor for enlargement, and bilinear for reduction.

gtk.gdk.INTERP_BILINEAR

Best quality/speed balance; use this mode by default. Bilinear
interpolation. For enlargement, it is equivalent to point−sampling the ideal
bilinear−interpolated image. For reduction, it is equivalent to laying down
small tiles and integrating over the coverage area.

gtk.gdk.INTERP_HYPER

This is the slowest and highest quality reconstruction function. It is
derived from the hyperbolic filters in Wolberg's "Digital Image Warping",
and is formally defined as the hyperbolic−filter sampling the ideal
hyperbolic−filter interpolated image (the filter is designed to be
idempotent for 1:1 pixel mapping).

See the composite_color_simple() method for a simpler variant of this method suitable for most tasks.

gtk.gdk.Pixbuf.scale_simple

 def scale_simple(dest_width, dest_height, interp_type)

dest_width : the width of destination image
dest_height : the height of destination image
interp_type : the interpolation type for the transformation.
Returns : the new gtk.gdk.Pixbuf, or None if not enough memory could be allocated for it.
The scale_simple() method returns a new gtk.gdk.Pixbuf containing a copy of the pixbuf scaled to
dest_width x dest_height. The pixbuf is unaffected by the scaling operation. The value of
interp_type must be one of:

gtk.gdk.INTERP_NEAREST
Nearest neighbor sampling; this is the fastest and lowest quality mode.
Quality is normally unacceptable when scaling down, but may be OK
when scaling up.

gtk.gdk.INTERP_TILES

This is an accurate simulation of the PostScript image operator without
any interpolation enabled. Each pixel is rendered as a tiny parallelogram
of solid color, the edges of which are implemented with antialiasing. It
resembles nearest neighbor for enlargement, and bilinear for reduction.

gtk.gdk.INTERP_BILINEAR

Best quality/speed balance; use this mode by default. Bilinear
interpolation. For enlargement, it is equivalent to point−sampling the ideal
bilinear−interpolated image. For reduction, it is equivalent to laying down
small tiles and integrating over the coverage area.

gtk.gdk.INTERP_HYPER

This is the slowest and highest quality reconstruction function. It is
derived from the hyperbolic filters in Wolberg's "Digital Image Warping",
and is formally defined as the hyperbolic−filter sampling the ideal
hyperbolic−filter interpolated image (the filter is designed to be
idempotent for 1:1 pixel mapping).

interp_type should be gtk.gdk.INTERP_NEAREST if you want maximum speed (but when scaling
down gtk.gdk.INTERP_NEAREST is usually unusably ugly). The default interp_type should be

PyGTK 2.0 Reference Manual

gtk.gdk.Pixbuf.composite_color 81

GDK_INTERP_BILINEAR which offers reasonable quality and speed.

You can scale a sub−portion of src by creating a sub−pixbuf pointing into src; see the subpixbuf()
method for more information.

For more complicated scaling/compositing see the scale() and composite() methods.

gtk.gdk.Pixbuf.composite_color_simple

 def composite_color_simple(dest_width, dest_height, interp_type, overall_alpha, check_size, color1, color2)

dest_width : the width of destination image
dest_height : the height of destination image
interp_type : the interpolation type for the transformation.
overall_alpha : overall alpha for source image (0..255)
check_size : the size of checks in the checkboard (must be a power of two)
color1 : the color of check at upper left
color2 : the color of the other check
Returns : the new gtk.gdk.Pixbuf, or NULL if not enough memory could be allocated for it.
The composite_color_simple() method returns a new gtk.gdk.Pixbuf by scaling the pixbuf to
dest_width x dest_height and compositing the result with a checkboard of colors color1 and
color2. The value of interp_type must be one of:

gtk.gdk.INTERP_NEAREST
Nearest neighbor sampling; this is the fastest and lowest quality mode.
Quality is normally unacceptable when scaling down, but may be OK
when scaling up.

gtk.gdk.INTERP_TILES

This is an accurate simulation of the PostScript image operator without
any interpolation enabled. Each pixel is rendered as a tiny parallelogram
of solid color, the edges of which are implemented with antialiasing. It
resembles nearest neighbor for enlargement, and bilinear for reduction.

gtk.gdk.INTERP_BILINEAR

Best quality/speed balance; use this mode by default. Bilinear
interpolation. For enlargement, it is equivalent to point−sampling the ideal
bilinear−interpolated image. For reduction, it is equivalent to laying down
small tiles and integrating over the coverage area.

gtk.gdk.INTERP_HYPER

This is the slowest and highest quality reconstruction function. It is
derived from the hyperbolic filters in Wolberg's "Digital Image Warping",
and is formally defined as the hyperbolic−filter sampling the ideal
hyperbolic−filter interpolated image (the filter is designed to be
idempotent for 1:1 pixel mapping).

See the composite_color() method for a more powerful but complicated interface.

gtk.gdk.Pixbuf.get_pixels_array

 def get_pixels_array()

Returns : a Numeric Python array containing the pixel data of the pixbuf

Note

This method is available in PyGTK 2.2 and above.

The get_pixels_array() method returns a Numeric Python array containing the pixel data of the pixbuf.

PyGTK 2.0 Reference Manual

gtk.gdk.Pixbuf.scale_simple 82

Note

PyGTK must be compiled with Numeric Python support for this method to be available.

gtk.gdk.Pixbuf.subpixbuf

 def subpixbuf(src_x, src_y, width, height)

src_x : X coord in the pixbuf
src_y : Y coord in the pixbuf
width : width of region in the pixbuf
height : height of region in the pixbuf
Returns : a new gtk.gdk.Pixbuf

Note

This method is available in PyGTK 2.4 and above.

The subpixbuf() method creates a new gtk.gdk.Pixbuf that represents a sub−region of the pixbuf.
The new pixbuf shares its pixels with the original pixbuf, so writing to one affects both.

Functions

gtk.gdk.pixbuf_new_from_file

 def gtk.gdk.pixbuf_new_from_file(filename)

filename : the name of the file containing the image to load
Returns : a new gtk.gdk.Pixbuf.
The gtk.gdk.pixbuf_new_from_file() function returns a new gtk.gdk.Pixbuf containing an
image loaded from the file specified by filename. The image file format is detected automatically. The
application will block until the image is done loading. This method can be used by applications in which
blocking is acceptable while an image is being loaded (small images in general). Applications that need
progressive loading should use gtk.gdk.PixbufLoader instead.

This function raises the GError exception if an error occurs during the loading of the pixbuf.

gtk.gdk.pixbuf_new_from_file_at_size

 def gtk.gdk.pixbuf_new_from_file_at_size(filename, width, height)

filename : the name of the file containing the image to load
width : The width the image should have
height : The height the image should have
Returns : a new gtk.gdk.Pixbuf.

Note

This function is available in PyGTK 2.4 and above.

PyGTK 2.0 Reference Manual

Note 83

The gtk.gdk.pixbuf_new_from_file_at_size() function returns a new gtk.gdk.Pixbuf
containing an image loaded from the file specified by filename with it scaled to the size specified by
width and height. The image file format is detected automatically. The application will block until the
image is done loading. This function can be used by applications in which blocking is acceptable while an
image is being loaded (small images in general). Applications that need progressive loading should use a
gtk.gdk.PixbufLoader instead.

This function raises the GError exception if an error occurs during the loading of the pixbuf.

gtk.gdk.pixbuf_new_from_data

 def gtk.gdk.pixbuf_new_from_data(data, colorspace, has_alpha, bits_per_sample, width, height, rowstride)

data : a string containing image data in 8−bit/sample packed format.
colorspace : the colorspace for the image data.
has_alpha : If TRUE, the data has an opacity channel.
bits_per_sample : the number of bits per sample.
width : the width of the image in pixels.
height : the height of the image in pixels.
rowstride : the distance in bytes between row starts.
Returns : a gtk.gdk.Pixbuf

Note

This function is available in PyGTK 2.2 and above.

The gtk.gdk.pixbuf_new_from_data() function returns a new pixbuf created from the string
specified by data. data must be RGB image data with 8 bits per sample. colorspace must be
gtk.gdk.COLORSPACE_RGB.

gtk.gdk.pixbuf_new_from_array

 def gtk.gdk.pixbuf_new_from_array(array, colorspace, bits_per_sample)

array : a string containing image data in 8−bit/sample packed format.
colorspace : the colorspace for the image data.
bits_per_sample : the number of bits per sample.
Returns : a gtk.gdk.Pixbuf

Note

This function is available in PyGTK 2.2 and above.

The gtk.gdk.pixbuf_new_from_array() function returns a new pixbuf created from the Numeric
Python array specified by array. array must be a 3 or 4 dimensional array (4 if the image has an alpha
channel) with bits_per_sample bits per sample. colorspace must be
gtk.gdk.COLORSPACE_RGB.

Note

PyGTK must be compiled with the Numeric Python module to support this function.

PyGTK 2.0 Reference Manual

Note 84

gtk.gdk.pixbuf_new_from_xpm_data

 def gtk.gdk.pixbuf_new_from_xpm_data(data)

data : a list of strings containing the XPM image data
Returns : a gtk.gdk.Pixbuf
The gtk.gdk.pixbuf_new_from_xpm_data() function returns a new gtk.gdk.Pixbuf by parsing
XPM data in memory specified by data. data is a list of strings containing the XPM data.

gtk.gdk.pixbuf_new_from_inline

 def gtk.gdk.pixbuf_new_from_inline(data_length, data, copy_pixels)

data_length : the length in bytes of the data
data : a string containing the inline pixbuf data
copy_pixels : if TRUE the pixel data should be copied
Returns : a new gtk.gdk.Pixbuf object
The gtk.gdk.pixbuf_new_from_inline() function returns a gtk.gdk.Pixbuf from a flat
representation that is suitable for storing as inline data in a program. This is useful if you want to ship a
program with images, but don't want to depend on any external files.

GTK+ ships with a program called gdk−pixbuf−csource which allows for conversion of an image into such a
inline representation.In almost all cases, you should pass the −−raw flag to gdk−pixbuf−csource. A sample
invocation would be:

 gdk−pixbuf−csource −−raw −−name=myimage_inline myimage.png

For the typical case where the inline pixbuf is read−only static data, you don't need to copy the pixel data
unless you intend to write to it, so you can pass FALSE for copy_pixels.

This function raises the GError exception if an error occurs during the loading of the pixbuf.

gtk.gdk.pixbuf_get_formats

 def gtk.gdk.pixbuf_get_formats()

Returns : a list of image formats as Python dicts
The gtk.gdk.pixbuf_get_formats() function returns a list of the supported image formats as a
Python dict. The keys of the image format dict are:

name : the name of the image format.
description : a description of the image format.
mime_types : a list of the mime types this image matches.
extensions : a list of typical filename extensions for the image format.
is_writable : if TRUE the image can be written to a file

gtk.gdk.pixbuf_get_file_info

 def gtk.gdk.pixbuf_get_file_info(filename)

filename : the name of the file to check
Returns : an image format as a Python dict
The gtk.gdk.pixbuf_get_file_info() function reads enough of the file specified by filename to

PyGTK 2.0 Reference Manual

gtk.gdk.pixbuf_new_from_xpm_data 85

determine its image format and then returns the image format information in a Python dict. See the
gtk.gdk.pixbuf_get_formats() function for more details on the image format dict.

Prev Up Next
gtk.gdk.Keymap Home gtk.gdk.PixbufAnimation

gtk.gdk.PixbufAnimation
Prev The gtk.gdk Class Reference Next

gtk.gdk.PixbufAnimation

gtk.gdk.PixbufAnimation � an object holding an animation

Synopsis

class gtk.gdk.PixbufAnimation(gobject.GObject):
gtk.gdk.PixbufAnimation(filename)

 def get_width()
 def get_height()
 def is_static_image()
 def get_static_image()
 def get_iter(start_time=0.0)

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.PixbufAnimation

Description

A gtk.gdk.PixbufAnimation is an object that holds an animation. An animation is conceptually a
series of frames to be displayed over time. Each frame is the same size. The animation may not be represented
as a series of frames internally; for example, it may be stored as a sprite and instructions for moving the sprite
around a background. To display an animation you don't need to understand its representation, you just ask a
gtk.gdk.PixbufAnimationIter for the next frame that should be displayed at a given point in time.

Constructor

gtk.gdk.PixbufAnimation(filename)

filename : the name of the file to load.
Returns : a new gtk.gdk.PixbufAnimation object.
Creates a new gtk.gdk.PixbufAnimation by loading it from a file. The file format is detected
automatically. If the file's format does not support multi−frame images, then an animation with a single frame
will be created.

This constructor raises the GError exception if any of several error conditions occurred: the file could not be
opened, there was no loader for the file's format, there was not enough memory to allocate the image buffer,
or the image file contained invalid data.

PyGTK 2.0 Reference Manual

gtk.gdk.pixbuf_get_file_info 86

Methods

gtk.gdk.PixbufAnimation.get_width

 def get_width()

Returns : the width of the bounding box of the animation.
The get_width() method returns the width of the bounding box of a pixbuf animation.

gtk.gdk.PixbufAnimation.get_height

 def get_height()

Returns : the height of the bounding box of the animation.
The get_height() method returns the height of the bounding box of a pixbuf animation.

gtk.gdk.PixbufAnimation.is_static_image

 def is_static_image()

Returns : TRUE if the "animation" was really just an image
The is_static_image() method returns TRUE if you load a file containing a plain, unanimated image.
Use the get_static_image() method to retrieve the image.

gtk.gdk.PixbufAnimation.get_static_image

 def get_static_image()

Returns : the unanimated image representing the animation
The get_static_image() method returns a gtk.gdk.Pixbuf that represents a static image of the
animation. If the animation is really just a plain image (has only one frame), this method returns that image. If
the animation is an animation, this method returns a reasonable thing to display as a static unanimated image,
which might be the first frame, or something more sophisticated. If an animation hasn't loaded any frames yet,
this method will return None.

gtk.gdk.PixbufAnimation.get_iter

 def get_iter(start_time=0.0)

start_time : the time when the animation starts playing
Returns : a gtk.gdk.PixbufAnimationIter object
The get_iter() method returns a gtk.gdk.PixbufAnimationIter that is used to access the frames
of the animation. The iterator provides the frames that should be displayed at specific times. start_time is
the start time specified as a float as output from the Python time.time() function. start_time marks the
beginning of the animation playback. After creating an iterator, you should immediately display the pixbuf
returned by the gtk.gdk.PixbufAnimationIter.get_pixbuf() method. Then, you should install a
timeout (with the gobject.timeout_add()() function) or by some other mechanism ensure that you'll
update the image after the number of milliseconds specified by the
gtk.gdk.PixbufAnimationIter.get_delay_time() method. Each time the image is updated, you
should reinstall the timeout with the new, possibly−changed delay time. As a shortcut, if start_time is 0.0
(the default), the current time will be used.

PyGTK 2.0 Reference Manual

Methods 87

To update the image (i.e. possibly change the result of the
gtk.gdk.PixbufAnimationIter.get_pixbuf() method to a new frame of the animation), call the
gtk.gdk.PixbufAnimationIter.advance() method.

If you're using a gtk.gdk.PixbufLoader, in addition to updating the image after the delay time, you
should also update it whenever you receive the "area_updated" signal and the
gtk.gdk.PixbufAnimationIter.on_currently_loading_frame() method returns TRUE. In
this case, the frame currently being fed into the loader has received new data, so needs to be refreshed. The
delay time for a frame may also be modified after an "area_updated" signal, for example if the delay time for
a frame is encoded in the data after the frame itself. So your timeout should be reinstalled after any
area_updated signal. A delay time of −1 is possible, indicating "infinite."

Prev Up Next
gtk.gdk.Pixbuf Home gtk.gdk.PixbufAnimationIter

gtk.gdk.PixbufAnimationIter
Prev The gtk.gdk Class Reference Next

gtk.gdk.PixbufAnimationIter

gtk.gdk.PixbufAnimationIter � an object providing access to the frames of a
gtk.gdk.PixbufAnimation

Synopsis

class gtk.gdk.PixbufAnimationIter(gobject.GObject):
 def get_delay_time()
 def get_pixbuf()
 def on_currently_loading_frame()
 def advance(current_time=0.0)

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.PixbufAnimationIter

Description

A gtk.gdk.PixbufAnimationIter is used to access the frames of a
gtk.gdk.PixbufAnimation at specified times. A gtk.gdk.PixbufAnimationIter object is
created using the gtk.gdk.PixbufAnimation.get_iter() method. After creating an iterator, you
should immediately display the pixbuf returned by the get_pixbuf() method. Then, you should install a
timeout (with the gobject.timeout_add()() function) or by some other mechanism ensure that you'll
update the image after the number of milliseconds specified by the get_delay_time() method. Each time
the image is updated, you should reinstall the timeout with the new, possibly−changed delay time.

To update the image (i.e. possibly change the result of the get_pixbuf() method to a new frame of the
animation), call the advance() method.

If you're using a gtk.gdk.PixbufLoader, in addition to updating the image after the delay time, you
should also update it whenever you receive the "area_updated" signal and the
on_currently_loading_frame() method returns TRUE. In this case, the frame currently being fed into

PyGTK 2.0 Reference Manual

gtk.gdk.PixbufAnimation.get_iter 88

the loader has received new data, so needs to be refreshed. The delay time for a frame may also be modified
after an "area_updated" signal, for example if the delay time for a frame is encoded in the data after the frame
itself. So your timeout should be reinstalled after any area_updated signal. A delay time of −1 is possible,
indicating "infinite."

Methods

gtk.gdk.PixbufAnimationIter.get_delay_time

 def get_delay_time()

Returns : the delay time in milliseconds (thousandths of a second)
The get_delay_time() method returns the number of milliseconds the current pixbuf should be displayed,
or −1 if the current pixbuf should be displayed forever. The gobject.timeout_add()() function
conveniently takes a timeout in milliseconds, so you can use a timeout to schedule the next update.

gtk.gdk.PixbufAnimationIter.get_pixbuf

 def get_pixbuf()

Returns : the current gtk.gdk.Pixbuf to be displayed
The get_pixbuf() method returns the current gtk.gdk.Pixbuf that should be displayed. The pixbuf
will be the same size as the animation itself (see the gtk.gdk.PixbufAnimation.get_width() and
gtk.gdk.PixbufAnimation.get_height() methods). The gtk.gdk.Pixbuf should be displayed
for the number of milliseconds specified by the get_delay_time() method.

gtk.gdk.PixbufAnimationIter.on_currently_loading_frame

 def on_currently_loading_frame()

Returns : TRUE if the frame we're on is partially loaded, or the last frame
The on_currently_loading_frame() method returns TRUE if the frame currently pointed to by the
iterator is partially loaded or the last frame. This method is used to determine how to respond to the
"area_updated" signal on gtk.gdk.PixbufLoader when loading an animation. The "area_updated"
signal is emitted for an area of the frame currently streaming in to the loader. So if you're on the currently
loading frame, you need to redraw the screen for the updated area.

gtk.gdk.PixbufAnimationIter.advance

 def advance(current_time=0.0)

current_time : the current time as a float or 0.0 to automatically determine the current time
Returns : TRUE if the image may need updating
The advance() method attempts to advance an animation to a new frame. The frame is chosen based on the
start time passed to the gtk.gdk.PixbufAnimation.get_iter() method. current_time is
normally the current time (as specified by the Python time.time() function) and must be greater than or equal
to the time passed to the gtk.gdk.PixbufAnimation.get_iter() method, and must increase or
remain unchanged each time the get_pixbuf() method is called. That is, you can't go backward in time;
animations only play forward. As a shortcut, pass 0.0 (the default) for the current time and the current time
will automatically be determined an used. So you only need to explicitly pass current_time if you're
doing something odd like playing the animation at double speed.

PyGTK 2.0 Reference Manual

Description 89

If this method returns FALSE, there's no need to update the animation display, assuming the display had been
rendered prior to advancing; if TRUE, you need to call the get_pixbuf() method and update the display
with the new pixbuf.

Prev Up Next
gtk.gdk.PixbufAnimation Home gtk.gdk.PixbufLoader

gtk.gdk.PixbufLoader
Prev The gtk.gdk Class Reference Next

gtk.gdk.PixbufLoader

gtk.gdk.PixbufLoader � an object providing application−driven progressive image loading

Synopsis

class gtk.gdk.PixbufLoader(gobject.GObject):
gtk.gdk.PixbufLoader(image_type=None)

 def write(buf, count=−1)
 def get_pixbuf()
 def get_animation()
 def close()
 def set_size(width, height)
 def get_format()

Functions

 def gtk.gdk.pixbuf_loader_new_with_mime_type(mime_type)

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.PixbufLoader

Signal Prototypes

"area−prepared" def callback(pixbufloader, user_param1, ...)

"area−updated" def callback(pixbufloader, x, y, width, height, user_param1,
...)

"closed" def callback(pixbufloader, user_param1, ...)

"size−prepared" def callback(pixbufloader, width, height, user_param1, ...)

Description

A gtk.gdk.PixbufLoader provides a way for applications to drive the process of loading an image, by
letting them send the image data directly to the loader instead of having the loader read the data from a file.
Applications can use this instead of the gtk.gdk.pixbuf_new_from_file function or the
gtk.gdk.PixbufAnimation constructor when they need to parse image data in small chunks. For
example, it should be used when reading an image from a (potentially) slow network connection, or when
loading an extremely large file.

To use gtk.gdk.PixbufLoader to load an image, just create a new one, and call the write() method to
send the data to it. When done, the close() method should be called to end the stream and finalize

PyGTK 2.0 Reference Manual

gtk.gdk.PixbufAnimationIter.advance 90

everything. The loader will emit two important signals throughout the process. The first, "area−prepared", will
be called as soon as the image has enough information to determine the size of the image to be used. The
application can call the get_pixbuf() method to retrieve the pixbuf. No actual image data will be in the
pixbuf, so it can be safely filled with any temporary graphics (or an initial color) as needed.

The "area−updated" signal is emitted every time a region is updated. This way you can update a partially
completed image. Note that you do not know anything about the completeness of an image from the area
updated. For example, in an interlaced image, you need to make several passes before the image is done
loading.

Loading an Animation

Loading an animation is almost as easy as loading an image. Once the first "area−prepared" signal has been
emitted, you can call the get_animation() method to get the gtk.gdk.PixbufAnimation object and
the gtk.gdk.PixbufAnimation.get_iter() method to get an
gtk.gdk.PixbufAnimationIter for displaying it.

Constructor

gtk.gdk.PixbufLoader(image_type=None)

image_type : the name of the image format or None
Returns : A new gtk.gdk.PixbufLoader object.
Creates a new gtk.gdk.PixbufLoader object. If image_type is not specified or is None the image
type will be automatically deduced from the image data. If image_type is specified the
gtk.gdk.PixbufLoader attempts to parse the image data as if it were an image of the specified type.
Identifying the image type is useful if you want an error if the image isn't the expected type, for loading image
formats that can't be reliably identified by looking at the data, or if the user manually forces a specific type.

This constructor raises the GError exception if an error occurs trying to load the module for image_type.

Methods

gtk.gdk.PixbufLoader.write

 def write(buf, count=−1)

buf : a string containing some portion of the image data.
count : the length of buf in bytes.
Returns : TRUE if the write was successful.
The write() method causes the pixbuf loader to parse the bytes of an image contained in the string specified
by buf. If count is specified and is in the range (0, len(buf)) only count bytes of buf are used. This
method returns TRUE if the image data was loaded successfully. If an error occurred this method raises the
GError exception and will not accept further writes. The loader may or may not be closed depending on the
error.

PyGTK 2.0 Reference Manual

Description 91

gtk.gdk.PixbufLoader.get_pixbuf

 def get_pixbuf()

Returns : the gtk.gdk.Pixbuf that the loader is creating, or None if not enough data has been read to
determine how to create the image buffer.

The get_pixbuf() method returns the gtk.gdk.Pixbuf that a pixbuf loader is currently creating. In
general it only makes sense to call this method after the "area−prepared" signal has been emitted by the loader
which means that enough data has been read to know the size of the image that will be allocated. If the loader
has not received enough data via the write() method, this method returns None. The same pixbuf will be
returned in all future calls to this method. Also, if the loader is an animation, it will return the "static image"
of the animation (see the gtk.gdk.PixbufAnimation.get_static_image() method).

gtk.gdk.PixbufLoader.get_animation

 def get_animation()

Returns : the gtk.gdk.PixbufAnimation that the loader is loading, or None if not enough data has
been read to determine the information.

The get_animation() method returns the gtk.gdk.PixbufAnimation that the pixbuf loader is
currently creating. In general it only makes sense to call this method after the "area−prepared" signal has been
emitted by the loader. If the loader doesn't have enough bytes yet (hasn't emitted the "area−prepared" signal)
this method will return None.

gtk.gdk.PixbufLoader.close

 def close()

Returns : TRUE if all image data written so far was successfully passed out via the "area_update" signal
The close() method informs the pixbuf loader that no further writes using the write() will occur, so that it
can free its internal loading structures. Also, the pixbuf loader tries to parse any data that hasn't yet been
parsed and if the remaining data is partial or corrupt, the GError exception will be raised.

gtk.gdk.PixbufLoader.set_size

 def set_size(width, height)

width : The desired width for the image being loaded.
height : The desired height for the image being loaded.

Note

This method is available in PyGTK 2.4 and above.

The set_size() method causes the image to be scaled to the size specified by width and height while it
is being loaded. The desired image size can be determined relative to the original size of the image by calling
the set_size() from a signal handler for the "size−prepared" signal.

Attempts to set the desired image size are ignored after the emission of the "size−prepared".

PyGTK 2.0 Reference Manual

gtk.gdk.PixbufLoader.get_pixbuf 92

gtk.gdk.PixbufLoader.get_format

 def get_format()

Returns : a Python dict containing the image format information or None

Note

This method is available in PyGTK 2.4 and above.

The get_format() method returns the available information about the format of the currently loading image
file. This method returns None if their is no information available e.g. before the image has started loading.

Functions

gtk.gdk.pixbuf_loader_new_with_mime_type

 def gtk.gdk.pixbuf_loader_new_with_mime_type(mime_type)

mime_type : the mime type to be loaded
Returns : a new gtk.gdk.PixbufLoader object.

Note

This function is available in PyGTK 2.4 and above.

The gtk.gdk.pixbuf_loader_new_with_mime_type() function creates a new pixbuf loader object
that always attempts to parse image data as if it were an image of the mime type specified by mime_type,
instead of identifying the type automatically. Useful if you want an error if the image isn't the expected mime
type, for loading image formats that can't be reliably identified by looking at the data, or if the user manually
forces a specific mime type.

This function raises the GError exception if an error occurs during the loading of the mime type image
module.

Signals

The "area−prepared" gtk.gdk.PixbufLoader Signal

 def callback(pixbufloader, user_param1, ...)

pixbufloader : the pixbufloader that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "area−prepared" signal is emitted when sufficient image data has been received and parsed to determine
the size of the image.

The "area−updated" gtk.gdk.PixbufLoader Signal

 def callback(pixbufloader, x, y, width, height, user_param1, ...)

pixbufloader : the pixbufloader that received the signal

PyGTK 2.0 Reference Manual

gtk.gdk.PixbufLoader.get_format 93

x : the X coordinate of the region
y : the Y coordinate of the region
width : the width of the region
height : the height of the region
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "area−updated" signal is emitted when sufficient image data has been received and parsed to allow the
region specified by x, y, width and height to be displayed.

The "closed" gtk.gdk.PixbufLoader Signal

 def callback(pixbufloader, user_param1, ...)

pixbufloader : the pixbufloader that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "closed" signal is emitted when the pixbufloader is closed by calling the close() method.

The "size−prepared" gtk.gdk.PixbufLoader Signal

 def callback(pixbufloader, width, height, user_param1, ...)

pixbufloader : the pixbufloader that received the signal
width : the original width of the image
height : he original height of the image
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.2 and above.

The "size−prepared" signal is emitted when the pixbuf loader has been fed the initial amount of data that is
required to figure out the size of the image that it will create. Applications can call the set_size() method
in response to this signal to set the desired size of the image.

Prev Up Next
gtk.gdk.PixbufAnimationIter Home gtk.gdk.Pixmap

gtk.gdk.Pixmap
Prev The gtk.gdk Class Reference Next

gtk.gdk.Pixmap

gtk.gdk.Pixmap � An offscreen gtk.gdk.Drawable

Synopsis

class gtk.gdk.Pixmap(gtk.gdk.Drawable):
gtk.gdk.Pixmap(drawable, width, height, depth=−1)

PyGTK 2.0 Reference Manual

The "area−updated" gtk.gdk.PixbufLoader Signal 94

Functions

 def gtk.gdk.bitmap_create_from_data(drawable, data, width, height)
 def gtk.gdk.pixmap_create_from_data(drawable, data, width, height, depth, fg, bg)
 def gtk.gdk.pixmap_create_from_xpm(window, transparent_color, filename)
 def gtk.gdk.pixmap_colormap_create_from_xpm(window, colormap, transparent_color, filename)
 def gtk.gdk.pixmap_create_from_xpm_d(window, transparent_color, data)
 def gtk.gdk.pixmap_colormap_create_from_xpm_d(window, colormap, transparent_color, data)
 def gtk.gdk.pixmap_foreign_new(anid)
 def gtk.gdk.pixmap_lookup(anid)
 def gtk.gdk.pixmap_foreign_new_for_display(display, anid)
 def gtk.gdk.pixmap_lookup_for_display(display, anid)

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Drawable
 +−− gtk.gdk.Pixmap

Description

A gtk.gdk.Pixmap is an offscreen gtk.gdk.Drawable. It can be drawn upon with the standard
gtk.gdk.Drawable drawing primitives, then copied to another gtk.gdk.Drawable (such as a
gtk.gdk.Window) with the draw_drawable() method. The depth of a pixmap is the number of bits per
pixels. A bitmaps are simply a gtk.gdk.Pixmap with a depth of 1. (That is, they are monochrome
pixmaps − each pixel can be either on or off).

Constructor

gtk.gdk.Pixmap(drawable, width, height, depth=−1)

drawable : a gtk.gdk.Drawable used to determine default values for the new pixmap or None if
depth is specified.

width : the width of the new pixmap in pixels.
height : the height of the new pixmap in pixels.
depth : the depth (number of bits per pixel) of the new pixmap or −1 to use the depth of drawable.
Returns : a new gtk.gdk.Pixmap object
Creates a new gtk.gdk.Pixmap with the size specified by width and height and the number of bits per
pixel specified by depth.

Functions

gtk.gdk.bitmap_create_from_data

 def gtk.gdk.bitmap_create_from_data(drawable, data, width, height)

drawable : a gtk.gdk.Drawable used to determine default values for the new pixmap or None to use
the root window.

data : a string containing the XBM data
width : the width of the new bitmap in pixels.
height : the height of the new bitmap in pixels.

PyGTK 2.0 Reference Manual

Synopsis 95

Returns : a new bitmap (gtk.gdk.Pixmap) object
The gtk.gdk.bitmap_create_from_data() function returns a new bitmap of the size specified by
width and height from the XBM format string specified by data.

gtk.gdk.pixmap_create_from_data

 def gtk.gdk.pixmap_create_from_data(drawable, data, width, height, depth, fg, bg)

drawable : a gtk.gdk.Drawable used to determine default values for the new pixmap or None if
depth is specified.

data : the string containing the pixmap data.
width : the width of the new pixmap in pixels.
height : the height of the new pixmap in pixels.
depth : the depth (number of bits per pixel) of the new pixmap or −1 to use the depth of drawable.
fg : the foreground color.
bg : he background color.
Returns : a new gtk.gdk.Pixmap object
The gtk.gdk.pixmap_create_from_data() function creates a two−color gtk.gdk.Pixmap of the
size specified by width and height from the XBM format string specified by data. The foreground and
background colors of the pixmap are specified by fg and bg respectively. If depth is −1 drawable is used
to determine the bits per pixels otherwise the value of depth is used.

gtk.gdk.pixmap_create_from_xpm

 def gtk.gdk.pixmap_create_from_xpm(window, transparent_color, filename)

window : a gtk.gdk.Drawable, used to determine default values for the new
gtk.gdk.Pixmap.

transparent_color : the color to be used for the pixels that are transparent in the input file or None to
use a default color.

filename : the name of a file containing XPM data.

Returns : a tuple containing a new gtk.gdk.Pixmap object and a bitmap that is the
transparency mask.

The gtk.gdk.pixmap_create_from_xpm() function returns a tuple containing a gtk.gdk.Pixmap
and a bitmap transparency mask created from the XPM data in the file specified by filename.
transparent_color (if not None) specifies the gtk.gdk.Color to by used for the transparent pixels.

gtk.gdk.pixmap_colormap_create_from_xpm

 def gtk.gdk.pixmap_colormap_create_from_xpm(window, colormap, transparent_color, filename)

window : a gtk.gdk.Drawable, used to determine default values for the new
gtk.gdk.Pixmap or None if a gtk.gdk.Colormap is specified.

colormap : the gtk.gdk.Colormap that the new gtk.gdk.Pixmap will be use or None
to use the colormap of window.

transparent_color :the color to be used for the pixels that are transparent in the input file or None to
use a default color.

filename : the name of a file containing XPM data.

Returns : a tuple containing a new gtk.gdk.Pixmap object and a bitmap that is the
transparency mask.

PyGTK 2.0 Reference Manual

gtk.gdk.bitmap_create_from_data 96

The gtk.gdk.pixmap_colormap_create_from_xpm() function returns a tuple containing a
gtk.gdk.Pixmap and a bitmap transparency mask created from the XPM data in the file specified by
filename. transparent_color (if not None) specifies the gtk.gdk.Color to by used for the
transparent pixels. If colormap is not None it must specify a gtk.gdk.Colormap that the new
gtk.gdk.Pixmap will use. If colormap is None the new gtk.gdk.Pixmap will use the colormap of
window.

gtk.gdk.pixmap_create_from_xpm_d

 def gtk.gdk.pixmap_create_from_xpm_d(window, transparent_color, data)

window : a gtk.gdk.Drawable, used to determine default values for the new
gtk.gdk.Pixmap.

transparent_color : the color to be used for the pixels that are transparent in the input file or None to
use a default color.

data : a list of strings containing the XPM data.

Returns : a tuple containing a new gtk.gdk.Pixmap object and a bitmap that is the
transparency mask.

The gtk.gdk.pixmap_create_from_xpm_d() function returns a tuple containing a new
gtk.gdk.Pixmap and a bitmap transparency mask created from the XPM data contained in data.
transparent_color (if not None) specifies the gtk.gdk.Color to by used for the transparent pixels.

gtk.gdk.pixmap_colormap_create_from_xpm_d

 def gtk.gdk.pixmap_colormap_create_from_xpm_d(window, colormap, transparent_color, data)

window : a gtk.gdk.Drawable, used to determine default values for the new
gtk.gdk.Pixmap.

colormap : the gtk.gdk.Colormap that the new gtk.gdk.Pixmap will be use or
None to use the colormap of window.

transparent_color : the color to be used for the pixels that are transparent in the input file or None to
use a default color.

data : a list of strings containing the XPM data.

Returns : a tuple containing a new gtk.gdk.Pixmap object and a bitmap that is the
transparency mask.

The gtk.gdk.pixmap_colormap_create_from_xpm_d() function returns a tuple containing a new
gtk.gdk.Pixmap and a bitmap transparency mask created from the XPM data contained in data.
transparent_color (if not None) specifies the gtk.gdk.Color to by used for the transparent pixels.
If colormap is not None it must specify a gtk.gdk.Colormap that the new gtk.gdk.Pixmap will
use. If colormap is None the new gtk.gdk.Pixmap will use the colormap of window.

gtk.gdk.pixmap_foreign_new

 def gtk.gdk.pixmap_foreign_new(anid)

anid : a native window system pixmap handle.

Returns : the new gtk.gdk.Pixmap wrapper for the native pixmap or None if the pixmap has been
destroyed.

The gtk.gdk.pixmap_foreign_new() function returns a gtk.gdk.Pixmap that wraps the native
window specified by anid for the default display. If the pixmap has been destroyed this function returns
None. In the X backend, anid must specify an Xlib XID that is a native pixmap handle.

PyGTK 2.0 Reference Manual

gtk.gdk.pixmap_colormap_create_from_xpm 97

gtk.gdk.pixmap_lookup

 def gtk.gdk.pixmap_lookup(anid)

anid : a native window system pixmap handle.

Returns : the new gtk.gdk.Pixmap wrapper for the native pixmap or None if the pixmap has been
destroyed.

The gtk.gdk.pixmap_lookup() function returns looks up and returns the gtk.gdk.Pixmap that
wraps the native pixmap handle specified by anid. This method returns None if no gtk.gdk.Pixmap
wraps anid. In the X backend, anid must specify an Xlib XID that is a native pixmap handle.

gtk.gdk.pixmap_foreign_new_for_display

 def gtk.gdk.pixmap_foreign_new_for_display(display, anid)

display : a gtk.gdk.Display object
anid : a native window system pixmap handle.

Returns : the new gtk.gdk.Pixmap wrapper for the native pixmap or None if the pixmap
has been destroyed.

Note

This function is available in PyGTK2.2 and above.

The gtk.gdk.pixmap_foreign_new_for_display() function returns a gtk.gdk.Pixmap that
wraps the native window specified by anid for the gtk.gdk.Display specified by display. If the
pixmap has been destroyed this function returns None. In the X backend, anid must specify an Xlib XID
that is a native pixmap handle.

gtk.gdk.pixmap_lookup_for_display

 def gtk.gdk.pixmap_lookup_for_display(display, anid)

display : a gtk.gdk.Display object
anid : a native window system pixmap handle.

Returns : the new gtk.gdk.Pixmap wrapper for the native pixmap or None if the pixmap
has been destroyed.

Note

This function is available in PyGTK2.2 and above.

The gtk.gdk.pixmap_lookup_for_display() function returns looks up and returns the
gtk.gdk.Pixmap that wraps the native pixmap handle specified by anid for the gtk.gdk.Display
specified by display. This method returns None if no gtk.gdk.Pixmap wraps anid. In the X backend,
anid must specify an Xlib XID that is a native pixmap handle.

Prev Up Next
gtk.gdk.PixbufLoader Home gtk.gdk.Rectangle

gtk.gdk.Rectangle
Prev The gtk.gdk Class Reference Next

PyGTK 2.0 Reference Manual

gtk.gdk.pixmap_lookup 98

gtk.gdk.Rectangle

gtk.gdk.Rectangle � an object holding data about a rectangle

Synopsis

class gtk.gdk.Rectangle(gobject.GBoxed):
gtk.gdk.Rectangle(x=0, y=0, width=0, height=0)

 def intersect(src)
 def union(src)

Attributes

"x" Read−Write The X coordinate of the top left corner of the rectangle.

"y" Read−Write The Y coordinate of the top left corner of the rectangle.

"width" Read−Write The width of the rectangle.

"height" Read−Write The height of the rectangle.

Description

A gtk.gdk.Rectangle holds the position and size of a rectangle. The position is specified by the "x" and
"y" attributes and the size, by the "width" and "height" attributes.

Constructor

gtk.gdk.Rectangle(x=0, y=0, width=0, height=0)

x : the X coordinate of the top left corner of the rectangle
y : the Y coordinate of the top left corner of the rectangle
width : the width of the rectangle
height : the height of the rectangle
Returns : a new gtk.gdk.Rectangle object
Creates a new gtk.gdk.Rectangle with the attributes specified by x, y, width and height. Any
unspecified attributes default to 0.

Methods

gtk.gdk.Rectangle.intersect

 def intersect(src)

src : a gtk.gdk.Rectangle of a 4−tuple specifying the attributes of a rectangle as (x,
y, width, height)

Returns : a gtk.gdk.Rectangle that is the intersection of src and the rectangle
The intersect() method returns a gtk.gdk.Rectangle that is the intersection of this rectangle and the
gtk.gdk.Rectangle specified by src. The value of src is either a gtk.gdk.Rectangle or a

PyGTK 2.0 Reference Manual

gtk.gdk.Rectangle 99

4−tuple containing the position and size of a rectangle. If the rectangles do not intersect the returned
gtk.gdk.Rectangle will have all attributes set to 0.

gtk.gdk.Rectangle.union

 def union(src)

src : a gtk.gdk.Rectangle of a 4−tuple specifying the attributes of a rectangle as (x,
y, width, height)

Returns : a gtk.gdk.Rectangle that includes both src and the rectangle
The union() method returns a gtk.gdk.Rectangle that is the smallest rectangle containing both this
rectangle and the gtk.gdk.Rectangle specified by src. The value of src is either a
gtk.gdk.Rectangle or a 4−tuple containing the position and size of a rectangle.

Prev Up Next
gtk.gdk.Pixmap Home gtk.gdk.Screen

gtk.gdk.Screen
Prev The gtk.gdk Class Reference Next

gtk.gdk.Screen

gtk.gdk.Screen � an object representing a physical screen

Synopsis

class gtk.gdk.Screen(gobject.GObject):
 def get_default_colormap()
 def set_default_colormap(colormap)
 def get_system_colormap()
 def get_system_visual()
 def get_rgb_colormap()
 def get_rgb_visual()
 def get_root_window()
 def get_display()
 def get_number()
 def get_width()
 def get_height()
 def get_width_mm()
 def get_height_mm()
 def list_visuals()
 def get_toplevel_windows()
 def make_display_name()
 def get_n_monitors()
 def get_monitor_geometry(monitor_num)
 def get_monitor_at_point(x, y)
 def get_monitor_at_window(window)
 def broadcast_client_message(event)
 def get_setting(name)

Functions

 def gtk.gdk.screen_width()
 def gtk.gdk.screen_height()
 def gtk.gdk.screen_width_mm()
 def gtk.gdk.screen_height_mm()
 def gtk.gdk.screen_get_default()

PyGTK 2.0 Reference Manual

gtk.gdk.Rectangle.intersect 100

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Screen

Signal Prototypes

"size−changed" def callback(screen, user_param1, ...)

Description

Note

This object is available in PyGTK 2.2 and above.

gtk.gdk.Screen objects are the PyGTK representation of a physical screen. It is used throughout PyGTK
to specify which screen the top level windows are to be displayed on. It is also used to query the screen
specification and default settings such as the default colormap (the get_default_colormap() method),
the screen width (the get_width() method), etc.

Note

a screen may consist of multiple monitors that are merged to form a large screen area.

Methods

gtk.gdk.Screen.get_default_colormap

 def get_default_colormap()

Returns : the default gtk.gdk.Colormap.

Note

This method is available in PyGTK 2.2 and above.

The get_default_colormap() method returns the default gtk.gdk.Colormap for the screen.

gtk.gdk.Screen.set_default_colormap

 def set_default_colormap(colormap)

colormap : a gtk.gdk.Colormap

Note

This method is available in PyGTK 2.2 and above.

The set_default_colormap() method sets the gtk.gdk.Colormap specified by colormap as the
default colormap for the screen.

PyGTK 2.0 Reference Manual

Ancestry 101

gtk.gdk.Screen.get_system_colormap

 def get_system_colormap()

Returns : the default colormap for the screen. Since: 2.2

Note

This method is available in PyGTK 2.2 and above.

The get_system_colormap() method returns the system's default colormap for the screen

gtk.gdk.Screen.get_system_visual

 def get_system_visual()

Returns : the system gtk.gdk.Visual

Note

This method is available in PyGTK 2.2 and above.

The get_system_visual() method returns the system's default gtk.gdk.Visual for the screen. This
is the visual for the root window of the display.

gtk.gdk.Screen.get_rgb_colormap

 def get_rgb_colormap()

Returns : a gtk.gdk.Colormap

Note

This method is available in PyGTK 2.2 and above.

The get_rgb_colormap() method returns the preferred colormap for rendering image data on the screen.
Not a very useful function; historically, GDK could only render RGB image data to one colormap and visual,
but in the current version it can render to any colormap and visual. So there's no need to call this function.

gtk.gdk.Screen.get_rgb_visual

 def get_rgb_visual()

Returns : a gtk.gdk.Visual

Note

This method is available in PyGTK 2.2 and above.

The get_rgb_visual() method returns a "preferred visual" chosen for rendering RGB image data on the
screen.

gtk.gdk.Screen.get_root_window

 def get_root_window()

PyGTK 2.0 Reference Manual

gtk.gdk.Screen.get_system_colormap 102

Returns : the root gtk.gdk.Window

Note

This method is available in PyGTK 2.2 and above.

The get_root_window() method returns the root gtk.gdk.Window of the screen.

gtk.gdk.Screen.get_display

 def get_display()

Returns : the display that the screen belongs to

Note

This method is available in PyGTK 2.2 and above.

The get_display() method returns the gtk.gdk.Display that the screen belongs to.

gtk.gdk.Screen.get_number

 def get_number()

Returns : the index

Note

This method is available in PyGTK 2.2 and above.

The get_number() method returns the index of the screen among the screens in its display. (See the
get_display() method)

gtk.gdk.Screen.get_width

 def get_width()

Returns : the width of the screen in pixels.

Note

This method is available in PyGTK 2.2 and above.

The get_width() method returns the width of the screen in pixels

gtk.gdk.Screen.get_height

 def get_height()

Returns : the height of the screen in pixels.

Note

This method is available in PyGTK 2.2 and above.

The get_height() method returns the height of the screen in pixels

PyGTK 2.0 Reference Manual

gtk.gdk.Screen.get_root_window 103

gtk.gdk.Screen.get_width_mm

 def get_width_mm()

Returns : the width of the screen in millimeters.

Note

This method is available in PyGTK 2.2 and above.

The get_width_mm() method returns the width of the screen in millimeters. Note that on some X servers
this value will not be correct.

gtk.gdk.Screen.get_height_mm

 def get_height_mm()

Returns : the height of the screen in pixels. Since: 2.2

Note

This method is available in PyGTK 2.2 and above.

The get_height_mm() method returns the height of the screen in millimeters. Note that on some X servers
this value will not be correct.

gtk.gdk.Screen.list_visuals

 def list_visuals()

Returns : a list of gtk.gdk.Visual

Note

This method is available in PyGTK 2.2 and above.

The list_visuals() method returns a list of the available visuals for the screen. A gtk.gdk.Visual
describes a hardware image data format. For example, a visual might support 24−bit color, or 8−bit color, and
might expect pixels to be in a certain format.

gtk.gdk.Screen.get_toplevel_windows

 def get_toplevel_windows()

Returns : a list of the toplevel gtk.gdk.Window objects

Note

This method is available in PyGTK 2.2 and above.

The get_toplevel_windows() method returns a list of all toplevel gtk.gdk.Window objects known
to PyGTK on the screen. A toplevel window is a child of the root window (see the
gtk.gdk.get_default_root_window() function).

PyGTK 2.0 Reference Manual

gtk.gdk.Screen.get_width_mm 104

gtk.gdk.Screen.make_display_name

 def make_display_name()

Returns : a generated nae

Note

This method is available in PyGTK 2.2 and above.

The make_display_name() method determines the name to pass to gtk.gdk.Display() to get a
gtk.gdk.Display with this screen as the default screen.

gtk.gdk.Screen.get_n_monitors

 def get_n_monitors()

Returns : the number of monitors that the screen consists of.

Note

This method is available in PyGTK 2.2 and above.

The get_n_monitors() method returns the number of monitors that the screen consists of.

gtk.gdk.Screen.get_monitor_geometry

 def get_monitor_geometry(monitor_num)

monitor_num : the monitor number.
Returns : a gtk.gdk.Rectangle containing the monitor geometry

Note

This method is available in PyGTK 2.2 and above.

The get_monitor_geometry() method returns a gtk.gdk.Rectangle representing the size and
position of the individual monitor within the the entire screen area.

Note that the size of the entire screen area can be retrieved via the get_width() and get_height().
methods.

gtk.gdk.Screen.get_monitor_at_point

 def get_monitor_at_point(x, y)

x : an x coordinate in the virtual screen.
y : a y coordinate in the virtual screen.

Returns : the number of the monitor that the point (x,y) lies in, or a monitor close to (x,y) if the point is
not in any monitor.

Note

This method is available in PyGTK 2.2 and above.

PyGTK 2.0 Reference Manual

gtk.gdk.Screen.make_display_name 105

The get_monitor_at_point() method returns the number of the monitor in which the point (x,y) is
located or the closest monitor if not in a monitor.

gtk.gdk.Screen.get_monitor_at_window

 def get_monitor_at_window(window)

window : a gtk.gdk.Window
Returns : the number of the monitor that most of window is located. Since: 2.2

Note

This method is available in PyGTK 2.2 and above.

The get_monitor_at_window() method returns the number of the monitor that most of the
gtk.gdk.Window specified by window is in. If window does not intersect any monitors, the closest
monitor to the main bounding rectangle of window is returned.

gtk.gdk.Screen.broadcast_client_message

 def broadcast_client_message(event)

event : the gtk.gdk.Event.

Note

This method is available in PyGTK 2.2 and above.

The broadcast_client_message() method sends a message to all top level windows. On X11, sends
an X ClientMessage event to all toplevel windows on the screen.

Toplevel windows are determined by checking for the WM_STATE property, as described in the Inter−Client
Communication Conventions Manual (ICCCM). If no windows are found with the WM_STATE property set,
the message is sent to all children of the root window.

On Windows, broadcasts a message registered with the name GDK_WIN32_CLIENT_MESSAGE to all
top−level windows. The amount of data is limited to one long, i.e. four bytes.

gtk.gdk.Screen.get_setting

 def get_setting(name)

name : the name of the setting
Returns : the value of setting

Note

This method is available in PyGTK 2.2 and above.

The get_setting() method returns the value of the desktop−wide setting (specified by setting) such as
double−click time for the screen.

PyGTK 2.0 Reference Manual

Note 106

Functions

gtk.gdk.screen_width

 def gtk.gdk.screen_width()

Returns : the width of the default screen in pixels.
The gtk.gdk.screen_width() function returns the width of the default screen in pixels.

gtk.gdk.screen_height

 def gtk.gdk.screen_height()

Returns : the height of the default screen in pixels.
The gtk.gdk.screen_height() function returns the height of the default screen in pixels.

gtk.gdk.screen_width_mm

 def gtk.gdk.screen_width_mm()

Returns : the width of the default screen in millimeters, though it is not always correct.
The gtk.gdk.screen_width_mm() function returns the width of the default screen in millimeters. Note
that on many X servers this value will not be correct.

gtk.gdk.screen_height_mm

 def gtk.gdk.screen_height_mm()

Returns : the height of the default screen in millimeters, though it is not always correct.
The gtk.gdk.screen_height_mm() function returns the height of the default screen in millimeters.
Note that on many X servers this value will not be correct.

gtk.gdk.screen_get_default

 def gtk.gdk.screen_get_default()

Returns : a gtk.gdk.Screen, or None if there is no default display.

Note

This function is available in PyGTK 2.2 and above.

The gtk.gdk.screen_get_default() function returns the default gtk.gdk.Screen for the default
gtk.gdk.Display. (See the gtk.gdk.display_get_default() function).

Signals

PyGTK 2.0 Reference Manual

Functions 107

The "size−changed" gtk.gdk.Screen Signal

 def callback(screen, user_param1, ...)

screen : the screen that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "size−changed" signal is emitted when the pixel width or height of a screen changes.

Prev Up Next
gtk.gdk.Rectangle Home gtk.gdk.Visual

gtk.gdk.Visual
Prev The gtk.gdk Class Reference Next

gtk.gdk.Visual

gtk.gdk.Visual � an object containing hardware display information

Synopsis

class gtk.gdk.Visual(gobject.GObject):
gtk.gdk.Visual(depth, visual_type)

 def get_screen()

Functions

 def gtk.gdk.list_visuals()
 def gtk.gdk.visual_get_best()
 def gtk.gdk.visual_get_best_depth()
 def gtk.gdk.visual_get_best_type()
 def gtk.gdk.visual_get_best_with_depth(depth)
 def gtk.gdk.visual_get_best_with_type(type)
 def gtk.gdk.visual_get_system()
 def gtk.gdk.query_depths()
 def gtk.gdk.query_visual_types()

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Visual

Attributes

"bits_per_rgb" Read The number of significant bits per red, green, or blue when specifying colors for
this visual. (For instance, for the gtk.gdk.Colormap.alloc_color()
method)

"blue_mask" Read A mask giving the bits in a pixel value that correspond to the blue field.

"blue_prec" Read See above.

"blue_shift" Read The blue_shift and blue_prec give an alternate presentation of the
information in blue_mask.

PyGTK 2.0 Reference Manual

The "size−changed" gtk.gdk.Screen Signal 108

"byte_order" Read The byte−order for this visual − either: gtk.gdk.LSB_FIRST or
gtk.gdk.MSB_FIRST.

"colormap_size" Read The number of entries in the colormap, for visuals of type
gtk.gdk.VISUAL_PSEUDO_COLOR or gtk.gdk.VISUAL_GRAY_SCALE.
For other visual types, it is the number of possible levels per color component. If
the visual has different numbers of levels for different components, the value of
this field is undefined.

"depth" Read The number of bits per pixel.

"green_mask" Read A mask giving the bits in a pixel value that correspond to the green field.

"green_prec" Read See above.

"green_shift" Read The green_shift and green_prec give an alternate presentation of the
information in green_mask.

"red_mask" Read A mask giving the bits in a pixel value that correspond to the red field. Significant
only for gtk.gdk.VISUAL_PSEUDOCOLOR and
gtk.gdk.VISUAL_DIRECTCOLOR.

"red_prec" Read See above.

"red_shift" Read The red_shift and red_prec give an alternate presentation of the
information in red_mask. red_mask is a contiguous sequence of red_prec
bits starting at bit number red_shift.

"type" Read The type of this visual − one of: gtk.gdk.VISUAL_STATIC_GRAY,
gtk.gdk.VISUAL_GRAYSCALE, gtk.gdk.VISUAL_STATIC_COLOR,
gtk.gdk.VISUAL_PSEUDO_COLOR, gtk.gdk.VISUAL_TRUE_COLOR,
gtk.gdk.VISUAL_DIRECT_COLOR

Description

A gtk.gdk.Visual describes a particular video hardware display format. It includes information about the
number of bits used for each color, the way the bits are translated into an RGB value for display, and the way
the bits are stored in memory. For example, a piece of display hardware might support 24−bit color, 16−bit
color, or 8−bit color; meaning 24/16/8−bit pixel sizes. For a given pixel size, pixels can be in different
formats; for example the "red" element of an RGB pixel may be in the top 8 bits of the pixel, or may be in the
lower 4 bits.

Usually you can avoid thinking about visuals in PyGTK. Visuals are useful to interpret the contents of a
gtk.gdk.Image, but you should avoid gtk.gdk.Image precisely because its contents depend on the
display hardware; use gtk.gdk.Pixbuf instead, for all but the most low−level purposes. Also, anytime
you provide a gtk.gdk.Colormap, the visual is implied as part of the colormap (see the
gtk.gdk.Colormap.get_visual() method), so you won't have to provide a visual in addition.

There are several standard visuals. The visual returned by the gtk.gdk.visual_get_system() function
is the system's default visual. The gtk.gdk.rgb_get_visual() function returns the visual most suited to
displaying full−color image data. If you use the calls in GdkRGB, you should create your windows using this
visual (and the colormap returned by the gtk.gdk.rgb_get_colormap() function).

A number of functions are provided for determining the "best" available visual. For the purposes of making
this determination, higher bit depths are considered better, and for visuals of the same bit depth,
gtk.gdk.VISUAL_PSEUDO_COLOR is preferred at 8bpp, otherwise, the visual types are ranked in the

PyGTK 2.0 Reference Manual

Attributes 109

order of (highest to lowest) gtk.gdk.VISUAL_DIRECT_COLOR, gtk.gdk.VISUAL_TRUE_COLOR,
gtk.gdk.VISUAL_PSEUDO_COLOR, gtk.gdk.VISUAL_STATIC_COLOR,
gtk.gdk.VISUAL_GRAYSCALE, then gtk.gdk.VISUAL_STATIC_GRAY.

Constructor

gtk.gdk.Visual(depth, visual_type)

depth : a bit depth
visual_type : a visual type
Returns : the best gtk.gdk.Visual with both depth and visual_type, or None if none
Creates a new gtk.gdk.Visual that is the best choice for the specified depth and visual_type.
Color visuals and visuals with mutable colormaps are preferred over grayscale or fixed−colormap visuals and
visuals with higher color depths are considered better. The value of visual_type must be one of:

gtk.gdk.VISUAL_STATIC_GRAY Each pixel value indexes a grayscale value directly.

gtk.gdk.VISUAL_GRAYSCALE
Each pixel is an index into a color map that maps pixel values into
grayscale values. The color map can be changed by an application.

gtk.gdk.VISUAL_STATIC_COLOR
Each pixel value is an index into a predefined, unmodifiable color
map that maps pixel values into RGB values.

gtk.gdk.VISUAL_PSEUDO_COLOR
Each pixel is an index into a color map that maps pixel values into
rgb values. The color map can be changed by an application.

gtk.gdk.VISUAL_TRUE_COLOR

Each pixel value directly contains red, green, and blue components.
The red_mask, green_mask, and blue_mask fields of the
gtk.gdk.Visual structure describe how the components are
assembled into a pixel value.

gtk.gdk.VISUAL_DIRECT_COLOR

Each pixel value contains red, green, and blue components as for
gtk.gdk.TRUE_COLOR, but the components are mapped via a
color table into the final output table instead of being converted
directly.

Methods

gtk.gdk.Visual.get_screen

 def get_screen()

Returns : the screen that this visual belongs to.

Note

This method is available in PyGTK 2.2 and above.

The get_screen() method returns the gtk.gdk.Screen that this visual belongs to.

Functions

PyGTK 2.0 Reference Manual

Description 110

gtk.gdk.list_visuals

 def gtk.gdk.list_visuals()

Returns : a list of gtk.gdk.Visual objects
The gtk.gdk.list_visuals() function returns a list containing the available gtk.gdk.Visual
objects for the default screen.

gtk.gdk.visual_get_best

 def gtk.gdk.visual_get_best()

Returns : the best gtk.gdk.Visual for the default screen
The gtk.gdk.visual_get_best() function returns the visual with the most available colors for the
default screen.

gtk.gdk.visual_get_best_depth

 def gtk.gdk.visual_get_best_depth()

Returns : the gtk.gdk.Visual with the best depth.
The gtk.gdk.visual_get_best_depth() function returns the gtk.gdk.Visual with the best
depth for the default screen where "best" means the largest

gtk.gdk.visual_get_best_type

 def gtk.gdk.visual_get_best_type()

Returns : the gtk.gdk.Visual with the best type for the default screen
The gtk.gdk.visual_get_best_type() function returns the best available gtk.gdk.Visual type
for the default screen.

gtk.gdk.visual_get_best_with_depth

 def gtk.gdk.visual_get_best_with_depth(depth)

depth : the number of bits per pixel
Returns : the best gtk.gdk.Visual for the specified depth
The gtk.gdk.visual_get_best_with_depth() function returns the best gtk.gdk.Visual with
the specified depth.

gtk.gdk.visual_get_best_with_type

 def gtk.gdk.visual_get_best_with_type(type)

type : a visual type
Returns : the best gdkVisual for the visual type specified by type
The gtk.gdk.visual_get_best_with_type() function returns the best gtk.gdk.Visual for the
visual type specified by type. The value of visual_type must be one of:

gtk.gdk.VISUAL_STATIC_GRAY Each pixel value indexes a grayscale value directly.
gtk.gdk.VISUAL_GRAYSCALE

PyGTK 2.0 Reference Manual

gtk.gdk.list_visuals 111

Each pixel is an index into a color map that maps pixel values into
grayscale values. The color map can be changed by an application.

gtk.gdk.VISUAL_STATIC_COLOR
Each pixel value is an index into a predefined, unmodifiable color
map that maps pixel values into RGB values.

gtk.gdk.VISUAL_PSEUDO_COLOR
Each pixel is an index into a color map that maps pixel values into
rgb values. The color map can be changed by an application.

gtk.gdk.VISUAL_TRUE_COLOR

Each pixel value directly contains red, green, and blue components.
The red_mask, green_mask, and blue_mask fields of the
gtk.gdk.Visual structure describe how the components are
assembled into a pixel value.

gtk.gdk.VISUAL_DIRECT_COLOR

Each pixel value contains red, green, and blue components as for
gtk.gdk.TRUE_COLOR, but the components are mapped via a
color table into the final output table instead of being converted
directly.

gtk.gdk.visual_get_system

 def gtk.gdk.visual_get_system()

The gtk.gdk.visual_get_system() function returns the default gtk.gdk.Visual for the system's
default screen.

gtk.gdk.query_depths

 def gtk.gdk.query_depths()

Note

This function is available in PyGTK 2.4 and above.

The gtk.gdk.query_depths() function returns a tuple containing the unique supported visual depths for
the default screen. It's equivalent to listing the visuals (see the gtk.gdk.list_visuals() function) and
then looking at the depth field in each visual, removing duplicates.

gtk.gdk.query_visual_types

 def gtk.gdk.query_visual_types()

The gtk.gdk.query_visual_types() function returns a tuple containing the unique visual types
supported by the default screen.It's equivalent to listing the visuals (see the gtk.gdk.list_visuals()
function) and then looking at the type field in each visual, removing duplicates.

The returned value will be one of:

gtk.gdk.VISUAL_STATIC_GRAY Each pixel value indexes a grayscale value directly.

gtk.gdk.VISUAL_GRAYSCALE
Each pixel is an index into a color map that maps pixel values into
grayscale values. The color map can be changed by an application.

gtk.gdk.VISUAL_STATIC_COLOR
Each pixel value is an index into a predefined, unmodifiable color
map that maps pixel values into RGB values.

gtk.gdk.VISUAL_PSEUDO_COLOR
Each pixel is an index into a color map that maps pixel values into
rgb values. The color map can be changed by an application.

PyGTK 2.0 Reference Manual

gtk.gdk.visual_get_best_with_type 112

gtk.gdk.VISUAL_TRUE_COLOR

Each pixel value directly contains red, green, and blue components.
The red_mask, green_mask, and blue_mask fields of the
gtk.gdk.Visual structure describe how the components are
assembled into a pixel value.

gtk.gdk.VISUAL_DIRECT_COLOR

Each pixel value contains red, green, and blue components as for
gtk.gdk.VISUAL_TRUE_COLOR, but the components are
mapped via a color table into the final output table instead of being
converted directly.

Prev Up Next
gtk.gdk.Screen Home gtk.gdk.Window

gtk.gdk.Window
Prev The gtk.gdk Class Reference Next

gtk.gdk.Window

gtk.gdk.Window � on−screen display areas in the target window system

Synopsis

class gtk.gdk.Window(gtk.gdk.Drawable):
gtk.gdk.Window(parent, width, height, window_type, event_mask, wclass, title=None, x=−1, y=−1, visual=None, colormap=None, cursor=None, wmclass_name=None, wmclass_class=None, override_redirect=−1)

 def drag_begin(targets)
 def input_set_extension_events(mask, mode)
 def property_get(property, type=None, pdelete=FALSE)
 def property_change(property, type, format, mode, data)
 def property_delete(property)
 def selection_convert(selection, target, time)
 def set_keep_above(setting)
 def set_keep_below(setting)
 def destroy()
 def get_window_type()
 def show()
 def hide()
 def withdraw()
 def move(x, y)
 def resize(width, height)
 def move_resize(x, y, width, height)
 def reparent(new_parent, x, y)
 def clear()
 def clear_area(x, y, width, height)
 def clear_area_e(x, y, width, height)
 def raise_()
 def lower()
 def focus(timestamp=0L)
 def set_user_data(user_data)
 def get_user_data()
 def set_override_redirect(override_redirect)
 def add_filter(function, data=None)
 def scroll(dx, dy)
 def shape_combine_mask(shape_mask, offset_x, offset_y)
 def set_child_shapes()
 def merge_child_shapes()
 def is_visible()
 def is_viewable()
 def get_state()
 def set_static_gravities(use_static)

PyGTK 2.0 Reference Manual

gtk.gdk.query_visual_types 113

 def set_type_hint(hint)
 def set_modal_hint(modal)
 def set_skip_taskbar_hint(skips_taskbar)
 def set_skip_pager_hint(skips_pager)
 def set_geometry_hints(min_width=−1, min_height=−1, max_width=−1, max_height=−1, base_width=−1, base_height=−1, width_inc=−1, height_inc=−1, min_aspect=−1.0, max_aspect=−1.0)
 def begin_paint_rect(rectangle)
 def end_paint()
 def set_title(title)
 def set_role(role)
 def set_transient_for(leader)
 def set_background(color)
 def set_back_pixmap(pixmap, parent_relative)
 def set_cursor(cursor)
 def get_geometry()
 def get_position()
 def get_origin()
 def get_root_origin()
 def get_frame_extents()
 def get_pointer()
 def get_parent()
 def get_toplevel()
 def get_children()
 def get_events()
 def set_events(event_mask)
 def set_icon_list(pixbufs)
 def set_icon(icon_window, pixmap, mask)
 def set_icon_name(name)
 def set_group(leader)
 def get_group()
 def set_decorations(decorations)
 def get_decorations()
 def set_functions(functions)
 def iconify()
 def deiconify()
 def stick()
 def unstick()
 def maximize()
 def unmaximize()
 def fullscreen()
 def unfullscreen()
 def register_dnd()
 def begin_resize_drag(edge, button, root_x, root_y, timestamp)
 def begin_move_drag(button, root_x, root_y, timestamp)
 def invalidate_rect(rect, invalidate_children)
 def freeze_updates()
 def thaw_updates()
 def process_updates(update_children)
 def set_accept_focus(accept_focus)
 def enable_synchronized_configure()
 def configure_finished()
 def set_focus_on_map(focus_on_map)

Functions

 def gtk.gdk.window_foreign_new(anid)
 def gtk.gdk.window_foreign_new_for_display(display, anid)
 def gtk.gdk.get_default_root_window()
 def gtk.gdk.window_get_toplevels()
 def gtk.gdk.window_lookup(anid)
 def gtk.gdk.window_lookup_for_display(display, anid)
 def gtk.gdk.window_process_all_updates()
 def gtk.gdk.gdk_window_set_debug_updates(setting)
 def gtk.gdk.window_at_pointer()

PyGTK 2.0 Reference Manual

Synopsis 114

Ancestry

+−− gobject.GObject
 +−− gtk.gdk.Drawable
 +−− gtk.gdk.Window

Description

gtk.gdk.Window is a rectangular region on the screen. It's a low−level object, used to implement
high−level objects such as gtk.Widget and gtk.Window. A gtk.Window is a toplevel window, the
object a user might think of as a "window" with a titlebar and so on. A gtk.Window may contain several
gtk.gdk.Window objects since most widgets use a gtk.gdk.Window.

A gtk.gdk.Window object interacts with the native window system for input and events. Some
gtk.Widget objects do not have an associated gtk.gdk.Window and therefore cannot receive events. To
receive events on behalf of these "windowless" widgets a gtk.EventBox must be used.

Constructor

gtk.gdk.Window(parent, width, height, window_type, event_mask, wclass, title=None, x=−1, y=−1, visual=None, colormap=None, cursor=None, wmclass_name=None, wmclass_class=None, override_redirect=−1)

parent : a gtk.gdk.Window
width : the width of the window in pixels
height : the height of the window in pixels
window_type : the window type
event_mask : the bitmask of events received by the window

wclass : the class of window − either gtk.gdk.INPUT_OUTPUT or
gtk.gdk.INPUT_ONLY

title : the window title if a toplevel window
x : the x coordinate of the window position relative to parent
y : the y coordinate of the window position relative to parent
visual : the gtk.gdk.Visual for the window
colormap : the gtk.gdk.Colormap for the window
cursor : the gtk.gdk.Cursor for the window

wmclass_name : don't use this − see the gtk.Window.set_wmclass()
method for more information.

wmclass_class : don't use this − see the gtk.Window.set_wmclass()
method for more information.

override_redirect : if TRUE bypass the window manager
Returns : the new gtk.gdk.Window
Creates a new gtk.gdk.Window of the type and class specified by window_type and wclass. The
window will be a child of the specified parent and will have the specified width and height.
event_mask is a bitfield specifying the events that the window will receive − see the set_events()
method for more information. The value of window_type must be one of:

gtk.gdk.WINDOW_ROOT
The root window; this window has no parent, covers the entire screen, and
is created by the window system.

gtk.gdk.WINDOW_TOPLEVEL A toplevel window (used to implement gtk.Window).
gtk.gdk.WINDOW_CHILD A child window (used to implement widgets e.g. gtk.Entry).

PyGTK 2.0 Reference Manual

Ancestry 115

gtk.gdk.WINDOW_DIALOG A useless/deprecated compatibility type.
gtk.gdk.WINDOW_TEMP An override redirect temporary window (used to implement gtk.Menu).

gtk.gdk.WINDOW_FOREIGN
A foreign window (see the gtk.gdk.window_foreign_new()
function).

The value of wclass must be one of:

gtk.gdk.INPUT_OUTPUT A window for graphics and events.
gtk.gdk.INPUT_ONLY A window for events only.
If the optional parameters are not specified the corresponding attribute values will have default values:

x 0
y 0
visual the default system visual − see the gtk.gdk.visual_get_system() function

colormap
either the system gtk.gdk.Colormap if using the system gtk.gdk.Visual
(see the gtk.gdk.colormap_get_system() function) or a new
gtk.gdk.Colormap using visual

cursor use the parent window's cursor
override_redirect gtk.FALSE

Methods

gtk.gdk.Window.drag_begin

 def drag_begin(targets)

targets : a list of offered targets
Returns : a new gtk.gdk.DragContext
The drag_begin() method starts a drag operation and returns the new gtk.gdk.DragContext created
for it. The list of targets (integer values) supported by the drag source are specified by targets.

gtk.gdk.Window.input_set_extension_events

 def input_set_extension_events(mask, mode)

mask : the event mask to be used
mode : the set of extension events to receive
The input_set_extension_events() method enables or disables the extension events specified by
mode for the window when using the event mask specified by mask. The value of mode must be one of:

gtk.gdk.EXTENSION_EVENTS_NONE no extension events are desired.
gtk.gdk.EXTENSION_EVENTS_ALL all extension events are desired.

gtk.gdk.EXTENSION_EVENTS_CURSOR
extension events are desired only if a cursor will be displayed
for the device.

gtk.gdk.Window.property_get

 def property_get(property, type=0, pdelete=FALSE)

PyGTK 2.0 Reference Manual

Constructor 116

property : the property to get
type : the type of property to get or not specified if any type of property data is acceptable.
pdelete : if TRUE, delete the property after retrieving the data.
Returns : a tuple containing the actual property type, the data format and the data
The property_get() method returns a tuple containing the actual property type (as a gtk.gdk.Atom),
the format and the data of the specified property with the specified type. The value of type may not be
be specified in which case it will be 0 to match any type of property. the returned data will be a string if the
data format is 8; a list of integers if the data format is 16; or, a list of gtk.gdk.Atom objects or integers if
the data format is 32. If property cannot be found None is returned. property and type (if specified)
must be a string or a gtk.gdk.Atom.

gtk.gdk.Window.property_change

 def property_change(property, type, format, mode, data)

property :the property to change

type :
the new type of the property. If mode is gtk.gdk.PROP_MODE_PREPEND or
gtk.gdk.PROP_MODE_APPEND, then this must match the existing type or an error will
occur.

format :
the new format for the property. If mode is gtk.gdk.PROP_MODE_PREPEND or
gtk.gdk.PROP_MODE_APPEND, then this must match the existing format or an error will
occur.

mode : a value describing how the new data is to be combined with the current data.
data : the data for the property
The property_change() method changes the contents of the specified property to the specified data
with the specified type and format. The value of mode must be one of:

gtk.gdk.PROP_MODE_REPLACE The new data replaces the existing data.
gtk.gdk.PROP_MODE_PREPEND The new data is prepended to the existing data.
gtk.gdk.PROP_MODE_APPEND The new data is appended to the existing data.
which describes how the new data is to be combined with the existing property data.The value of format
must be 8, 16 or 32. property and type must be a string or a gtk.gdk.Atom.

gtk.gdk.Window.property_delete

 def property_delete(property)

property : the property to delete
The property_delete() method deletes the specified property from the window. property must be
a string or a gtk.gdk.Atom.

gtk.gdk.Window.selection_convert

 def selection_convert(selection, target, time)

selection : the selection to retrieve
target : the target form of selection

time : the timestamp to use when retrieving selection. The selection owner may refuse the
request if it did not own the selection at the time indicated by the timestamp.

The selection_convert() method converts the specified selection to the specified form.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.property_get 117

gtk.gdk.Window.set_keep_above

 def set_keep_above(setting)

setting : xif TRUE keep the window above other windows

Note

This method is available in PyGTK 2.4 and above.

The set_keep_above() method sets the "keep−above" setting to the value of setting. If setting is
TRUE the window must be kept above other windows. If the window is already above, then this method does
nothing.

On X11, asks the window manager to keep the window above, if the window manager supports this operation.
Not all window managers support this, and some deliberately ignore it or don't have a concept of "keep
above", but most standard window managers do.

gtk.gdk.Window.set_keep_below

 def set_keep_below(setting)

setting : if TRUE, keep the window below other windows

Note

This method is available in PyGTK 2.4 and above.

The set_keep_below() method sets the "keep−below" setting to the value of setting. If setting is
TRUE the window must be kept below other windows. If the window was already below, then this method
does nothing.

On X11, asks the window manager to keep the window below, if the window manager supports this operation.
Not all window managers support this, and some deliberately ignore it or don't have a concept of "keep
below" but most standard window managers do.

gtk.gdk.Window.destroy

 def destroy()

The destroy() method destroys the window (destroys the server−side resource associated with the window).
All children of the window are also destroyed. There's normally no need to use this method since windows are
automatically destroyed when their reference count reaches 0.

gtk.gdk.Window.get_window_type

 def get_window_type()

Returns : the type of window
The get_window_type() method returns the type of the window:

gtk.gdk.WINDOW_ROOT
the root window; this window has no parent, covers the entire screen, and
is created by the window system

gtk.gdk.WINDOW_TOPLEVEL a toplevel window (used to implement gtk.Window)
gtk.gdk.WINDOW_CHILD a child window (used to implement e.g. gtk.Button)

PyGTK 2.0 Reference Manual

gtk.gdk.Window.set_keep_above 118

gtk.gdk.WINDOW_DIALOG a useless and deprecated compatibility type
gtk.gdk.WINDOW_TEMP an override redirect temporary window (used to implement gtk.Menu)

gtk.gdk.WINDOW_FOREIGN
a foreign window (see the gtk.gdk.window_foreign_new()
function)

gtk.gdk.Window.show

 def show()

The show() method maps the window so it's visible on−screen and also raises it to the top of the window
stack (moves the window to the front of the Z−order). This method is opposite to the hide() method. When
implementing a gtk.Widget, you should call this method on the widget's gtk.gdk.Window as part of
the "map" method.

gtk.gdk.Window.hide

 def hide()

The hide() method withdraws toplevel windows, so they will no longer be known to the window manager
and for all windows, unmaps them, so they won't be displayed. This is normally done automatically as part of
the gtk.Widget.hide() method.

gtk.gdk.Window.withdraw

 def withdraw()

The withdraw() method withdraws the window (unmaps it and asks the window manager to forget about it).
This is normally done automatically by the gtk.Widget.hide() method called on a gtk.Window.

gtk.gdk.Window.move

 def move(x, y)

x : the X coordinate relative to the window's parent
y : the Y coordinate relative to the window's parent
The move() method repositions the window to the location specified by x and y relative to its parent window.
For toplevel windows, window managers may ignore or modify the move. You should probably use the
gtk.Window.move() method on a gtk.Window widget anyway, instead of using this method. For child
windows, the move will reliably succeed. If you're also planning to resize the window, use the
move_resize() method to both move and resize simultaneously, for a nicer visual effect.

gtk.gdk.Window.resize

 def resize(width, height)

width : the new width of the window
height : the new height of the window
The resize() method resizes the window to the specified width and height. For toplevel windows, this
method asks the window manager to resize the window. However, the window manager may not allow the
resize. You should use the gtk.Window.resize() method instead of this low−level method. Windows
may not be resized smaller than 1x1. If you're also planning to move the window, use the move_resize()
method to both move and resize simultaneously, for a nicer visual effect.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.get_window_type 119

gtk.gdk.Window.move_resize

 def move_resize(x, y, width, height)

x : the new X position relative to the window's parent
y : the new Y position relative to the window's parent
width : the new width
height : the new height
The move_resize() method repositions the window to the location specified by x and y with the size
specified by width and height. This method is equivalent to calling the move() and resize() methods,
except that both operations are performed at once, avoiding strange visual effects. (i.e. the user may be able to
see the window first move, then resize, if you don't use the move_resize() method.)

gtk.gdk.Window.reparent

 def reparent(new_parent, x, y)

new_parent : the new parent gtk.gdk.Window to move the window into
x : the X location inside the new parent
y : the Y location inside the new parent
The reparent() method reparents the window into the gtk.gdk.Window specified new_parent. The
window being reparented will be unmapped as a side effect.

gtk.gdk.Window.clear

 def clear()

The clear() method clears an entire the window to the background color or background pixmap.

gtk.gdk.Window.clear_area

 def clear_area(x, y, width, height)

x : the X coordinate of the rectangle to clear
y : the Y coordinate of the rectangle to clear
width : the width of the rectangle to clear
height : the height of the rectangle to clear
The clear_area() method clears the area (specified by x, y, width and height) of the window to the
background color or background pixmap.

gtk.gdk.Window.clear_area_e

 def clear_area_e(x, y, width, height)

x : the X coordinate of the rectangle to clear
y : the Y coordinate of the rectangle to clear
width : the width of the rectangle to clear
height : the height of the rectangle to clear
The clear_area_e() method is like the clear_area(), but also generates an expose event for the
cleared area.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.move_resize 120

gtk.gdk.Window.raise_

 def raise_()

The raise_() method raises the window to the top of the Z−order (stacking order), so that other windows
with the same parent window appear below the window. If the window is a toplevel, the window manager
may choose to deny the request to move the window in the Z−order. Therefore, the raise_() method only
requests the restack, it does not guarantee it.

Note

This method is called raise() in the C API, but was renamed raise_() since raise is a reserved Python
keyword.

gtk.gdk.Window.lower

 def lower()

The lower() method lowers the window to the bottom of the Z−order (stacking order), so that other windows
with the same parent window appear above the window. If the window is a toplevel, the window manager
may choose to deny the request to move the window in the Z−order. Therefore, the lower() only requests the
restack, it does not guarantee it. Note that the show() method raises the window again, so don't call this
method before calling the show() method to avoid duplication.

gtk.gdk.Window.focus

 def focus(timestamp=0L)

timestamp : the timestamp of the event triggering the window focus
The focus() method sets keyboard focus to the window. If the window is not on−screen this will not work.
In most cases, the gtk.Window.present() method should be used on a gtk.Window, rather than calling
this method.

gtk.gdk.Window.set_user_data

 def set_user_data(user_data)

user_data : a gtk.Widget

Note

This method is available in PyGTK 2.4 and above.

The set_user_data() method stores the underlying GTK+ widget of the PyGTK widget that is specified
by user_data as the user data of the window. In general GTK+ stores the widget that owns a
gtk.gdk.Window as user data on a gtk.Window. So, custom widget implementations in PyGTK should
use this method to provide that capability. If GTK+ receives an event for a gtk.gdk.Window, and the user
data for the window is set, GTK+ will assume the user data is a gtk.Widget, and forward the event to that
widget.

In PyGTK 2.4 and above this method will raise the TypeError exception if user_data is not a
gtk.Widget.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.raise_ 121

Note

This method is deprecated for any use other than the above. To set other user data on a gtk.gdk.Window
use the gobject.GObject.set_data() method instead.

gtk.gdk.Window.get_user_data

 def get_user_data()

Returns : the user data set on the window

Note

This method is available in PyGTK 2.4 and above.

The get_user_data() method returns the PyGTK widget that was set as the user data of the window using
the set_user_data() method. This method raises the ValueError exception if the user data is not set or is
not a PyGTK object.

gtk.gdk.Window.set_override_redirect

 def set_override_redirect(override_redirect)

override_redirect : if TRUE the window should be override redirect
The set_override_redirect() method sets the "override redirect" attribute on the window to the value
specified by override_redirect. If override_redirect is TRUE the window is not under the
control of the window manager. This means it won't have a titlebar, won't be minimizable, etc. − it will be
entirely under the control of the application. The window manager can't see the override redirect window at
all. Override redirect should only be used for short−lived temporary windows, such as popup menus.
gtk.Menu uses an override redirect window in its implementation, for example. This method does not work
on MS Windows.

gtk.gdk.Window.add_filter

 def add_filter(function, data=None)

function : a function
data : data to pass to function

Note

This method is available in PyGTK 2.2 and above.

The add_filter() method adds an event filter function specified by function to the window, allowing
you to intercept events before they reach GDK. This is a low−level operation and makes it easy to break GDK
and/or GTK+, so you have to know what you're doing. Once added there is no way to remove a filter function.
The function signature is:

 def function(event, user_data)

where event is a gtk.gdk.Event and user_data is data. If data is not specified then user_data
is not passed to function.

function should return one of the following values:

PyGTK 2.0 Reference Manual

Note 122

gtk.gdk.FILTER_CONTINUE the event was not handled, continue processing.

gtk.gdk.FILTER_TRANSLATE
the native event was translated into a GDK event and stored in the event
that was passed in.

gtk.gdk.FILTER_REMOVE the event was handled, terminate processing.

gtk.gdk.Window.scroll

 def scroll(dx, dy)

dx : the amount to scroll in the X direction
dy : the amount to scroll in the Y direction
The scroll() method scrolls the contents of the window, both pixels and children, by the horizontal and
vertical amounts specified by dx and dy respectively. The window itself does not move. Portions of the
window that the scroll operation brings in from off−screen areas are invalidated. The invalidated region may
be bigger than what would strictly be necessary. (For X11, a minimum area will be invalidated if the window
has no subwindows, or if the edges of the window's parent do not extend beyond the edges of the window. In
other cases, a multi−step process is used to scroll the window which may produce temporary visual artifacts
and unnecessary invalidations.)

gtk.gdk.Window.shape_combine_mask

 def shape_combine_mask(shape_mask, offset_x, offset_y)

shape_mask : the shape bitmap mask
offset_x : the X position of shape mask with respect to the window
offset_y : the Y position of shape mask with respect to the window
The shape_combine_mask() method applies the bitmap mask specified by shape_mask to the window
at the location specified by x and y. Pixels in the window corresponding to set bits in the shape_mask will
be visible; pixels in the window corresponding to unset bits in the shape_mask will be transparent. This
method provides a non−rectangular window. If shape_mask is None, the shape mask will be unset, and the
x/y parameters are not used.

On the X11 platform, this uses an X server extension which is widely available on most common platforms,
but not available on very old X servers, and occasionally the implementation will be buggy. On servers
without the shape extension, this function will do nothing.

gtk.gdk.Window.set_child_shapes

 def set_child_shapes()

The set_child_shapes() method sets the shape mask of the window to the union of shape masks for all
children of the window, ignoring the shape mask of the window itself. Contrast this method with the
merge_child_shapes() method that includes the shape mask of the window in the masks to be merged.

gtk.gdk.Window.merge_child_shapes

 def merge_child_shapes()

The merge_child_shapes() method merges the shape masks for any child windows into the shape mask
for the window. i.e. the union of all masks for the window and its children will become the new mask for the
window. See the shape_combine_mask() method. This method is distinct from the
set_child_shapes() method because it includes the window's shape mask in the set of shapes to be

PyGTK 2.0 Reference Manual

Note 123

merged.

gtk.gdk.Window.is_visible

 def is_visible()

Returns : TRUE if the window is mapped
The is_visible() method returns TRUE if the window has been mapped (with the show() method.

gtk.gdk.Window.is_viewable

 def is_viewable()

Returns : TRUE if the window is viewable
The is_viewable() method returns TRUE if the window and all its ancestors are mapped. (This is not
necessarily "viewable" in the X sense, since we only check as far as we have gtk.gdk.Window parents, not
to the root window.)

gtk.gdk.Window.get_state

 def get_state()

Returns : the window state bitfield
The get_state() method returns the bitwise OR of the currently active window state flags:

gtk.gdk.WINDOW_STATE_WITHDRAWN The window is not shown.
gtk.gdk.WINDOW_STATE_ICONIFIED The window is minimized.
gtk.gdk.WINDOW_STATE_MAXIMIZED The window is maximized.
gtk.gdk.WINDOW_STATE_STICKY The window is sticky.

GDK_WINDOW_STATE_FULLSCREEN
the window is maximized without decorations. Available in
PyGTK 2.2 and above.

GDK_WINDOW_STATE_ABOVE
the window is kept above other windows. Available in PyGTK
2.4 and above.

GDK_WINDOW_STATE_BELOW
the window is kept below other windows. Available in PyGTK
2.4 and above.

gtk.gdk.Window.set_static_gravities

 def set_static_gravities(use_static)

use_static : if TRUE turn on static gravity
Returns : TRUE if the server supports static gravity
The set_static_gravities() method sets the bit gravity of the given window to the value specified by
use_static. If use_static is TRUE the window uses static gravity and all children get static
subwindow gravity as well. This method returns TRUE if the window system server supports static gravity.

gtk.gdk.Window.set_type_hint

 def set_type_hint(hint)

PyGTK 2.0 Reference Manual

gtk.gdk.Window.merge_child_shapes 124

hint : a hint of the function this window will have
The set_type_hint() method provides the specified hint to the window manager about the functionality
of a window. The window manager can use this information when determining the decoration and behavior of
the window. The hint must be set before the window is mapped. The value of hint must be one of:

gtk.gdk.WINDOW_TYPE_HINT_NORMAL A normal toplevel window.
gtk.gdk.WINDOW_TYPE_HINT_DIALOG A dialog window.
gtk.gdk.WINDOW_TYPE_HINT_MENU A window used to implement a menu.
gtk.gdk.WINDOW_TYPE_HINT_TOOLBAR A window used to implement a toolbar.

gtk.gdk.Window.set_modal_hint

 def set_modal_hint(modal)

modal : if TRUE the window is modal.
The set_modal_hint() method sets the window's modal hint to the value specified by modal. If modal
is TRUE the window is modal. The window manager can use this information to handle modal windows in a
special way which usually means that the window gets all the input for the application effectively blocking
input to other windows in the application. . You should only use this on windows for which you have
previously called the set_transient_for() method

gtk.gdk.Window.set_skip_taskbar_hint

 def set_skip_taskbar_hint(modal)

skip_taskbar : if TRUE skip the taskbar.

Note

This method is available in PyGTK 2.2 and above.

The set_skip_taskbar_hint() method sets the "skip_taskbar" setting to the value specified by
skips_taskbar. If skips_taskbar is TRUE the window should not appear in a task list or window
list. If the window's semantic type as specified with the set_type_hint() method already fully describes
the window, this method should not be called in addition; instead you should allow the window to be treated
according to standard policy for its semantic type.

gtk.gdk.Window.set_skip_pager_hint

 def set_skip_pager_hint(skips_pager)

skips_pager : if TRUE skip the pager

Note

This method is available in PyGTK 2.2 and above.

The set_skip_pager_hint() method sets the "skip_pager" setting to the value of skips_pager. If
skips_pager is TRUE the window should not appear in a pager (a workspace switcher, or other desktop utility
program that displays a small thumbnail representation of the windows on the desktop). If the window's
semantic type as specified with set_type_hint() already fully describes the window, this method should
not be called in addition, instead you should allow the window to be treated according to standard policy for
its semantic type.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.set_type_hint 125

gtk.gdk.Window.set_geometry_hints

 def set_geometry_hints(min_width=−1, min_height=−1, max_width=−1, max_height=−1, base_width=−1, base_height=−1, width_inc=−1, height_inc=−1, min_aspect=−1.0, max_aspect=−1.0)

min_width : minimum width of window or −1 to use requisition
min_height : minimum height of window or −1 to use requisition
max_width : maximum width of window or −1 to use requisition
max_height : maximum height of window or −1 to use requisition

base_width : allowed window widths are base_width + width_inc * N (where N is any integer) or
−1

base_height : allowed window widths are base_height + height_inc * N (where N is any integer)
or −1

width_inc : width resize increment
height_inc : height resize increment
min_aspect : minimum width/height ratio
max_aspect : maximum width/height ratio

Note

This method is available in PyGTK 2.2 and above.

The set_geometry_hints() method sets the geometry hints for the window.

This method provides hints to the windowing system about acceptable sizes for a toplevel window. The
purpose of this is to constrain user resizing, but the windowing system will typically (but is not required to)
also constrain the current size of the window to the provided values and constrain programmatic resizing via
gdk_window_resize() or gdk_window_move_resize().

Note that on X11, this effect has no effect on windows of type GDK_WINDOW_TEMP or windows where
override_redirect has been turned on via the set_override_redirect() method since these windows
are not resizable by the user.

gtk.gdk.Window.begin_paint_rect

 def begin_paint_rect(rectangle)

rectangle : the rectangle you intend to draw to
The begin_paint_rect() method indicates that you are beginning the process of redrawing the area
specified by rectangle. A backing store (off−screen buffer) large enough to contain rectangle will be
created. The backing store will be initialized with the background color or background pixmap for window.
Then, all drawing operations performed on the window will be diverted to the backing store. When you call
the end_paint() method, the backing store will be copied to the window, making it visible on−screen. Only
the part of window contained in region will be modified; that is, drawing operations are clipped to
rectangle. The net result of all this is to remove flicker, because the user sees the finished product appear
all at once when you call the end_paint() method. If you draw to window directly without calling the
begin_paint_rect() method, the user may see flicker as individual drawing operations are performed in
sequence. The clipping and background initializing features of the begin_paint_rect() are conveniences
for the programmer, so you can avoid doing that work yourself.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.set_geometry_hints 126

gtk.gdk.Window.end_paint

 def end_paint()

The end_paint() method indicates that the backing store created by the most recent call to the
begin_paint_rect() method should be copied on−screen and deleted, leaving the next−most−recent
backing store or no backing store at all as the active paint region. It is an error to call this function without a
matching call to the begin_paint_rect() method first.

gtk.gdk.Window.set_title

 def set_title(title)

title : the new title of the window
The set_title() method sets the title of a toplevel window, to the string specified by title. If you
haven't explicitly set the icon name for the window (using the set_icon_name() method), the icon name
will be set to title as well. title must be in UTF−8 encoding (as with all user−readable strings in
PyGTK).

gtk.gdk.Window.set_role

 def set_role(role)

role : a string indicating its role
The set_role() method sets the string specified by role as the window's role. When using PyGTK, you
should generally use the gtk.Window.set_role() method instead of this low−level function. The
window manager and session manager use a window's role to distinguish it from other kinds of window in the
same application. When an application is restarted after being saved in a previous session, all windows with
the same title and role are treated as interchangeable. So if you have two windows with the same title that
should be distinguished for session management purposes, you should set the role on those windows. It
doesn't matter what string you use for the role, as long as you have a different role for each
non−interchangeable kind of window.

gtk.gdk.Window.set_transient_for

 def set_transient_for(leader)

leader : another gtk.gdk.Window
The set_transient_for() method indicates to the window manager that the window is a transient dialog
associated with the application window leader. This allows the window manager to do things like center
the window on leader and keep the window above leader. See the
gtk.Window.set_transient_for() method if you're using a gtk.Window or gtk.Dialog.

gtk.gdk.Window.set_background

 def set_background(color)

color : an allocated gtk.gdk.Color
The set_background() method sets the background gtk.gdk.Color of the window to the value
specified by color. (However, when using PyGTK, set the background of a widget with the
gtk.Widget.modify_bg() method from an application − or the gtk.Style.set_background()
method from a custom widget implementation.) The color must be allocated Also see the
set_back_pixmap() method.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.end_paint 127

gtk.gdk.Window.set_back_pixmap

 def set_back_pixmap(pixmap, parent_relative)

pixmap : a gtk.gdk.Pixmap, or None
parent_relative : if TRUE the tiling origin is at the origin of the window's parent
The set_back_pixmap() method sets the background pixmap of the window to the value specified by
pixmap A background pixmap will be tiled, positioning the first tile at the origin of the window, or if
parent_relative is TRUE, the tiling will be done based on the origin of the parent window (useful to
align tiles in a parent with tiles in a child). If pixmap is None the window will have no background which
means it will never have its background filled by the windowing system. Instead the window will contain
whatever pixels were already in the corresponding area of the display. The windowing system will normally
fill a window with its background when the window is obscured then exposed, and when you call the
clear() method.

gtk.gdk.Window.set_cursor

 def set_cursor(cursor)

cursor : a gtk.gdk.Cursor or None
The set_cursor() method sets the mouse pointer for a gtk.gdk.Window. Use either the
gtk.gdk.Cursor() or gtk.gdk.Cursor() constructors to create the cursor. To make the cursor invisible, use the
gtk.gdk.Cursor() constructor to create a cursor with no pixels in it. Passing None for the cursor argument
to the set_cursor() method means that the window will use the cursor of its parent window. Most
windows should use this default.

gtk.gdk.Window.get_geometry

 def get_geometry()

Returns : a 5−tuple containing the X and Y coordinate of the location of the window relative to its
parent and the width and height of the window and the bit depth of the window.

The get_geometry() method returns a 5−tuple containing the window's location and size (x, y, width,
height) and the bit depth of the window. The X and Y coordinates returned are relative to the parent window
of the window, which for toplevels usually means relative to the window decorations (titlebar, etc.) rather than
relative to the root window (screen−size background window).

On the X11 platform, the geometry is obtained from the X server, so reflects the latest position of the window;
this may be out−of−sync with the position of the window delivered in the most−recently−processed
GdkEventConfigure. the get_position() method in contrast gets the position from the most recent
configure event.

gtk.gdk.Window.get_position

 def get_position()

Returns : a 2−tuple containing the X and Y coordinates of the window location.
The get_position() returns a 2−tuple containing the position of the window as reported in the
most−recently−processed GdkEventConfigure. By comparison with the get_geometry() method that
queries the X server for the current window position, regardless of what events have been received or
processed. The position coordinates are relative to the window's parent window.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.set_back_pixmap 128

gtk.gdk.Window.get_origin

 def get_origin()

Returns : a 2−tuple containing the X and Y coordinates of the window
The get_origin() method returns a 2−tuple containing the x and y coordinates of the position of a window
in root window coordinates. (Compare this method with the get_position() and get_geometry()
methods that return the position of a window relative to its parent window.)

gtk.gdk.Window.get_root_origin

 def get_root_origin()

Returns : a 2−tuple containing the X and Y coordinates of the window frame position
The get_root_origin() method returns a 2−tuple containing the top−left corner of the window manager
frame in root window coordinates.

gtk.gdk.Window.get_frame_extents

 def get_frame_extents()

Returns : a gtk.gdk.Rectangle specifying the bounding box of the window frame
The get_frame_extents() method returns a gtk.gdk.Rectangle specifying the bounding box of
the window, including window manager titlebar/borders if any. The frame position is given in root window
coordinates. To get the position of the window itself (rather than the frame) in root window coordinates, use
the get_origin() method.

gtk.gdk.Window.get_pointer

 def get_pointer()

Returns : a 3−tuple containing the X and Y coordinates of the mouse pointer and the modifier mask
The get_pointer() method returns a 3−tuple containing the coordinates of the mouse pointer location
relative to the window and the modifier state. The modifier state is a combination of the following:

gtk.gdk.SHIFT_MASK The Shift key.

gtk.gdk.LOCK_MASK
A Lock key (depending on the modifier mapping of the X server this may
either be CapsLock or ShiftLock).

gtk.gdk.CONTROL_MASK The Control key.

gtk.gdk.MOD1_MASK
The fourth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier, but normally it is the Alt key).

gtk.gdk.MOD2_MASK
The fifth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD3_MASK
The sixth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD4_MASK
The seventh modifier key (it depends on the modifier mapping of the X
server which key is interpreted as this modifier).

gtk.gdk.MOD5_MASK
The eighth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.BUTTON1_MASK The first mouse button.
gtk.gdk.BUTTON2_MASK The second mouse button.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.get_origin 129

gtk.gdk.BUTTON3_MASK The third mouse button.
gtk.gdk.BUTTON4_MASK The fourth mouse button.
gtk.gdk.BUTTON5_MASK The fifth mouse button.

gtk.gdk.RELEASE_MASK
Differentiates between (keyval, modifiers) pairs from key press and release
events.

gtk.gdk.MODIFIER_MASK all of the above

gtk.gdk.Window.get_parent

 def get_parent()

Returns : the parent gtk.gdk.Window of the window
The get_parent() method returns the parent of the window as set when the gtk.gdk.Window was
created or when the reparent() method was called.

gtk.gdk.Window.get_toplevel

 def get_toplevel()

Returns : the toplevel gtk.gdk.Window containing the window
The get_toplevel() method returns the toplevel gtk.gdk.Window that's an ancestor of the window.

gtk.gdk.Window.get_children

 def get_children()

Returns : the list of child windows inside the window
The get_children() method returns the list of children gtk.gdk.Window objects of the window. This
method only returns children created via PyGTK, so for example it's useless when used with the root window;
it only returns windows an application created itself.

gtk.gdk.Window.get_events

 def get_events()

Returns : the event mask for the window
The get_events() method returns the event mask for the window. See the set_events() method for
more detail.

gtk.gdk.Window.set_events

 def set_events(event_mask)

event_mask : the event mask for the window
The set_events() method sets the event mask to the value specified by event_mask for the window. The
event mask determines which events will be reported for the window. For example, an event mask including
gtk.gdk.BUTTON_PRESS_MASK means the window should report button press events. The event mask is
the bitwise OR of the following:

gtk.gdk.EXPOSURE_MASK•
gtk.gdk.POINTER_MOTION_MASK•

PyGTK 2.0 Reference Manual

gtk.gdk.Window.get_pointer 130

gtk.gdk.POINTER_MOTION_HINT_MASK•
gtk.gdk.BUTTON_MOTION_MASK•
gtk.gdk.BUTTON1_MOTION_MASK•
gtk.gdk.BUTTON2_MOTION_MASK•
gtk.gdk.BUTTON3_MOTION_MASK•
gtk.gdk.BUTTON_PRESS_MASK•
gtk.gdk.BUTTON_RELEASE_MASK•
gtk.gdk.KEY_PRESS_MASK•
gtk.gdk.KEY_RELEASE_MASK•
gtk.gdk.ENTER_NOTIFY_MASK•
gtk.gdk.LEAVE_NOTIFY_MASK•
gtk.gdk.FOCUS_CHANGE_MASK•
gtk.gdk.STRUCTURE_MASK•
gtk.gdk.PROPERTY_CHANGE_MASK•
gtk.gdk.VISIBILITY_NOTIFY_MASK•
gtk.gdk.PROXIMITY_IN_MASK•
gtk.gdk.PROXIMITY_OUT_MASK•
gtk.gdk.SUBSTRUCTURE_MASK•
gtk.gdk.SCROLL_MASK•
gtk.gdk.ALL_EVENTS_MASK•

gtk.gdk.ALL_EVENTS_MASK is a combination of all the event masks.

gtk.gdk.Window.set_icon_list

 def set_icon_list(pixbufs)

pixbufs : a list (or tuple) containing pixbufs, of different sizes.

Note

This method is available in PyGTK 2.2 and above.

The set_icon_list() method sets the list of icons for the window. pixbufs is a list or tuple containing
gtk.gdk.Pixbuf objects to be used as the icon images. One of these will be used to represent the window
when it has been iconified. The icon is usually shown in an icon box or some sort of task bar. Which icon size
is shown depends on the window manager. The window manager can scale the icon but setting several size
icons can give better image quality since the window manager may only need to scale the icon by a small
amount or not at all.

gtk.gdk.Window.set_icon

 def set_icon(icon_window, pixmap, mask)

icon_window : a gtk.gdk.Window to use for the icon
pixmap : a gtk.gdk.Pixmap to use as the icon
mask : a 1−bit pixmap (GdkBitmap) to use as mask for pixmap
The set_icon() method sets the icon of the window as a gtk.gdk.Pixmap (specified by pixmap) or
gtk.gdk.Window specified by icon_window). Investigate the
gtk.window_set_default_icon_list()() function first, and then the
gtk.Window.set_icon_list() and gtk.Window.set_icon() methods. If those don't meet your
needs, look at the set_icon_list() method. Only if all those are too high−level do you want to fall back
to the set_icon().

PyGTK 2.0 Reference Manual

gtk.gdk.Window.set_events 131

gtk.gdk.Window.set_icon_name

 def set_icon_name(name)

name : the name of the window while iconified (minimized)
The set_icon_name() method sets the name of the window when it is iconified to the value of name.
Windows may have a name used while minimized, distinct from the name they display in their titlebar. Most
of the time this is a bad idea from a user interface standpoint. But you can set such a name with this method, if
you like.

gtk.gdk.Window.set_group

 def set_group(leader)

leader : the group leader gtk.gdk.Window
The set_group() method sets the group leader for the window to the gtk.gdk.Window specified by
leader. By default, the group leader for all toplevel windows is set to a global window implicitly created by
PyGTK. With this method you can override this default. The group leader window allows the window
manager to distinguish all windows that belong to a single application. It may for example allow users to
minimize or unminimize all windows belonging to an application at once. You should only set a non−default
group window if your application pretends to be multiple applications. The group leader window may not be
changed after a window has been mapped (with the show() method for example).

gtk.gdk.Window.get_group

 def get_group()

Returns : the group leader gtk.gdk.Window for the window

Note

This method is available in PyGTK 2.4 and above.

The get_group() method returns the group leader gtk.gdk.Window for the window. See the
set_group() method for more information.

gtk.gdk.Window.set_decorations

 def set_decorations(decorations)

decorations : the decoration hint mask
The set_decorations() method sets the specified decorations for the window. "Decorations" are the
features the window manager adds to a toplevel gtk.gdk.Window. This method sets the traditional Motif
window manager hints that tell the window manager which decorations you would like your window to have.
Usually you should use the gtk.Window.set_decorated() method on a gtk.Window instead of using
this method directly. The value of decorations is the logical OR of the following:

gtk.gdk.DECOR_ALL All decorations should be applied.
gtk.gdk.DECOR_BORDER A frame should be drawn around the window.
gtk.gdk.DECOR_RESIZEH The frame should have resize handles.
gtk.gdk.DECOR_TITLE A titlebar should be placed above the window.
gtk.gdk.DECOR_MENU A button for opening a menu should be included.
gtk.gdk.DECOR_MINIMIZE A minimize button should be included.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.set_icon_name 132

gtk.gdk.DECOR_MAXIMIZE A maximize button should be included.
If gtk.gdk.DECOR_ALL is included in the mask, the other bits indicate which decorations should be turned
off. If gtk.gdk.DECOR_ALL is not included, then the other bits indicate which decorations should be
turned on. Most window managers honor a decorations hint of 0 to disable all decorations, but very few honor
all possible combinations of bits.

gtk.gdk.Window.get_decorations

 def get_decorations()

Returns : the window decorations
The get_decorations() method returns the decorations set on the window with the
set_decorations method.

gtk.gdk.Window.set_functions

 def set_functions(functions)

functions : the bitmask of operations to allow on the window
The set_functions() method sets the traditional Motif window manager hint for which operations the window
manager should allow on a toplevel window. However, few window managers do anything reliable or
interesting with this hint. Many ignore it entirely. The functions argument is the logical OR of the
following:

gtk.gdk.FUNC_ALL All functions should be offered.
gtk.gdk.FUNC_RESIZE The window should be resizable.
gtk.gdk.FUNC_MOVE The window should be movable.
gtk.gdk.FUNC_MINIMIZE The window should be minimizable.
gtk.gdk.FUNC_MAXIMIZE The window should be maximizable.
gtk.gdk.FUNC_CLOSE The window should be closeable.
If the bitmask includes gtk.gdk.FUNC_ALL, then the other bits indicate which functions to disable; if it
doesn't include gtk.gdk.FUNC_ALL, it indicates which functions to enable.

gtk.gdk.Window.iconify

 def iconify()

The iconify() method asks the window manager to iconify (minimize) the window. The window manager
may choose to ignore the request, but normally will honor it. Using the gtk.Window.iconify() method is
preferred, if you have a gtk.Window widget.

gtk.gdk.Window.deiconify

 def deiconify()

The deiconify() method asks the window manager to deiconify (unminimize) the window. On X11 the
window manager may choose to ignore the request to deiconify. Using the gtk.Window.deiconify()
method is preferred. Or better yet, use the gtk.Window.present(), which raises the window, focuses it,
unminimizes it, and puts it on the current desktop.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.set_decorations 133

gtk.gdk.Window.stick

 def stick()

The stick() method "pins" a window such that it's on all workspaces and does not scroll with viewports, for
window managers that have scrollable viewports. (When using a gtk.Window, the
gtk.Window.stick() method may be more useful.) On the X11 platform, this method depends on
window manager support, so may have no effect with many window managers. However, PyGTK will do the
best it can to convince the window manager to stick the window. For window managers that don't support this
operation, there's nothing you can do to force it to happen.

gtk.gdk.Window.unstick

 def unstick()

The unstick() method reverses the effect of the stick() method. See the stick() and
gtk.Window.unstick() methods for more information.

gtk.gdk.Window.maximize

 def maximize()

The maximize() method asks the window manager to maximize the window, if the window manager
supports this operation. Not all window managers support this, and some deliberately ignore it or don't have a
concept of "maximized"; so you can't rely on the maximization actually happening. But it will happen with
most standard window managers. If the window was already maximized, then this method does nothing.

gtk.gdk.Window.unmaximize

 def unmaximize()

The unmaximize() method asks the window manager to unmaximize the window, if the window manager
supports this operation. Not all window managers support this, and some deliberately ignore it or don't have a
concept of "maximized"; so you can't rely on the unmaximization actually happening. But it will happen with
most standard window managers. If the window wasn't maximized, then this method does nothing.

gtk.gdk.Window.fullscreen

 def fullscreen()

Note

This method is available in PyGTK 2.2 and above.

The fullscreen() method moves the window into fullscreen mode. This means the window covers the
entire screen and is above any panels or task bars.

If the window was already fullscreen, then this method does nothing.

On X11, asks the window manager to put the window in a fullscreen state, if the window manager supports
this operation. Not all window managers support this, and some deliberately ignore it or don't have a concept
of "fullscreen" but most standard window managers do.

PyGTK 2.0 Reference Manual

gtk.gdk.Window.stick 134

gtk.gdk.Window.unfullscreen

 def unfullscreen()

Note

This method is available in PyGTK 2.2 and above.

The unfullscreen() method moves the window out of fullscreen mode. If the window was not fullscreen,
does nothing.

On X11, asks the window manager to move the window out of the fullscreen state, if the window manager
supports this operation. Not all window managers support this, and some deliberately ignore it or don't have a
concept of "fullscreen" but most standard window managers do.

gtk.gdk.Window.register_dnd

 def register_dnd()

The register_dnd() method registers the window as a potential drop destination.

gtk.gdk.Window.begin_resize_drag

 def begin_resize_drag(edge, button, root_x, root_y, timestamp)

edge : the edge or corner from which the drag is started
button : the mouse button being used to drag
root_x : the root window X coordinate of the mouse click that began the drag
root_y : the root window Y coordinate of the mouse click that began the drag

timestamp : the timestamp of the mouse click that began the drag (use the
gtk.gdk.Event.get_time() method)

The begin_resize_drag() method begins a window resize operation (for a toplevel
gtk.gdk.Window) from the specified edge using the specified button starting at the location specified
by root_x and root_y. The value of edge must be one of:

gtk.gdk.WINDOW_EDGE_NORTH_WEST The top left corner.
gtk.gdk.WINDOW_EDGE_NORTH The top edge.
gtk.gdk.WINDOW_EDGE_NORTH_EAST The top right corner.
gtk.gdk.WINDOW_EDGE_WEST The left edge.
gtk.gdk.WINDOW_EDGE_EAST The right edge.
gtk.gdk.WINDOW_EDGE_SOUTH_WEST The lower left corner.
gtk.gdk.WINDOW_EDGE_SOUTH The lower edge.
gtk.gdk.WINDOW_EDGE_SOUTH_EAST The lower right corner.
You might use this method to implement a "window resize grip," for example; in fact the gtk.Statusbar
uses it. The method works best with window managers that support the Extended Window Manager Hints
spec (see http://www.freedesktop.org), but has a fallback implementation for other window managers.

gtk.gdk.Window.begin_move_drag

 def begin_move_drag(button, root_x, root_y, timestamp)

PyGTK 2.0 Reference Manual

gtk.gdk.Window.unfullscreen 135

button : the button being used to drag
root_x : the root window X coordinate of the mouse click that began the drag
root_y : the root window Y coordinate of the mouse click that began the drag
timestamp : the timestamp of the mouse click that began the drag
The begin_move_drag() method begins a window move operation (for a toplevel window) using the
specified button starting at the location specified by root_x and root_y. You might use this method to
implement a "window move grip," for example. The method works best with window managers that support
the Extended Window Manager Hints spec (see http://www.freedesktop.org), but has a fallback
implementation for other window managers.

gtk.gdk.Window.invalidate_rect

 def invalidate_rect(rect, invalidate_children)

rect : the rectangle to invalidate
invalidate_children : if TRUE invalidate child gtk.gdk.Window objects
The invalidate_rect() method invalidates the rectangular region specified by rect. If
invalidate_children is TRUE the child gtk.gdk.Window object of the window are also
invalidated.

gtk.gdk.Window.freeze_updates

 def freeze_updates()

The freeze_updates() method temporarily freezes the window such that it won't receive expose events.
The window will begin receiving expose events again when the thaw_updates() method is called. If the
freeze_updates() method has been called more than once, the thaw_updates() method must be called
an equal number of times to begin processing exposes.

gtk.gdk.Window.thaw_updates

 def thaw_updates()

The thaw_updates() method thaws a window frozen with the freeze_updates() method.

gtk.gdk.Window.process_updates

 def process_updates(update_children)

update_children : if TRUE process updates for child windows
The process_updates() method sends one or more expose events to the window. The areas in each
expose event will cover the entire update area for the window (see the invalidate_rect() method for
details). Normally PyGTK calls the gtk.gdk.window_process_all_updates() function on your
behalf, so there's no need to call this method unless you want to force expose events to be delivered
immediately and synchronously (vs. the usual case, where PyGTK delivers them in an idle handler).
Occasionally this is useful to produce nicer scrolling behavior, for example.

gtk.gdk.Window.set_accept_focus

 def set_accept_focus(accept_focus)

accept_focus : if TRUE, the window should receive input focus

PyGTK 2.0 Reference Manual

gtk.gdk.Window.begin_move_drag 136

Note

This method is available in PyGTK 2.4 and above.

The set_accept_focus() method sets the "accept_focus setting to the value of accept_focus. If
accept_focus is TRUE the window will accept focus; if FALSE hints to the desktop environment that the
window doesn't want to receive input focus.

On X, it is the responsibility of the window manager to interpret this hint. ICCCM−compliant window
manager usually respect it.

gtk.gdk.Window.enable_synchronized_configure

 def enable_synchronized_configure()

Note

This method is available in PyGTK 2.6 and above.

The enable_synchronized_configure() method indicates that the application will cooperate with
the window system in synchronizing the window repaint with the window manager during resizing operations.
After an application calls this method, it must call the configure_finished() method every time it has
finished all processing associated with a set of Configure events. Toplevel GTK+ windows automatically use
this protocol.

On X, calling this function makes window participate in the _NET_WM_SYNC_REQUEST window
manager protocol.

gtk.gdk.Window.configure_finished

 def configure_finished()

Note

This method is available in PyGTK 2.6 and above.

The configure_finished() method signals to the window system that the application has finished
handling all the Configure events it has received. Window Managers can use this to better synchronize the
frame repaint with the application. GTK+ applications will automatically call this function when appropriate.

This function can only be called if the enable_synchronized_configure() method was called
previously.

gtk.gdk.Window.set_focus_on_map

 def set_focus_on_map(focus_on_map)

focus_on_map : if TRUE the window should receive input focus when mapped.

Note

This method is available in PyGTK 2.6 and above.

PyGTK 2.0 Reference Manual

Note 137

The set_focus_on_map() method sets the a hint for the desktop environment to the value specified by
focus_on_map. If focus_on_map is TRUE the window sets a hint for the desktop environment
indicating that it would like to receive input focus when mapped.

On X, it is the responsibility of the window manager to interpret this hint. Window managers following the
freedesktop.org window manager extension specification should respect it.

Functions

gtk.gdk.window_foreign_new

 def gtk.gdk.window_foreign_new(anid)

anid : a native window system ID

Returns : the new gtk.gdk.Window wrapper for the native window or None if the window has
been destroyed.

The gtk.gdk.window_foreign_new() function wraps a native window specified by anid for the
default display in a gtk.gdk.Window. This may fail if the window has been destroyed. For example in the
X Window System backend, a native window handle is an Xlib XID.

gtk.gdk.window_foreign_new_for_display

 def gtk.gdk.window_foreign_new_for_display(display, anid)

display : a gtk.gdk.Display
anid : a native window system ID

Returns : the new gtk.gdk.Window wrapper for the native window or None if the window has been
destroyed.

Note

This function is available in PyGTK 2.2 and above.

The gtk.gdk.window_foreign_new_for_display() function wraps a native window specified by
anid for the gtk.gdk.Display specified by display in a gtk.gdk.Window. This may fail if the
window has been destroyed. For example in the X Window System backend, a native window handle is an
Xlib XID.

gtk.gdk.get_default_root_window

 def gtk.gdk.get_default_root_window()

Returns : the default root gtk.gdk.Window
The gtk.gdk.get_default_root_window() function returns the root gtk.gdk.Window (the parent
window that all other windows are inside) for the default display and screen.

gtk.gdk.window_get_toplevels

 def gtk.gdk.window_get_toplevels()

Returns : a list containing the toplevel gtk.gdk.Window object

PyGTK 2.0 Reference Manual

Note 138

http://www.freedesktio.org

The gtk.gdk.window_get_toplevels() function returns a list of all toplevel windows known to
PyGTK on the default screen. A toplevel window is a child of the root window (see the
gtk.gdk.get_default_root_window() function).

gtk.gdk.window_lookup

 def gtk.gdk.window_lookup(anid)

anid : a native window system ID
Returns : the gtk.gdk.Window wrapper for the native window or None if there is none.
The gtk.gdk.window_lookup() function looks up the gtk.gdk.Window that wraps the native
window handle specified by anid. For example in the X Window System backend, a native window handle
is an Xlib XID.

gtk.gdk.window_lookup_for_display

 def gtk.gdk.window_lookup_for_display(display, anid)

display : a gtk.gdk.Display
anid : a native window system ID
Returns : the gtk.gdk.Window wrapper for the native window or None if there is none.

Note

This function is available in PyGTK 2.2 and above.

The gtk.gdk.window_lookup_for_display() function looks up the gtk.gdk.Window that wraps
the native window handle specified by anid for the gtk.gdk.Display specified by display. For
example in the X Window System backend, a native window handle is an Xlib XID.

gtk.gdk.window_process_all_updates

 def gtk.gdk.window_process_all_updates()

The gtk.gdk.process_all_updates() function calls the process_updates() method for each
gtk.gdk.Window in the application.

gtk.gdk.gdk_window_set_debug_updates

 def gtk.gdk.gdk_window_set_debug_updates(setting)

setting : if TRUE enable update debugging
The gtk.gdk.gdk_set_debug_updates() function sets the update debugging flag to the value of
setting. If setting is TRUE, update debugging is enabled. With update debugging enabled, calls to the
invalidate_rect() method clear the invalidated rectangle of the screen to a noticeable color, and PyGTK
pauses for a short time before sending exposes to windows during the process_updates() method. The
net effect is that you can see the invalid region for each window and watch redraws as they occur. This allows
you to diagnose inefficiencies in your application.In essence, because the GDK rendering model prevents all
flicker, if you are redrawing the same region 400 times you may never notice, aside from noticing a speed
problem. Enabling update debugging causes PyGTK to flicker slowly and noticeably, so you can see exactly
what's being redrawn when, in what order.

PyGTK 2.0 Reference Manual

gtk.gdk.window_get_toplevels 139

The −−gtk−debug=updates command line option passed to PyGTK programs enables this debug option
at application startup time. That's usually more useful than calling
gtk.gdk.gdk_set_debug_updates() yourself, though you might want to use this function to enable
updates sometime after application startup time.

gtk.gdk.window_at_pointer

 def gtk.gdk.window_at_pointer()

Returns : a 3 tuple containing the gtk.gdk.Window and the pointer location in the window or None.

Note

This function is available in PyGTK 2.4 and above.

The gtk.gdk.window_at_pointer() function returns a 3−tuple containing the gtk.gdk.Window
underneath the mouse pointer, and the location of the pointer in the window. This function returns None if the
window under the mouse pointer is not known to GDK (if the window belongs to another application and a
gtk.gdk.Window hasn't been created for it with the gtk.gdk.window_foreign_new() function)

Note

For multi−head−aware widgets or applications use the
gtk.gdk.Display.get_window_at_pointer() method instead.

Prev Up Next
gtk.gdk.Visual Home gtk.gdk Functions

gtk.glade.XML
Prev The gtk.glade Class Reference Next

gtk.glade.XML

gtk.glade.XML � Allows dynamic loading of user interfaces from XML descriptions

Synopsis

class gtk.glade.XML(gobject.GObject):
gtk.glade.XML(fname, root="", domain="", typedict={})

 def signal_connect(handler_name, func)
 def signal_autoconnect(dict)
 def get_widget(name)
 def get_widget_prefix(name)
 def relative_file(filename)

Functions

 def gtk.glade.xml_new_from_buffer(buffer, size, root="", domain="", typedict={})
 def gtk.glade.get_widget_name(widget)
 def gtk.glade.get_widget_tree(widget)

Ancestry

+−− gobject.GObject
 +−− gtk.glade.XML

PyGTK 2.0 Reference Manual

gtk.gdk.gdk_window_set_debug_updates 140

Description

This object represents an `instantiation' of an XML interface description. When one of these objects is created,
the XML file is read, and the interface is created. The gtk.glade.XML object then provides an interface for
accessing the widgets in the interface by the names assigned to them inside the XML description.

The gtk.glade.XML object can also be used to connect handlers to the named signals in the description.
Libglade also provides an interface by which it can look up the signal handler names in the program's symbol
table and automatically connect as many handlers up as it can that way.

Constructor

gtk.glade.XML(fname, root="", domain="", typedict={})

fname : the XML file name
root : the widget node in fname to start building from (or "")
domain : the translation domain for the XML file (or "" for default)
typedict : A dictionary used to lookup types (or {} for default)
Returns : a new gtk.glade.XML object
Creates a new gtk.glade.XML object (and the corresponding widgets) from the XML file specified by
fname. Optionally it will only build the interface from the widget node specified by root (if it is not "").
This feature is useful if you only want to build say a toolbar or menu from the XML file, but not the window
it is embedded in. Note also that the XML parse tree is cached to speed up creating another
gtk.glade.XML object for the same file.

Methods

gtk.glade.XML.signal_connect

 def signal_connect(handler_name, func)

handler_name : the signal handler name
func : the signal handler function
In the glade interface descriptions, signal handlers are specified for widgets by name. The
signal_connect() method allows you to connect a callback specified by func to all signals in the
gtk.glade.XML file with the signal handler name specified by handler_name.

gtk.glade.XML.signal_autoconnect

 def signal_connect(dict)

dict : a mapping or an instance
The signal_autoconnect() method is a variation of the gtk.glade.XML.signal_connect method. It uses
Python's introspective features to look at the keys (if dict is a mapping) or attributes (if dict is an instance)
and tries to match them with the signal handler names given in the interface description. The callbacks
referenced by each matched key or attribute are connected to their matching signals. The argument is called
dict due to compatibility reasons since originally only the mapping interface was supported. The instance
variant was introduced in PyGTK 2.0.

PyGTK 2.0 Reference Manual

Ancestry 141

gtk.glade.XML.get_widget

 def get_widget(name)

name : the name of the widget
Returns : the widget matching the name or None
The get_widget() method returns a reference to the gtk.Widget specified by name in the interface
description. None is returned, if name doesn't specify a widget in the interface.

gtk.glade.XML.get_widget_prefix

 def get_widget_prefix(name)

name : the prefix the widget names or "" for all widgets
Returns : A list of widgets that match name as the start of their name or None
The get_widget_prefix() method returns a list of interface gtk.Widget objects that have names
prefixed by name. None is returned if no interface widget names match the prefix name.

gtk.glade.XML.relative_file

 def relative_file(filename)

filename : a relative file pathname
Returns : the absolute file pathname
The relative_file() method resolves the relative pathname specified by filename, using the directory
of the XML file as a base. If filename contains an absolute pathname, then the original file name is
returned.

Functions

gtk.glade.xml_new_from_buffer

 def gtk.image_new_from_buffer(buffer, size, root="", domain="", typedict={})

buffer : the string containing the XML buffer
size : size of the string
root : the widget node in fname to start building from (or "")
domain : the translation domain for the XML file (or "" for default)
typedict : A dictionary used to lookup types (or {} for default)
Returns : a new gtk.glade.XML object.
The gtk.glade.xml_new_from_buffer() function creates a new gtk.glade.XML object (and the
corresponding widgets) from the string specified by buffer. Optionally it will only build the interface from
the widget node specified by root (if it is not ""). This feature is useful if you only want to build say a
toolbar or menu from the XML document, but not the window it is embedded in.

gtk.glade.get_widget_name

 def gtk.glade.get_widget_name(widget)

widget : a gtk.Widget

PyGTK 2.0 Reference Manual

gtk.glade.XML.get_widget 142

Returns : the name of the widget
The gtk.glade.get_widget_name() function returns the name of the gtk.Widget specified by
widget that was generated by a gtk.glade.XML object.

gtk.glade.get_widget_tree

 def gtk.glade.get_widget_tree(widget)

widget : a gtk.Widget
Returns : the gtk.glade.XML object that built widget
This gtk.glade.get_widget_tree() function is used to get the gtk.glade.XML object that built
the gtk.Widget specified by widget.

Prev Up Next
The gtk.glade Class Reference Home The pango Class Reference

gobject.GObject
Prev The gobject Class Reference Next

gobject.GObject

gobject.GObject � the base class

Synopsis

class gobject.GObject:
 def get_property(property_name)
 def set_property(property_name, value)
 def freeze_notify()
 def notify(property_name)
 def thaw_notify()
 def get_data(key)
 def set_data(key, data)
 def connect(detailed_signal, handler)
 def connect_after(detailed_signal, handler)
 def connect_object(detailed_signal, handler)
 def connect_object_after(detailed_signal, handler)
 def disconnect(handler_id)
 def handler_disconnect(handler_id)
 def handler_is_connected(handler_id)
 def handler_block(handler_id)
 def handler_unblock(handler_id)
 def emit(detailed_signal)
 def stop_emission(detailed_signal)
 def emit_stop_by_name(detailed_signal)
 def chain()

Ancestry

+−− gobject.GObject

PyGTK 2.0 Reference Manual

gtk.glade.get_widget_name 143

Description

The GObject class is the base class providing the common attributes and methods for the PyGTK classes. The
GObject class is not a user interface widget class.

The GObject class provides the signal management methods, the object property access methods and the
object data management methods.

Attributes

"__doc__" Read The documentation for the object type. Uses "__gdoc__" if no specific
documentation set.

"__gdoc__" Read The generated documentation for the underlying GObject type.

"__gtype__" Read The underlying GObject type.

"__grefcount__" Read The reference count for the underlying GObject.

Methods

gobject.GObject.get_property

 def get_property(property_name)

property_name : a string containing the property name for the GObject
Returns : a Python object containing the value of the property
The get_property() method returns the value of the property specified by property_name or None if
there is no value associated with the property.

The TypeError exception is raised if the property name is not registered with the object class.

gobject.GObject.set_property

 def set_property(property_name, value)

property_name : a string containing the property name
value : a Python object containing the property value to be set
The set_property() method sets the property specified by property_name to the specified value.

The TypeError exception is raised if the property name is not registered with the object class or if the value
specified could not be converted to the property type.

gobject.GObject.freeze_notify

 def freeze_notify()

The freeze_notify() method freezes the object's property−changed notification queue so that "notify"
signals are blocked until the thaw_notify() method is called.

PyGTK 2.0 Reference Manual

Description 144

gobject.GObject.notify

 def notify(property_name)

property_name : a string containing a property name
The notify() method causes the "notify" signal for the property specified by property_name to be
emitted.

gobject.GObject.thaw_notify

 def thaw_notify()

The thaw_notify() method thaws the object's property−changed notification queue so that "notify" signals
are emitted.

gobject.GObject.get_data

 def get_data(key)

key : a string used as the key
Returns : a Python object containing the associated data
The get_data() method returns the Python object associated with the specified key or None if there is no
data associated with the key or if there is no key associated with the object.

gobject.GObject.set_data

 def set_data(key, data)

key : a string used as a key
data : a Python object that is the value to be associated with the key
The set_data() method associates the specified Python object (data) with key.

gobject.GObject.connect

 def connect(detailed_signal, handler, ...)

detailed_signal : a string containing the signal name
handler : a Python function or method object.
... : additional optional parameters
Returns : an integer identifier
The connect() method adds a function or method (handler)to the end of the list of signal handlers for the
named detailed_signal but before the default class signal handler. An optional set of parameters may
be specified after the handler parameter. These will all be passed to the signal handler when invoked.

For example if a function handler was connected to a signal using:

 handler_id = object.connect("signal_name", handler, arg1, arg2, arg3)

The handler should be defined as:

 def handler(object, arg1, arg2, arg3):

A method handler connected to a signal using:

PyGTK 2.0 Reference Manual

gobject.GObject.notify 145

 handler_id = object.connect("signal_name", self.handler, arg1, arg2)

requires an additional argument when defined:

 def handler(self, object, arg1, arg2)

A TypeError exception is raised if detailed_signal identifies a signal name that is not associated
with the object.

gobject.GObject.connect_after

 def connect_after(detailed_signal, handler, ...)

detailed_signal : a string containing the signal name
handler : a Python function or method object
... : additional optional parameters
Returns : an integer handler identifier
The connect_after() method is similar to the connect() method except that the handler is added to
the signal handler list after the default class signal handler. Otherwise the details of handler definition and
invocation are the same.

gobject.GObject.connect_object

 def connect_object(detailed_signal, handler, gobject)

detailed_signal : a string containing the signal name
handler : a Python function or method object
gobject : a GObject
Returns : an integer handler identifier
The connect_object() method is the same as the connect() method except that the handler is
invoked with the specified gobject in place of the object invoking the connect_object() method. For
example, a call with a function handler:

 handler_id = object("signal_name", handler, gobject)

will cause the handler to be invoked as:

 handler(gobject)

Likewise a method handler will be invoked as:

 self.handler(gobject)

This can be helpful in invoking PyGTK widget methods that require no arguments except the widget itself
(e.g. widget.destroy()) by using the class method as the handler. For example, a Button "clicked" signal
can be set up to invoke the Window destroy() method as:

 handler_id = button.connect_object("clicked", Window.destroy, window)

When the button is clicked the handler is invoked as:

 Window.destroy(window)

which is the same as:

 window.destroy()

Additional arguments may be passed to the handler as with the connect() method handler invocations.

PyGTK 2.0 Reference Manual

gobject.GObject.connect 146

gobject.GObject.connect_object_after

 def connect_object_after(detailed_signal, handler)

detailed_signal : a string containing the signal name
handler : a Python function or method object
gobject : a GObject
Returns : an integer handler identifier
The connect_object_after() method is similar to the connect_object() method except that the
handler is added to the signal handler list after the default class signal handler. Otherwise the details of
handler definition and invocation are the same.

gobject.GObject.disconnect

 def disconnect(handler_id)

handler_id : an integer handler identifier
The disconnect() method removes the signal handler with the specified handler_id from the list of
signal handlers for the object.

gobject.GObject.handler_disconnect

 def handler_disconnect(handler_id)

handler_id : an integer handler identifier
The handler_disconnect() method removes the signal handler with the specified handler_id from
the list of signal handlers for the object.

gobject.GObject.handler_is_connected

 def handler_is_connected(handler_id)

handler_id : an integer handler identifier
Returns : TRUE if the signal handler is connected to the object.
The handler_is_connected() method returns TRUE if the signal handler with the specified
handler_id is connected to the object.

gobject.GObject.handler_block

 def handler_block(handler_id)

handler_id : an integer handler identifier
The handler_block() method blocks the signal handler with the specified handler_id from being
invoked until it is unblocked.

gobject.GObject.handler_unblock

 def handler_unblock(handler_id)

handler_id : an integer handler identifier
The handler_unblock() method unblocks the signal handler with the specified handler_id thereby
allowing it to be invoked when the associated signal is emitted.

PyGTK 2.0 Reference Manual

gobject.GObject.connect_object_after 147

gobject.GObject.emit

 def emit(detailed_signal, ...)

detailed_signal : a string containing the signal name
... : additional parameters
Returns : a PyObject*
The emit() method causes the object to emit the signal specified by detailed_signal. The additional
parameters must match the number and type of the required signal handler parameters. In most cases no
additional parameters are needed. for example:

 button.emit("clicked")

is all that is required to emit the "clicked" signal for a button. The most common case requiring additional
parameters occurs when emitting an event signal; for example:

 button.emit("button_press_event", event)

gobject.GObject.stop_emission

 def stop_emission(detailed_signal)

detailed_signal : a string containing the signal name
The stop_emission() method stops the current emission of the signal specified by detailed_signal.
Any signal handlers in the list still to be run will not be invoked.

gobject.GObject.emit_stop_by_name

 def emit_stop_by_name(detailed_signal)

detailed_signal : a string containing the signal name
The emit_stop_by_name() method stops the current emission of the signal specified by
detailed_signal. Any signal handlers in the list still to be run will not be invoked.

gobject.GObject.chain

 def chain(...)

... : additional parameters
Returns : a Python object
The chain() method does something.

Prev Up Next
The gobject Class Reference Home gobject.GBoxed

gobject.GBoxed
Prev The gobject Class Reference Next

gobject.GBoxed

gobject.GBoxed � an object containing an opaque chunk of data

PyGTK 2.0 Reference Manual

gobject.GObject.emit 148

Synopsis

class gobject.GBoxed:
 def copy()

Ancestry

+−− gobject.GBoxed

Description

gobject.GBoxed is an abstract base class that encapsulates an opaque chunk of data to provide an
object−oriented interface and a type that is registered with the GLIB type system. A boxed type is registered
with functions that provide for the copying and freeing of the underlying data structure − this allows PyGTK
to encapsulate these as Python objects.

Methods

gobject.GBoxed.copy

 def copy()

Returns : a copy of the gobject.GBoxed object
The copy() method makes and returns a copy of the boxed object.

Prev Up Next
gobject.GObject Home gobject.GPointer

gobject.GInterface
Prev The gobject Class Reference Next

gobject.GInterface

gobject.GInterface � an object representing a GInterface

Synopsis

class gobject.GInterface:

Ancestry

+−− gobject.GInterface

Description

gobject.GInterface is an abstract base class that encapsulates a GInterface.

Prev Up Next

PyGTK 2.0 Reference Manual

Synopsis 149

gobject.GPointer Home gobject.MainContext
gobject.GPointer

Prev The gobject Class Reference Next

gobject.GPointer

gobject.GPointer � an object containing a completely opaque chunk of data

Synopsis

class gobject.GPointer:

Ancestry

+−− gobject.GPointer

Description

gobject.GPointer is an abstract base class that encapsulates an opaque chunk of data and registers it
with the GLIB type system. A pointer type has no methods and generic ways of copying and freeing the data.
It shouldn't be used in PyGTK.

Prev Up Next
gobject.GBoxed Home gobject.GInterface

gobject.MainContext
Prev The gobject Class Reference Next

gobject.MainContext

gobject.MainContext � an object representing a set of event sources to be handled in a
gobject.MainLoop.

Synopsis

class gobject.MainContext:
gobject.MainContext()

 def iteration(may_block)
 def pending()

Ancestry

+−− gobject.MainContext

Description

A gobject.MainContext represents a set of event sources that can be run in a single thread. File
descriptors (plain files, pipes or sockets) and timeouts are the standard event sources for GTK and PyGTK

PyGTK 2.0 Reference Manual

Description 150

though others can be added. Each event source is assigned a priority. The default priority,
gobject.PRIORITY_DEFAULT, is 0. Values less than 0 denote higher priorities. Values greater than 0
denote lower priorities. Events from high priority sources are always processed before events from lower
priority sources. Single iterations of a gobject.MainContext can be run with the iteration()
method.

Constructor

gobject.MainContext()

Returns : a new gobject.MainContext object.
Creates a new gobject.MainContext object.

Methods

gobject.MainContext.iteration

 def iteration()

may_block : if TRUE the call may block waiting for an event.
Returns : TRUE if events were dispatched.
The iteration() method runs a single iteration. This involves:

checking to see if any associated event sources are ready to be processed;•
then if no events sources are ready and may_block is TRUE, waiting for a source to become ready;•
and finally, dispatching the highest priority events sources that are ready•

Note that even when may_block is TRUE, it is still possible for iteration() to return FALSE, since the
the wait may be interrupted for other reasons than an event source becoming ready.

gobject.MainContext.pending

 def pending()

Returns : TRUE if events are pending.
The pending() method checks if any associated sources have pending events.

Prev Up Next
gobject.GInterface Home gobject.MainLoop

gobject.MainLoop
Prev The gobject Class Reference Next

gobject.MainLoop

gobject.MainLoop � an object representing the main event loop of a PyGTK application.

PyGTK 2.0 Reference Manual

Description 151

Synopsis

class gobject.MainLoop:
gobject.MainLoop(context=None, is_running=0)

 def get_context()
 def is_running()
 def quit()
 def run()

Ancestry

+−− gobject.MainLoop

Description

gobject.MainLoop represents a main event loop. A gobject.MainLoop is created with the
gobject.MainLoop() constructor. After adding the initial event sources, the run() method is called. This
continuously checks for new events from each of the event sources and dispatches them. Finally, the
processing of an event from one of the sources leads to a call to the quit() method to exit the main loop, and
the run() method returns.

It is possible to create new instances of gobject.MainLoop recursively. This is often used in PyGTK
applications when showing modal dialog boxes. Note that event sources are associated with a particular
gobject.MainContext, and will be checked and dispatched for all main loops associated with that
gobject.MainContext.

PyGTK contains wrappers of some of these functions, e.g. the gtk.main(), gtk.main_quit() and
gtk.events_pending() functions.

Constructor

gobject.MainLoop(context=None, is_running=None)

context : a gobject.MainContext or None to use the default context.

is_running : if TRUE indicates that the loop is running. This is not very important since calling the run()
method will set this to TRUE anyway.

Returns : a new gobject.MainLoop object.
Creates a new gobject.MainLoop object.

Methods

gobject.MainLoop.get_context

 def get_context()

Returns : the gobject.MainContext the mainloop is associated with
The get_context() method returns the gobject.MainContext that the mainloop was created with.

PyGTK 2.0 Reference Manual

Synopsis 152

gobject.MainLoop.is_running

 def is_running()

Returns : TRUE if the mainloop is currently being run.
The is_running() method checks to see if the mainloop is currently being run via the run() method.

gobject.MainLoop.quit

 def quit()

The quit() method stops the mainloop from running. Any subsequent calls to the run() method will return
immediately.

gobject.MainLoop.run

 def run()

The run() method runs a mainloop until the quit() method is called. If this is called for the thread of the
loop's gobject.MainContext, it will process events from the loop, otherwise it will simply wait.

Prev Up Next
gobject.MainContext Home gobject Functions

gtk.AboutDialog
Prev The gtk Class Reference Next

gtk.AboutDialog

gtk.AboutDialog � popup window displaying information about an application (new in PyGTK 2.6)

Synopsis

class gtk.AboutDialog(gtk.Dialog):
gtk.AboutDialog()

 def get_name()
 def set_name(name)
 def get_version()
 def set_version(version)
 def get_copyright()
 def set_copyright(copyright)
 def get_comments()
 def set_comments(comments)
 def get_license()
 def set_license(license)
 def get_website()
 def set_website(website)
 def get_website_label()
 def set_website_label(website_label)
 def get_authors()
 def set_authors(authors)
 def get_documenters()
 def set_documenters(documenters)
 def get_artists()
 def set_artists(artists)
 def get_translator_credits()

PyGTK 2.0 Reference Manual

gobject.MainLoop.is_running 153

 def set_translator_credits(translator_credits)
 def get_logo()
 def set_logo(logo)
 def get_logo_icon_name()
 def set_logo_icon_name(icon_name)

Functions

 def gtk.about_dialog_set_email_hook(func, data)
 def gtk.about_dialog_set_url_hook(func, data)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Dialog
 +−−gtk.AboutDialog

Properties

"artists" Read−Write The list of people who have contributed artwork to the
program.

"authors" Read−Write The list of authors of the program.
"comments" Read−Write A string containing comments about the program.
"copyright" Read−Write A string containing copyright information for the

program.
"documenters" Read−Write The list of people documenting the program.
"license" Read−Write A string containing the license of the program.
"logo" Read−Write A logo for the about box. If this is not set, it defaults to

the default window icon list..
"logo−icon−name" Read−Write The name of an icon to use as the logo for the about box.
"name" Read−Write The name of the program. If this is not set, it defaults to

g_get_application_name().
"translator−credits" Read−Write Credits to the translators. This string should be marked

as translatable.
"version" Read−Write A string containing the version of the program.
"website" Read−Write The URL for the link to the website of the program.
"website−label" Read−Write The label for the link to the website of the program. If

this is not set, it defaults to the URL.

Style Properties

"link−color" Read The color of hyperlinks.

Description

PyGTK 2.0 Reference Manual

Synopsis 154

Note

This widget is available in PyGTK 2.6 and above.

The gtk.AboutDialog offers a simple way to display information about a program like its logo, name,
copyright, website and license. It is also possible to give credits to the authors, documenters, translators and
artists who have worked on the program. An about dialog is typically opened when the user selects the
HelpAbout menu. All parts of the dialog are optional.

Constructor

gtk.AboutDialog()

Returns : a new gtk.AboutDialog

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new gtk.AboutDialog with default property values.

Methods

gtk.AboutDialog.get_name

 def get_name()

Returns : The program name or None.

Note

This method is available in PyGTK 2.6 and above.

The get_name() method returns the value of the "name" property which is the program name displayed in
the about dialog. get_name() returns None if the name is not set.

gtk.AboutDialog.set_name

 def set_name(name)

name : a string containing the program name or None to use the default name.

Note

This method is available in PyGTK 2.6 and above.

The set_name() method sets the "name" property to the string contained in name. The "name" property is
used as the program name in the about dialog. If name is None, it defaults to g_get_application_name().

gtk.AboutDialog.get_version

 def get_version()

PyGTK 2.0 Reference Manual

Note 155

Returns : The version string or None.

Note

This method is available in PyGTK 2.6 and above.

The get_version() method returns the string contained in the "version" property.

gtk.AboutDialog.set_version

 def set_version(version)

version : the version string or None

Note

This method is available in PyGTK 2.6 and above.

The set_version() method sets the "version" property to the string in version.

gtk.AboutDialog.get_copyright

 def get_copyright()

Returns : the copyright string or None.

Note

This method is available in PyGTK 2.6 and above.

The get_copyright() method returns the string contained in the "copyright" property.

gtk.AboutDialog.set_copyright

 def set_copyright(copyright)

copyright : a string containing the copyright notice or None.

Note

This method is available in PyGTK 2.6 and above.

The set_copyright() method sets the "copyright" property to the string contained in copyright. If
copyright is None, the copyright notice is hidden.

gtk.AboutDialog.get_comments

 def get_comments()

Returns : a string containing the comments or None

Note

This method is available in PyGTK 2.6 and above.

The get_comments() method returns the string contained in the "comments" property.

PyGTK 2.0 Reference Manual

gtk.AboutDialog.get_version 156

gtk.AboutDialog.set_comments

 def set_comments(comments)

comments : a string containing the comments or None.

Note

This method is available in PyGTK 2.6 and above.

The set_comments() method sets the "comments" property to the string contained in comments. If
comments is None the comments label is hidden.

gtk.AboutDialog.get_license

 def get_license()

Returns : a string containing the license information or None

Note

This method is available in PyGTK 2.6 and above.

The get_license() method returns the string contained in the "license" property.

gtk.AboutDialog.set_license

 def set_license(license)

license :

Note

This method is available in PyGTK 2.6 and above.

The set_license() method sets the "license" property to the string contained in license. If license is
None the license button is hidden.

gtk.AboutDialog.get_website

 def get_website()

Returns : a string containing the website URL or None

Note

This method is available in PyGTK 2.6 and above.

The get_website() method returns the string contained in the "website" property. The website should be a
URL.

gtk.AboutDialog.set_website

 def set_website(website)

website : a string containing the URL of the program's website or None

PyGTK 2.0 Reference Manual

gtk.AboutDialog.set_comments 157

Note

This method is available in PyGTK 2.6 and above.

The set_website() method sets the "website" property to the string contained in website. The string
should be a valid URL.

gtk.AboutDialog.get_website_label

 def get_website_label()

Returns : a string containing the website link label

Note

This method is available in PyGTK 2.6 and above.

The get_website_label() method returns the contents of the "website_label" property. The website
label is used if the url hook has been set using the gtk.about_dialog_set_url_hook() function.

gtk.AboutDialog.set_website_label

 def set_website_label(website_label)

website_label :

Note

This method is available in PyGTK 2.6 and above.

The set_website_label() method sets the "website_label" property to the string contained in
website_label if the url hook has been set using the gtk.about_dialog_set_url_hook()
function.

gtk.AboutDialog.get_authors

 def get_authors()

Returns : a list containing the names of the program authors

Note

This method is available in PyGTK 2.6 and above.

The get_authors() method returns the contents of the "authors" property. The "authors" property contains
a list of the names of the authors of the program.

gtk.AboutDialog.set_authors

 def set_authors(authors)

authors : a list containing the names of the program authors.

PyGTK 2.0 Reference Manual

Note 158

Note

This method is available in PyGTK 2.6 and above.

The set_authors() method sets the "authors" property to the list contained in authors. The author
names are displayed in the authors tab of the secondary credits dialog. set_authors() method will show
the Credits button if it is not displayed.

gtk.AboutDialog.get_documenters

 def get_documenters()

Returns : a list of the program documenters

Note

This method is available in PyGTK 2.6 and above.

The get_documenters() method returns the contents of the "documenters" property which contains a list
of the names of the program documenters.

gtk.AboutDialog.set_documenters

 def set_documenters(documenters)

documenters : a list of the names of the program documenters

Note

This method is available in PyGTK 2.6 and above.

The set_documenters() method sets the "documenters" property to the contents of documenters. The
documenter names are displayed in the documenters tab of the secondary credits dialog.
set_documenters() method will show the Credits button if it is not displayed.

gtk.AboutDialog.get_artists

 def get_artists()

Returns : a list of the names of the program artists

Note

This method is available in PyGTK 2.6 and above.

The get_artists() method returns the contents of the "artists" property which contains a list of the names
of the program artists.

gtk.AboutDialog.set_artists

 def set_artists(artists)

artists : a list of the names of the program artists

PyGTK 2.0 Reference Manual

Note 159

Note

This method is available in PyGTK 2.6 and above.

The set_artists() method sets the "artists" property to the contents of artists. The artist names are
displayed in the artists tab of the secondary credits dialog. set_artists() method will show the Credits
button if it is not displayed.

gtk.AboutDialog.get_translator_credits

 def get_translator_credits()

Returns : a string containing the translator credits

Note

This method is available in PyGTK 2.6 and above.

The get_translator_credits() method returns the contents of the "translator−credits" property which
contains the credits for the current translation.

gtk.AboutDialog.set_translator_credits

 def set_translator_credits(translator_credits)

translator_credits : a string containing the current translation credits

Note

This method is available in PyGTK 2.6 and above.

The set_translator_credits() method sets the "translator_credits" property to the value of
translator_credits. The translator credits are displayed in the translators tab of the secondary credits
dialog.

The intended use for this string is to display the translator of the language which is currently used in the user
interface. Using the gettext() function, a simple way to achieve that is to mark the string for translation.

It is a good idea to use the customary msgid "translator−credits" for this purpose, since translators will already
know the purpose of that msgid, and since gtk.AboutDialog will detect if "translator−credits" is
untranslated and hide the tab.

gtk.AboutDialog.get_logo

 def get_logo()

Returns : the gtk.gdk.Pixbuf used as the logo

Note

This method is available in PyGTK 2.6 and above.

The get_logo() method returns the contents of the "logo" property which contains a gtk.gdk.Pixbuf
that is used as the logo.

PyGTK 2.0 Reference Manual

Note 160

gtk.AboutDialog.set_logo

 def set_logo(logo)

logo : a gtk.gdk.Pixbuf to be used as the logo

Note

This method is available in PyGTK 2.6 and above.

The set_logo() method sets the "logo" property to the gtk.gdk.Pixbuf contained in logo. If logo is
None, the default window icon set with the gtk.window_set_default_icon_list() function will be
used.

gtk.AboutDialog.get_logo_icon_name

 def get_logo_icon_name()

Returns : the name of the icon used as the logo

Note

This method is available in PyGTK 2.6 and above.

The get_logo_name() method returns the contents of the "logo−icon−name" property which contains the
name of the icon used as the logo.

gtk.AboutDialog.set_logo_icon_name

 def set_logo_icon_name(icon_name)

icon_name : the name of an icon or None

Note

This method is available in PyGTK 2.6 and above.

The set_logo_icon_name() method sets the "logo−icon−name" property to the value of icon_name. If
icon_name is None, the default window icon set with the gtk.window_set_default_icon_list()
function will be used.

Functions

gtk.about_dialog_set_email_hook

 def gtk.about_dialog_set_email_hook(func, data)

func : a function to call when an email link is activated.
data : data to pass to func

Note

This function is available in PyGTK 2.6 and above.

PyGTK 2.0 Reference Manual

gtk.AboutDialog.set_logo 161

The gtk.about_dialog_set_email_hook function installs a global function (specified by func) to
be called whenever the user activates an email link in an about dialog.

gtk.about_dialog_set_url_hook

 def gtk.about_dialog_set_url_hook(func, data)

func : a function to call when a URL link is activated.
data : data to pass to func

Note

This function is available in PyGTK 2.6 and above.

The gtk.about_dialog_set_url_hook function installs a global function (specified by func) to be
called whenever the user activates a URL link in an about dialog.

Prev Up Next
The gtk Class Reference Home gtk.AccelGroup

gtk.AccelGroup
Prev The gtk Class Reference Next

gtk.AccelGroup

gtk.AccelGroup � a group of accelerators for a Window hierarchy

Synopsis

class gtk.AccelGroup(gobject.GObject):
gtk.AccelGroup()

 def lock()
 def unlock()
 def connect(accel_key, accel_mods, accel_flags, callback)
 def connect_group(accel_key, accel_mods, accel_flags, callback)
 def connect_by_path(accel_path, callback)
 def disconnect_key(accel_key, accel_mods)

Functions

 def gtk.accelerator_valid(keyval, modifiers)
 def gtk.accelerator_parse(accelerator)
 def gtk.accelerator_name(accelerator_key, accelerator_mods)
 def gtk.accelerator_set_default_mod_mask(default_mod_mask)
 def gtk.accelerator_get_default_mod_mask()
 def gtk.accelerator_get_label(accelerator_key, accelerator_mods)
 def gtk.accel_map_add_entry(accel_path, accel_key, accel_mods)
 def gtk.accel_map_lookup_entry(accel_path)
 def gtk.accel_map_change_entry(accel_path, accel_key, accel_mods, replace)
 def gtk.accel_map_load(file_name)
 def gtk.accel_map_save(file_name)
 def gtk.accel_map_load_fd(fd)
 def gtk.accel_map_save_fd(fd)
 def gtk.accel_map_lock_path(accel_path)
 def gtk.accel_map_unlock_path(accel_path)
 def gtk.accel_map_add_filter(filter_pattern)
 def gtk.accel_groups_from_object(object)

PyGTK 2.0 Reference Manual

Note 162

Ancestry

+−− gobject.GObject
 +−− gtk.AccelGroup

Signal Prototypes

"accel−activate" def callback(accelgroup, acceleratable, accel_key,
accel_mods, user_param1, ...)

"accel−changed" def callback(accelgroup, accel_key, accel_mods, closure,
user_param1, ...)

Description

A gtk.AccelGroup object groups all the accelerators for the associated window hierarchy (either
gtk.Window (or a descendant) or gtk.MenuShell (or a descendant)). Once the gtk.AccelGroup is
associated with a window or menu (using gtk.Window.add_accel_group() or
gtk.Menu.set_accel_group()), accelerators can be added to the widget or one of its children by using
gtk.Widget.add_accelerator() . Accelerators can also be added by using a gtk.ItemFactory.

Note that accelerators are different from mnemonics. Accelerators are shortcuts for activating a menu item;
they appear alongside the menu item they're a shortcut for. For example Ctrl+Q might appear alongside the
Files−>Quit menu item. Mnemonics are shortcuts for GUI elements such as text entries or buttons; they
appear as underlined characters. Of course, menu items can have both accelerators and mnemonics.

Constructor

gtk.AccelGroup()

Returns : an AccelGroup object
Creates a new gtk.AccelGroup object.

Methods

gtk.AccelGroup.lock

 def lock()

The lock() method locks the accelerator group. preventing its accelerators from being changed during
runtime. Refer to gtk.accel_map_change_entry() about runtime accelerator changes.

If called more than once, the accelerator group remains locked until gtk.AccelGroup.unlock() has
been called an equivalent number of times.

gtk.AccelGroup.unlock

 def unlock()

The unlock() method undoes the last call to gtk.AccelGroup.lock() for this accelerator group.

PyGTK 2.0 Reference Manual

Ancestry 163

gtk.AccelGroup.connect_group

 def connect(accel_key, accel_mods, accel_flags, callback)

accel_key : key value of the accelerator
accel_mods : modifier combination of the accelerator
accel_flags : a flag mask to configure this accelerator
callback : a function or method to be executed upon accelerator activation

Note

This method is available in PyGTK 2.2 as connect() and was changed in PyGTK 2.4 and above to
connect_group() to avoid conflict with the gobject.GObject.connect() method.

The connect_group() method installs an accelerator in the accelerator group. When the accelerator group
is being activated, the function (or method) specified by callback will be invoked if the accelerator key
and modifier key match those specified by accel_key and accel_mods.

The value of modifier is a combination of the GDK Modifier Constants. accel_flags is a combination
of gtk.ACCEL_VISIBLE and gtk.ACCEL_LOCKED.

The callback function is defined as:

 def callback(accel_group, acceleratable, keyval, modifier)

where accel_group is the accelerator group, acceleratable is the object that the accel_group is
attached to (e.g. a gtk.Window), keyval is the accelerator key and modifier is the key modifier.
callback returns TRUE if the accelerator was handled by callback.

Note

Due to implementation details, a single function or method can only be connected to one accelerator group.

gtk.AccelGroup.connect_by_path

 def connect_by_path(accel_path, callback)

accel_path : path used for determining key and modifiers.
callback : function or method to be executed upon accelerator activation

Note

This method is available in PyGTK 2.4 and above

The connect_by_path() method installs an accelerator in the accelerator group, using an accelerator path
to look up the appropriate key and modifiers (see the function gtk.accel_map_add_entry()). When the
accelerator group is being activated, the function (or method) specified by callback will be invoked if the
accel_key and accel_mods that cause the activation match the key and modifiers for the accelerator
path specified by accel_path.

The callback function is defined as:

 def callback(accel_group, acceleratable, keyval, modifier)

where accel_group is the accelerator group, acceleratable is the object that the accel_group is
attached to (e.g. a gtk.Window), keyval is the accelerator key and modifier is the key modifier.
callback returns TRUE if the accelerator was handled by callback.

PyGTK 2.0 Reference Manual

gtk.AccelGroup.connect_group 164

gtk.AccelGroup.disconnect_key

 def disconnect_key(accel_key, accel_mods)

accel_key : key value of the accelerator
accel_mods : modifier combination of the accelerator
Returns : TRUE if there was an accelerator which was removed, FALSE otherwise
The disconnect() method removes a previously installed accelerator specified by accel_key and
accel_mods from the accelerator group.

Functions

gtk.accelerator_valid

 def gtk.accelerator_valid(keyval, modifiers)

keyval : a key value
modifiers : a modifier mask
Returns : TRUE if the accelerator is valid
The gtk.accelerator_valid() function returns TRUE if the specified keyval and modifiers
constitute a valid keyboard accelerator. For example, the ord('a') keyval plus
gtk.gdk.CONTROL_MASK is valid − this is a Control+a accelerator. The value of modifiers is a
combination of the GDK Modifier Constants.

gtk.accelerator_parse

 def gtk.accelerator_parse(accelerator)

accelerator : a string representing an accelerator
Returns : a 2−tuple containing the keyval and modifier mask of the accelerator
The gtk.accelerator_parse() function parses the specified accelerator string and returns a
2−tuple containing the keyval and modifier mask corresponding to accelerator. The format looks like
"<Control>a" or "<Shift><Alt>F1" or "<Release>z" (the last one is for key release). The parser is fairly
liberal and allows lower or upper case, and also abbreviations such as "<Ctl>" and "<Ctrl>". If the parse fails,
the tuple values will both be 0 (zero). See the gtk.accelerator_valid() function for more details.

gtk.accelerator_name

 def gtk.accelerator_name()

accelerator_key : a key value
accelerator_mods : a modifier mask
Returns : a string representing the accelerator or None if not a valid accelerator
The gtk.accelerator_name() function converts the accelerator keyval and modifier mask (specified by
accelerator_key and accelerator_mods) into a string parseable by the
gtk.accelerator_parse() function. For example, if you pass in ord('q') and
gtk.gdk.CONTROL_MASK, this function returns "<Control>q".

PyGTK 2.0 Reference Manual

gtk.AccelGroup.disconnect_key 165

gtk.accelerator_set_default_mod_mask

 def gtk.accelerator_set_default_mod_mask(default_mod_mask)

default_mod_mask : the new default accelerator modifier mask
The gtk.accelerator_set_default_mod_mask() function sets the modifiers (specified by
default_mod_mask) that will be considered significant for keyboard accelerators. The default mod mask
is gtk.gdk.CONTROL_MASK | gtk.gdk.SHIFT_MASK | gtk.gdk.MOD1_MASK, that is, Control,
Shift, and Alt. Other modifiers will by default be ignored by gtk.AccelGroup. You must include at least
the three default modifiers in any value you pass to this function. The default mod mask should be changed on
application startup, before using any accelerator groups. The value of default_mod_mask is a
combination of the GDK Modifier Constants.

gtk.accelerator_get_default_mod_mask

 def gtk.accelerator_get_default_mod_mask()

Returns : the default accelerator modifier mask
The gtk.accelerator_get_default_mod_mask() function returns the default accelerator modifier
mask as set by the gtk.accelerator_set_default_mod_mask() function. See the
gtk.accelerator_set_default_mod_mask() function for more detail on modifier masks.

gtk.accelerator_get_label

 def gtk.accelerator_get_label(accelerator_key, accelerator_mods)

accelerator_key : a key value
accelerator_mods : a modifier mask
Returns : a string representing the accelerator

Note

This function is available in PyGTK 2.6 and above.

The gtk.accelerator_get_label() function converts the accelerator keyval and modifier mask
specified by accelerator_key and accelerator_mods respectively into a string which can be used
to represent the accelerator to the user. The value of accelerator_mods is a combination of the GDK
Modifier Constants.

gtk.accel_map_add_entry

 def gtk.accel_map_add_entry(accel_path, accel_key, accel_mods)

accel_path : a valid accelerator path
accel_key : the accelerator key
accel_mods : the accelerator modifiers

Note

This function is available in PyGTK 2.4 and above.

The gtk.accel_map_add_entry() function registers a new accelerator specified by accel_key and
accel_mods with the global accelerator map. The accelerator will be associated with the accelerator path
specified by accel_path. This function should only be called once per accel_path with the canonical

PyGTK 2.0 Reference Manual

gtk.accelerator_set_default_mod_mask 166

accel_key and accel_mods for this path. To change the accelerator during runtime programatically, use
the gtk.accel_map_change_entry() function. The accelerator path must consist of
"<WINDOWTYPE>/Category1/Category2/.../Action", where <WINDOWTYPE> should be a unique
application−specific identifier, that corresponds to the kind of window the accelerator is being used in, e.g.
"Gimp−Image", "Abiword−Document" or "Gnumeric−Settings". The Category1/.../Action portion is most
appropriately chosen by the action the accelerator triggers, i.e. for accelerators on menu items, choose the
item's menu path, e.g. "File/Save As", "Image/View/Zoom" or "Edit/Select All". So a full valid accelerator
path may look like: "<Gimp−Toolbox>/File/Dialogs/Tool Options...".

gtk.accel_map_lookup_entry

 def gtk.accel_map_lookup_entry(accel_path)

accel_path : a valid accelerator path

Returns : a 2−tuple containing the keyval and modifier mask corresponding to accel_path or
None if not valid

The gtk.accel_map_lookup_entry() function returns a 2−tuple containing the keyval and modifier
mask corresponding to the accelerator path specified by accel_path or None if accel_path is not a
valid accelerator path.

The accelerator path must consist of "<WINDOWTYPE>/Category1/Category2/.../Action", where
<WINDOWTYPE> should be a unique application−specific identifier, that corresponds to the kind of window
the accelerator is being used in, e.g. "Gimp−Image", "Abiword−Document" or "Gnumeric−Settings". The
Category1/.../Action portion is most appropriately chosen by the action the accelerator triggers, i.e. for
accelerators on menu items, choose the item's menu path, e.g. "File/Save As", "Image/View/Zoom" or
"Edit/Select All". So a full valid accelerator path may look like: "<Gimp−Toolbox>/File/Dialogs/Tool
Options...".

gtk.accel_map_change_entry

 def gtk.accel_map_change_entry(accel_path, accel_key, accel_mods, replace)

accel_path : a valid accelerator path
accel_key : the new accelerator key
accel_mods : the new accelerator modifiers
replace : if TRUE other accelerators may be deleted if conflicting
Returns : TRUE if the accelerator could be changed
The gtk.accel_map_change_entry() function changes the keyval and modifier mask currently
associated with the accelerator path specified by accel_path to the values specified by accel_key and
accel_mods respectively. Due to conflicts with other accelerators, a change may not always be possible. If
replace is TRUE the other accelerators may be deleted to resolve such conflicts. A change will only occur
if all conflicts could be resolved (which might not be the case if conflicting accelerators are locked).
Successful changes are indicated by a TRUE return value.

gtk.accel_map_load

 def gtk.accel_map_load(file_name)

file_name : the file containing accelerator specifications
The gtk.accel_map_load() function parses the file (specified by file_name) previously saved with
the gtk.accel_map_save() function for accelerator specifications, and propagates them accordingly.

PyGTK 2.0 Reference Manual

Note 167

gtk.accel_map_save

 def gtk.accel_map_save(file_name)

file_name : the file to save the accelerator specifications in
The gtk.accel_map_save() function saves current accelerator specifications (accelerator path, key and
modifiers) to the file specified by file_name. The file is written in a format suitable to be read back in by
the gtk.accel_map_load() function.

gtk.accel_map_load_fd

 def gtk.accel_map_load_fd(fd)

fd : a Python file object or an integer file descriptor
The gtk.accel_map_load_fd() function loads the accelerator map from the open Python file object
specified by fd. fd may also be an integer file descriptor. See the gtk.accel_map_load() function.

gtk.accel_map_save_fd

 def gtk.accel_map_save_fd(fd)

fd : a Python file object or an integer file descriptor
The gtk.accel_map_save_fd() function saves the accelerator map into the open Python file object
specified by fd. fd may also be an integer file descriptor. See the gtk.accel_map_save() function.

gtk.accel_map_lock_path

 def gtk.accel_map_lock_path(accel_path)

accel_path : a valid accelerator path

Note

This function is available in PyGTK 2.4 and above.

The gtk.accel_map_lock_path() function locks the accelerator path specified by accel_path. If
the accelerator map doesn't yet contain an entry for accel_path, a new one is created.

Locking an accelerator path prevents its accelerator from being changed during runtime. A locked accelerator
path can be unlocked by the gtk.accel_map_unlock_path() function. Refer to the
gtk.accel_map_change_entry() function for information about runtime accelerator changes.

If called more than once, accel_path remains locked until the gtk.accel_map_unlock_path()
function has been called an equivalent number of times.

Note that locking of individual accelerator paths is independent from locking the gtk.AccelGroup
containing them. For runtime accelerator changes to be possible both the accelerator path and its
gtk.AccelGroup have to be unlocked.

gtk.accel_map_unlock_path

 def gtk.accel_map_unlock_path(accel_path)

accel_path : a valid accelerator path

PyGTK 2.0 Reference Manual

gtk.accel_map_save 168

Note

This function is available in PyGTK 2.4 and above.

The gtk.accel_map_unlock_path() function undoes the last call to the
gtk.accel_map_lock_path() function on the accelerator path specified by accel_path. Refer to the
gtk.accel_map_lock_path() function for information about accelerator path locking.

gtk.accel_map_add_filter

 def gtk.accel_map_add_filter(filter_pattern)

filter_pattern : a glob−style pattern
Returns :
The gtk.accel_map_add_filter() function adds the filter pattern specified by filter_pattern to
the global list of accel path filters. The pattern specified by filter_pattern contain '*' and '?' wildcards
with similar semantics as the Python glob.py and fnmatch.py modules: '*' matches an arbitrary,
possibly empty, string, '?' matches an arbitrary character. Note that in contrast to glob.py, the '/' character
can be matched by the wildcards, there are no '[...]' character ranges and '*' and '?' can not be escaped to
include them literally in a pattern. This function is intended for PyGTK modules that create their own menus,
but don't want them to be saved into the applications accelerator map dump.

gtk.accel_groups_from_object

 def gtk.accel_groups_from_object(object)

object : a GObject usually a gtk.Window

Note

This function is available in PyGTK 2.4 and above.

The gtk.accel_groups_from_object() function returns a list of all the gtk.AccelGroup objects
attached to the object specified by object.

Signals

The "accel−activate" gtk.AccelGroup Signal

 def callback(accelgroup, acceleratable, accel_key, accel_mods, user_param1, ...)

accelgroup : the accelgroup that received the signal
acceleratable : the object that the accelerator is associated with
accel_key : the accelerator key value
accel_mods : the accelerator modifiers

user_param1 : the first user parameter (if any) specified with the gobject.GObject.connect()
method

... : additional user parameters (if any)
Returns : TRUE if the accelerator was handled
The "accel−activate" signal is emitted when an accelerator is activated.

PyGTK 2.0 Reference Manual

Note 169

The "accel−changed" gtk.AccelGroup Signal

 def callback(accelgroup, accel_key, accel_mods, closure, user_param1, ...)

accelgroup : the accelgroup that received the signal
accel_key : the key value of the accelerator
accel_mods : the modifiers of the accelerator
closure : the closure of the accelerator
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "accel−changed" signal is emitted when an accelerator is added or removed from an accelerator group.

Prev Up Next
gtk.AboutDialog Home gtk.AccelLabel

gtk.AccelLabel
Prev The gtk Class Reference Next

gtk.AccelLabel

gtk.AccelLabel � a label which displays accelerator info to the right of the text

Synopsis

class gtk.AccelLabel(gtk.Label):
gtk.AccelLabel(string)

 def accelerator_width()
 def get_accel_widget()
 def get_accel_width()
 def set_accel_widget(accel_widget)
 def refetch()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Misc
 +−− gtk.Label
 +−− gtk.AccelLabel

Properties

"accel−closure" Read−Write The closure to be monitored for accelerator changes
"accel−widget" Read−Write The widget associated with the accelerator label

Description

The gtk.AccelLabel widget is a subclass of gtk.Label that displays an accelerator string to the right
of the label text, e.g. Ctrl+S. It is commonly used in menus to show the keyboard shortcuts for commands.
The accelerator string to display is not set explicitly; instead, the gtk.AccelLabel displays the
accelerators which have been added to the associated widget. A widget is associated with the accelerator label

PyGTK 2.0 Reference Manual

The "accel−changed" gtk.AccelGroup Signal 170

by calling set_accel_widget().

For example, a gtk.MenuItem widget may have an accelerator added to emit the "activate" signal when the
Ctrl+S key combination is pressed. A gtk.AccelLabel is created and added to the gtk.MenuItem, and
set_accel_widget() is called with the gtk.MenuItem as the first argument. The gtk.AccelLabel
will now display Ctrl+S after its label.

Creating a gtk.MenuItem with the gtk.MenuItem() function (or one of the similar functions
gtk.CheckMenuItem() and gtk.RadioMenuItem()) and specifying a label, automatically adds a
gtk.AccelLabel to the gtk.MenuItem and calls set_accel_widget() to set it up for you.

A gtk.AccelLabel will only display accelerators which have gtk.ACCEL_VISIBLE set. A
gtk.AccelLabel can display multiple accelerators and even signal names, though it is almost always used
to display just one accelerator.

The following code fragment creates a simple menu item with an accelerator and enables the display of the
accelerator key string in the menu item label:

 # Create an accelgroup and add it to the window
 accel_group = gtk.AccelGroup()
 window.add_accel_group(accel_group)

 # Create the menu item
 save_item = gtk.MenuItem("Save")
 save_item.show()
 menu.add(save_item)

 # Now add the accelerator to the menu item. Note that since we created
 # the menu item with a label the AccelLabel is automatically setup to
 # display the accelerators.
 save_item.add_accelerator("activate", accel_group, ord("S"),
 gtk.gdk.CONTROL_MASK, gtk.ACCEL_VISIBLE)

Constructor

gtk.AccelLabel(string)

string : the label string
Returns : a new gtk.AccelLabel object
gtk.AccelLabel() creates a new gtk.AccelLabel object. The string parameter specifies the text to
be displayed by the label. The accelerator text is automatically added by the associated widget.

Methods

gtk.AccelLabel.accelerator_width

 def accelerator_width()

Returns : the width in pixels needed
The accelerator_width() method returns the width in pixels needed to display the accelerator(s). It is
used by menus to align all of the gtk.MenuItem widgets, and isn't usually needed by applications.

PyGTK 2.0 Reference Manual

Description 171

Note

accelerator_width() is deprecated − use the get_accel_width() method instead.

gtk.AccelLabel.get_accel_widget

 def get_accel_widget()

Returns : the widget associated with the accelerator label, or None.
The get_accel_widget() method retrieves the widget associated with this accelerator label. See
gtk.AccelLabel.set_accel_widget().

gtk.AccelLabel.get_accel_width

 def get_accel_width()

Returns : the width in pixels needed
The get_accel_width() method returns the width in pixels needed to display the accelerator(s). It is used
by menus to align all of the gtk.MenuItem widgets, and isn't usually needed by applications.

gtk.AccelLabel.set_accel_widget

 def set_accel_widget(accel_widget)

accel_widget : the widget to be associated.
The set_accel_widget() method associates the accelerator label with the widget specified by
accel_widget.

gtk.AccelLabel.refetch

 def refetch()

Returns : FALSE
The refetch() method recreates the accelerator label string holding the accelerator information when the
accelerator is changed. The size of the string is also recalculated.

This method is not usually needed by applications since the accelerator label string is automatically updated
whenever accelerators are added or removed from the associated widget.

Prev Up Next
gtk.AccelGroup Home gtk.Accessible

gtk.Accessible
Prev The gtk Class Reference Next

gtk.Accessible

gtk.Accessible � accessibility support for widgets.

PyGTK 2.0 Reference Manual

Note 172

Synopsis

class gtk.Accessible(atk.Object):
 def connect_widget_destroyed()

Ancestry

+−− gobject.GObject
 +−− atk.Object
 +−− gtk.Accessible

Description

The gtk.Accessible class is an abstract base class.

Methods

gtk.Accessible.connect_widget_destroyed

 def connect_widget_destroyed()

This method specifies the callback function to be called when the widget corresponding to a
gtk.Accessible is destroyed.

Prev Up Next
gtk.AccelLabel Home gtk.Action

gtk.Action
Prev The gtk Class Reference Next

gtk.Action

gtk.Action � an action which can be triggered by a menu or toolbar item (new in PyGTK 2.4)

Synopsis

class gtk.Action(gobject.GObject):
gtk.Action(name, label, tooltip, stock_id)

 def get_name()
 def is_sensitive()
 def get_sensitive()
 def is_visible()
 def get_visible()
 def activate()
 def create_icon(icon_size)
 def create_menu_item()
 def create_tool_item()
 def connect_proxy(proxy)
 def disconnect_proxy(proxy)
 def get_proxies()
 def connect_accelerator()
 def disconnect_accelerator()
 def block_activate_from(proxy)

PyGTK 2.0 Reference Manual

Synopsis 173

 def unblock_activate_from(proxy)
 def set_accel_path(accel_path)
 def set_accel_group(accel_group)
 def set_sensitive(sensitive)
 def set_visible(visible)

Ancestry

+−− gobject.GObject
 +−− gtk.Action

Properties

"action−group" Read−Write The gtk.ActionGroup this gtk.Action is associated
with, or None (for internal use).

"hide−if−empty" Read−Write If TRUE, empty menu proxies for this action are hidden.
"is−important" Read−Write If TRUE, gtk.ToolItem proxies for this action show text

in gtk.TOOLBAR_BOTH_HORIZ mode.
"label" Read−Write The label used for menu items and buttons that activate this

action.
"name" Read−Write−Construct

Only
A unique name for the action.

"sensitive" Read−Write If TRUE, the action is enabled.
"short−label" Read−Write A shorter label that may be used on toolbar buttons.
"stock−id" Read−Write The stock icon displayed in widgets representing this action.
"tooltip" Read−Write A tooltip for this action.
"visible" Read−Write If TRUE, the action is visible.
"visible−horizontal" Read−Write If TRUE, the toolbar item is visible when the toolbar is in a

horizontal orientation.
"visible−vertical" Read−Write If TRUE, the toolbar item is visible when the toolbar is in a

vertical orientation.

Signal Prototypes

"activate" def callback(action, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.4 and above.

A gtk.Action represents operations that the user can perform, along with some information how it should
be presented in the interface. Each gtk.Action provides methods to create icons, menu items and toolbar
items representing itself.

As well as the callback that is called when the action gets activated, the following also gets associated with the
action:

a name (not translated, for path lookup)•

PyGTK 2.0 Reference Manual

Synopsis 174

a label (translated, for display)•
an accelerator•
whether the label indicates a stock id•
a tooltip (optional, translated)•
a toolbar label (optional, shorter than label)•

The action will also have some state information:

visible (shown/hidden)•
sensitive (enabled/disabled)•

Apart from regular actions, there are toggle actions, which can be toggled between two states and radio
actions, where only one in a group can be in the "active" state. Other actions can be implemented as
gtk.Action subclasses.

Each gtk.Action can have one or more proxy menu items, toolbar buttons or other proxy widgets. Proxies
mirror the state of the action (text label, tooltip, icon, visible, sensitive, etc), and should change when the
action's state changes. When the proxy is activated, it should activate its action.

Constructor

gtk.Action(name, label, tooltip, stock_id)

name : a unique name for the gtk.Action
label : the label displayed in menu items and on buttons
tooltip : a tooltip for the action
stock_id : the stock icon to display in widgets representing the action
Returns : a new gtk.Action

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.Action object. To add the action to a gtk.ActionGroup and set the accelerator for
the action, call the gtk.ActionGroup.add_action_with_accel().

Methods

gtk.Action.get_name

 def get_name()

Returns : the name of the action.

Note

This method is available in PyGTK 2.4 and above.

The get_name() method returns the value of the "name" property containing the name of the action.

PyGTK 2.0 Reference Manual

Note 175

gtk.Action.is_sensitive

 def is_sensitive()

Returns : TRUE if the action and its associated action group are both sensitive.

Note

This method is available in PyGTK 2.4 and above.

The is_sensitive() method returns TRUE if the action is effectively sensitive i.e. both the gtk.Action
and its associated gtk.ActionGroup are sensitive.

gtk.Action.get_sensitive

 def get_sensitive()

Returns : TRUE if the action itself is sensitive.

Note

This method is available in PyGTK 2.4 and above.

The get_sensitive() method returns the value of the "sensitive" property. If "sensitive" is TRUE the
action itself is sensitive. Note that this doesn't necessarily mean effective sensitivity. See the
is_sensitive() method for more information.

gtk.Action.is_visible

 def is_visible()

Returns : TRUE if the action and its associated action group are both visible.

Note

This method is available in PyGTK 2.4 and above.

The is_visible() method returns TRUE if the action is effectively visible i.e. both the gtk.Action and
its associated gtk.ActionGroup as visible.

gtk.Action.get_visible

 def get_visible()

Returns : TRUE if the action itself is visible.

Note

This method is available in PyGTK 2.4 and above.

The get_visible() method returns the value of the "visible" property. If "visible" is TRUE the
gtk.Action itself is visible. Note that this doesn't necessarily mean effective visibility. See the
is_visible() method for more information.

PyGTK 2.0 Reference Manual

gtk.Action.is_sensitive 176

gtk.Action.activate

 def activate()

Note

This method is available in PyGTK 2.4 and above.

The activate() method emits the "activate" signal on the gtk.Action, if it isn't insensitive. This gets
called by the proxy widgets when they get activated. It can also be used to manually activate an action.

gtk.Action.create_icon

 def create_icon(icon_size)

icon_size : the size of the icon that should be created.
Returns : a widget that displays the icon for this action.

Note

This method is available in PyGTK 2.4 and above.

The create_icon() method creates and returns a gtk.Image with the size specified by size from the
icon contained in the "stock−id" property if it exists. The value of size must be one of:

gtk.ICON_SIZE_MENU•
gtk.ICON_SIZE_SMALL_TOOLBAR•
gtk.ICON_SIZE_LARGE_TOOLBAR•
gtk.ICON_SIZE_BUTTON•
gtk.ICON_SIZE_DND•
gtk.ICON_SIZE_DIALOG•

This method is intended for use by gtk.Action implementations to create icons displayed in the proxy
widgets.

gtk.Action.create_menu_item

 def create_menu_item()

Returns : a menu item connected to the action.

Note

This method is available in PyGTK 2.4 and above.

The create_menu_item() method creates and returns a menu item widget that proxies for the
gtk.Action.

gtk.Action.create_tool_item

 def create_tool_item()

Returns : a tool item connected to the action.

PyGTK 2.0 Reference Manual

gtk.Action.activate 177

Note

This method is available in PyGTK 2.4 and above.

The create_tool_item() method creates and returns a tool item widget that proxies for the
gtk.Action.

gtk.Action.connect_proxy

 def connect_proxy(proxy)

proxy : the proxy widget

Note

This method is available in PyGTK 2.4 and above.

The connect_proxy() method connects the widget specified by proxy to the gtk.Action object as a
proxy. This method synchronizes various properties of the gtk.Action with the widget (such as label text,
icon, tooltip, etc), and attaches a callback so that the gtk.Action is activated when proxy is.

If proxy is already connected to another gtk.Action, it is disconnected first. The gtk.Action should
be added to a gtk.ActionGroup before calling this method.

gtk.Action.disconnect_proxy

 def disconnect_proxy(proxy)

proxy : the proxy widget

Note

This method is available in PyGTK 2.4 and above.

The disconnect_proxy() method disconnects the widget specified by proxy from the gtk.Action.
This method does not destroy the widget. The gtk.Action should be added to a gtk.ActionGroup
before calling this method.

gtk.Action.get_proxies

 def get_proxies()

Returns : a list of proxy widgets.

Note

This method is available in PyGTK 2.4 and above.

The get_proxies() method returns a list containing the proxy widgets associated with the gtk.Action.

gtk.Action.connect_accelerator

 def connect_accelerator()

PyGTK 2.0 Reference Manual

Note 178

Note

This method is available in PyGTK 2.4 and above.

The connect_accelerator() method installs the accelerator for the gtk.Action if it has an associated
accel path and gtk.AccelGroup. See the set_accel_path() and the set_accel_group()
methods.

Since multiple proxies may independently trigger the installation of the accelerator, the gtk.Action counts
the number of times this method has been called and doesn't remove the accelerator until
disconnect_accelerator() has been called as many times.

gtk.Action.disconnect_accelerator

 def disconnect_accelerator()

Note

This method is available in PyGTK 2.4 and above.

The disconnect_accelerator() method undoes the effect of one call to the
connect_accelerator() method.

gtk.Action.block_activate_from

 def block_activate_from(proxy)

proxy : a proxy widget

Note

This method is available in PyGTK 2.4 and above.

The block_activate_from() method disables calls to the activate() method by signals on the
widget specified by proxy. This is used to break notification loops for things like check or radio actions.

This method is intended for use by gtk.Action implementations.

gtk.Action.unblock_activate_from

 def unblock_activate_from(proxy)

proxy : a proxy widget

Note

This method is available in PyGTK 2.4 and above.

The unblock_activate_from() method re−enables calls to the activate() method by signals on the
widget specified by proxy. This undoes the blocking done by the block_activate_from() method.

This method is intended for use by gtk.Action implementations.

PyGTK 2.0 Reference Manual

Note 179

gtk.Action.set_accel_path

 def set_accel_path(accel_path)

accel_path : the accelerator path

Note

This method is available in PyGTK 2.4 and above.

The sel_accel_path() method sets the accel path for the action to the value of accel_path. All proxy
widgets associated with the action will have this accel path, so that their accelerators are consistent.

gtk.Action.set_accel_group

 def set_accel_group(accel_group)

accel_group : a gtk.AccelGroup or None

Note

This method is available in PyGTK 2.4 and above.

The set_accel_group() method sets the gtk.AccelGroup specified by accel_group as the
accelerator group for the gtk.Action.

gtk.Action.set_sensitive

 def set_sensitive(sensitive)

sensitive : if TRUE make the action sensitive

Note

This method is available in PyGTK 2.6 and above.

The set_sensitive() method sets the "sensitive" property to the value of sensitive. Note that this
doesn't necessarily set the effective sensitivity. See the is_sensitive() method for more information.

gtk.Action.set_visible

 def set_visible(visible)

visible : if TRUE make the action visible

Note

This method is available in PyGTK 2.6 and above.

The set_visible() method sets the "visible" property to the value of visible. Note that this doesn't
necessarily set the effective visibility. See the is_visible() method for more information.

Signals

PyGTK 2.0 Reference Manual

gtk.Action.set_accel_path 180

The "activate" gtk.Action Signal

 def callback(action, user_param1, ...)

action : the gtk.Action that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "activate" signal is emitted when action is activated.

Prev Up Next
gtk.Accessible Home gtk.ActionGroup

gtk.ActionGroup
Prev The gtk Class Reference Next

gtk.ActionGroup

gtk.ActionGroup � a group of actions (new in PyGTK 2.4)

Synopsis

class gtk.ActionGroup(gobject.GObject):
gtk.ActionGroup(name)

 def get_name()
 def get_sensitive()
 def set_sensitive(sensitive)
 def get_visible()
 def set_visible(visible)
 def get_action(action_name)
 def list_actions()
 def add_action(action)
 def add_action_with_accel(action, accelerator)
 def remove_action(action)
 def add_actions(entries, user_data=None)
 def add_toggle_actions(entries, user_data=None)
 def add_radio_actions(entries, value=0, on_change=None, user_data=None)
 def set_translation_domain(domain)
 def translate_string(string)

Ancestry

+−− gobject.GObject
 +−− gtk.ActionGroup

Properties

"name" Read−Write A name for the action group.
"sensitive" Read−Write If TRUE, the action group is enabled.
"visible" Read−Write If TRUE, the action group is visible.

PyGTK 2.0 Reference Manual

The "activate" gtk.Action Signal 181

Signal Prototypes

"connect−proxy" def callback(actiongroup, action, proxy, user_param1, ...)

"disconnect−proxy" def callback(actiongroup, action, proxy, user_param1, ...)

"post−activate" def callback(actiongroup, action, user_param1, ...)

"pre−activate" def callback(actiongroup, action, user_param1, ...)

Description

Note

This object is available in PyGTK 2.4 and above.

gtk.Action objects are organized into gtk.ActionGroup objects. An action group is basically a map
from names to gtk.Action objects.

All actions that would make sense to use in a particular context should be in a single action group. Multiple
action groups may be used for a particular user interface. In fact, it is expected that most nontrivial
applications will make use of multiple groups. For example, in an application that can edit multiple
documents, there could be one group holding global actions (e.g. quit, about, new), and one group per
document holding actions that act on that document (e.g. save, cut/copy/paste, etc). Each window's menus
would be constructed from a combination of the two action groups.

Accelerators are handled by the GTK+ accelerator map. All actions are assigned an accelerator path (which
normally has the form "<Actions>/group−name/action−name") and a shortcut is associated with this
accelerator path. All menuitems and toolitems take on this accelerator path. The GTK+ accelerator map code
makes sure that the correct shortcut is displayed next to the menu item.

Constructor

gtk.ActionGroup(name)

name : the name of the action group.
Returns : the new gtk.ActionGroup

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.ActionGroup object with the name specified by name. The name of the action group
is used when associating keybindings with the actions.

Methods

gtk.ActionGroup.get_name

 def get_name()

Returns : the name of the action group.

PyGTK 2.0 Reference Manual

Signal Prototypes 182

Note

This method is available in PyGTK 2.4 and above.

The get_name() method returns the value of the "name" property that contains the name of the action group.

gtk.ActionGroup.get_sensitive

 def get_sensitive()

Returns : TRUE if the group is sensitive.

Note

This method is available in PyGTK 2.4 and above.

The get_sensitive() method returns the value of the "sensitive" property. If "sensitive" is TRUE the
group is enabled. The constituent actions can only be logically sensitive (see the
gtk.Action.is_sensitive() method) if they are sensitive (see the
gtk.Action.get_sensitive() method) and their group is sensitive.

gtk.ActionGroup.set_sensitive

 def set_sensitive(sensitive)

sensitive : if TRUE, the group is enabled

Note

This method is available in PyGTK 2.4 and above.

The set_sensitive() method sets the "sensitive" property to the value of sensitive. If sensitive
is TRUE, the gtk.ActionGroup is enabled.

gtk.ActionGroup.get_visible

 def get_visible()

Returns : TRUE if the group is visible.

Note

This method is available in PyGTK 2.4 and above.

The get_visible() method returns the value of the "visible" property. If "visible" is TRUE, the group is
visible. The constituent actions can only be logically visible (see the gtk.Action.is_visible()
method) if they are visible (see the gtk.Action.get_visible() method) and their group is visible.

gtk.ActionGroup.set_visible

 def set_visible(visible)

visible : if TRUE, the group will be visible

PyGTK 2.0 Reference Manual

Note 183

Note

This method is available in PyGTK 2.4 and above.

The set_visible() method sets the "visible" property to the value of visible. If visible is TRUE the
gtk.ActionGroup will be visible.

gtk.ActionGroup.get_action

 def get_action(action_name)

action_name : the name of the action
Returns : the action, or None if no action with that name exists.

Note

This method is available in PyGTK 2.4 and above.

The get_action() method retrieves the action in the action group with the name specified by
action_name.

gtk.ActionGroup.list_actions

 def list_actions()

Returns : a list of the action objects in the action group

Note

This method is available in PyGTK 2.4 and above.

The list_action() method returns a list containing the gtk.Action objects in the action group.

gtk.ActionGroup.add_action

 def add_action(action)

action : an action

Note

This method is available in PyGTK 2.4 and above.

The add_action() method adds the gtk.Action specified by action to the action group.

gtk.ActionGroup.add_action_with_accel

 def add_action_with_accel(action, accelerator)

action : the action to add

accelerator : the accelerator for the action, in the format understood by the
gtk.accelerator_parse() function, or None to use the stock accelerator

PyGTK 2.0 Reference Manual

Note 184

Note

This method is available in PyGTK 2.4 and above.

The add_action_with_accel() method adds a gtk.Action specified by action to the action group
and sets up the accelerator specified by accelerator.

If accelerator is None, this method attempts to use the accelerator associated with the "stock_id"
property of the gtk.Action.

Accel paths are set to <Actions>/group−name/action−name.

gtk.ActionGroup.remove_action

 def remove_action(action)

action : a gtk.Action

Note

This method is available in PyGTK 2.4 and above.

The remove_action() method removes the gtk.Action specified by action from the action group.

gtk.ActionGroup.add_actions

 def add_actions(entries, user_data=None)

entries : a list or tuple of action descriptions
user_data : data to pass to the action callbacks

Note

This method is available in PyGTK 2.4 and above.

The add_actions() method is a convenience method that creates a number of gtk.Action objects based
on the information in the list of action entry tuples contained in entries and adds them to the action group.
The entry tuples can vary in size from one to six items with the following information:

The name of the action. Must be specified.•
The stock id for the action. Optional with a default value of None if a label is specified.•
The label for the action. This field should typically be marked for translation, see the
set_translation_domain() method. Optional with a default value of None if a stock id is
specified.

•

The accelerator for the action, in the format understood by the gtk.accelerator_parse()
function. Optional with a default value of None.

•

The tooltip for the action. This field should typically be marked for translation, see the
set_translation_domain() method. Optional with a default value of None.

•

The callback function invoked when the action is activated. Optional with a default value of None.•

The "activate" signals of the actions are connected to the callbacks and their accel paths are set to
<Actions>/group−name/action−name.

PyGTK 2.0 Reference Manual

Note 185

gtk.ActionGroup.add_toggle_actions

 def add_toggle_actions(entries, user_data=None)

entries : a list or tuple of toggle action entry tuples
user_data : data to pass to the action callbacks

Note

This method is available in PyGTK 2.4 and above.

The add_toggle_actions() method is a convenience method that creates a number of
gtk.ToggleAction objects based on the information in the list of action entry tuples contained in
entries and adds them to the action group. The toggle action entry tuples can vary in size from one to six
items with the following information:

The name of the action. Must be specified.•
The stock id for the action. Optional with a default value of None if a label is specified.•
The label for the action. This field should typically be marked for translation, see the
set_translation_domain() method. Optional with a default value of None if a stock id is
specified.

•

The accelerator for the action, in the format understood by the gtk.accelerator_parse()
function. Optional with a default value of None.

•

The tooltip for the action. This field should typically be marked for translation, see the
set_translation_domain() method. Optional with a default value of None.

•

The callback function invoked when the action is activated. Optional with a default value of None.•
A flag indicating whether the toggle action is active. Optional with a default value of FALSE.•

The "activate" signals of the actions are connected to the callbacks and their accel paths are set to
<Actions>/group−name/action−name.

gtk.ActionGroup.add_radio_actions

 def add_radio_actions(entries, value=0, on_change=None, user_data=None)

entries : a list or tuple of radio action entry tuples
value : the value of the radio action to set active
on_change : a callback to connect to the "changed" signal of the first radio action
user_data : data to pass to the on_change callback

Note

This method is available in PyGTK 2.4 and above.

The add_radio_actions() method is a convenience method that creates a number of
gtk.RadioAction objects based on the information in the list of action entry tuples contained in
entries and adds them to the action group. The entry tuples can vary in size from one to six items with the
following information:

The name of the action. Must be specified.•
The stock id for the action. Optional with a default value of None if a label is specified.•
The label for the action. This field should typically be marked for translation, see the
set_translation_domain() method. Optional with a default value of None if a stock id is
specified.

•

PyGTK 2.0 Reference Manual

gtk.ActionGroup.add_toggle_actions 186

The accelerator for the action, in the format understood by the gtk.accelerator_parse()
function. Optional with a default value of None.

•

The tooltip for the action. This field should typically be marked for translation, see the
set_translation_domain() method. Optional with a default value of None.

•

The value to set on the radio action. Optional with a default value of 0. Should be specified in
applications.

•

The value parameter specifies the radio action that should be set active. The "changed" signal of the first
radio action is connected to the on_change callback (if specified and not None) and the accel paths of the
actions are set to <Actions>/group−name/action−name.

gtk.ActionGroup.set_translation_domain

 def set_translation_domain(domain)

domain : the translation domain to use for dgettext() calls

Note

This method is available in PyGTK 2.4 and above.

The set_translation_domain() method sets the translation domain to the string specified by domain
and uses dgettext() for translating the label and tooltip strings of the actions added by the
add_actions(), add_toggle_actions() and add_radio_actions() methods.

gtk.ActionGroup.translate_string

 def translate_string(string)

string : the string to be translated
Returns : the translation of string

Note

This method is available in PyGTK 2.6 and above.

The translate_string() method translates the string specified by string using the specified
translate_func(). This is mainly intended for language bindings.

Signals

The "connect−proxy" gtk.ActionGroup Signal

 def callback(actiongroup, action, proxy, user_param1, ...)

actiongroup : the actiongroup that received the signal
action : the action that is associated with proxy
proxy : the proxy widget associated with action
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

PyGTK 2.0 Reference Manual

Note 187

Note

This signal is available in PyGTK 2.4 and above.

The "connect−proxy" signal is emitted when the widget specified by proxy is connected to the
gtk.Action specified by action.

The "disconnect−proxy" gtk.ActionGroup Signal

 def callback(actiongroup, action, proxy, user_param1, ...)

actiongroup : the actiongroup that received the signal
action : the action that is associated with proxy
proxy : the proxy widget associated with action
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "disconnect−proxy" signal is emitted when the widget specified by proxy is disconnected from the
gtk.Action specified by action.

The "post−activate" gtk.ActionGroup Signal

 def callback(actiongroup, action, user_param1, ...)

actiongroup : the actiongroup that received the signal
action : the action that is being activated
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "post−activate" signal is emitted after the gtk.Action specified by action has been activated.

The "pre−activate" gtk.ActionGroup Signal

 def callback(actiongroup, action, user_param1, ...)

actiongroup : the actiongroup that received the signal
action : the action that is being activated
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "pre−activate" signal is emitted before the gtk.Action specified by action is activated.

PyGTK 2.0 Reference Manual

Note 188

Prev Up Next
gtk.Action Home gtk.Adjustment

gtk.Adjustment
Prev The gtk Class Reference Next

gtk.Adjustment

gtk.Adjustment � an object representing an adjustable bounded value

Synopsis

class gtk.Adjustment(gtk.Object):
gtk.Adjustment(value=0, lower=0, upper=0, step_incr=0, page_incr=0, page_size=0)

 def set_all(value, lower, upper, step_increment, page_increment, page_size)
 def changed()
 def value_changed()
 def clamp_page(lower, upper)
 def get_value()
 def set_value(value)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Adjustment

Signal Prototypes

"changed" def callback(adjustment, user_param1, ...)

"value−changed" def callback(adjustment, user_param1, ...)

Properties

Note

These properties are only available in GTK+ 2.4 and above. The GTK+ version is contained in the 3−tuple
gtk.gtk_version.

"lower" Read−Write The minimum value of the adjustment. (float)
"page−increment" Read−Write The page increment of the adjustment. (float)
"page−size" Read−Write The page size of the adjustment. (float)
"step−increment" Read−Write The step increment of the adjustment. (float)
"upper" Read−Write The maximum value of the adjustment. (float)
"value" Read−Write The value of the adjustment. (float)

PyGTK 2.0 Reference Manual

Note 189

Attributes

"value" Read−Write the current value (float)
"lower" Read−Write the minimum value (float)
"upper" Read−Write the maximum value (float)
"step_increment" Read−Write the increment to use to make minor changes to the value. In a

gtk.Scrollbar this increment is used when the mouse is clicked on the
arrows at the top and bottom of the scrollbar, to scroll by a small amount.
(float)

"page_increment" Read−Write the increment to use to make major changes to the value. In a
gtk.Scrollbar this increment is used when the mouse is clicked in the
trough, to scroll by a large amount. (float)

"page_size" Read−Write a widget specific size. In a gtk.Scrollbar this is the size of the area
which is currently visible. (float)

Description

The gtk.Adjustment object contains a value which has an associated lower and upper bound, together
with step and page increments, and a page size. It is used in conjunction with several PyGTK widgets,
including gtk.SpinButton, gtk.Viewport, and gtk.Range (which is a base class for
gtk.HScrollbar, gtk.VScrollbar, gtk.HScale, and gtk.VScale).

A gtk.Adjustment can be shared by multiple widgets. The gtk.Adjustment object does not update
the value itself. Instead it is left up to the associated widget(s) that use the gtk.Adjustment to control the
value.

The widget using the gtk.Adjustment typically calls the value_changed() or changed() methods
after changing the value or its bounds. This results in the emission of the "value_changed" or "changed" signal
respectively.

A gtk.Adjustment object contains several attributes that provide access to its value and bounds:

value•
lower•
upper•
step_increment•
page_increment•
page_size•

The attribute values can be retrieved and set similar to:

 adjustment.upper = 25.0
 lower = adjustment.lower

Constructor

gtk.Adjustment(value=0, lower=0, upper=0, step_incr=0, page_incr=0, page_size=0)

value : the initial value.
lower : the minimum value.
upper : the maximum value.
step_incr : the step increment.

PyGTK 2.0 Reference Manual

Attributes 190

page_incr : the page increment.
page_size : the page size.
Returns : a new gtk.Adjustment object
gtk.Adjustment() creates a new gtk.Adjustment object with the specified attributes. Any attributes
not specified are set to 0.0 by default.

Methods

gtk.Adjustment.set_all

 def set_all(value, lower, upper, step_increment, page_increment, page_size)

value : the new value.
lower : the new minimum value.
upper : the new maximum value.
step_increment : the new step increment.
page_increment : the new page increment.
page_size : the new page size.
The set_all() method sets the attributes of the adjustment to the specified values.

gtk.Adjustment.changed

 def changed()

The changed() method emits a "changed" signal from the adjustment. This must typically be called if any of
the adjustment attributes other than value has changed so that the widget(s) using the adjustment can reflect
the changes. Applications usually will not need to use this method since setting the attributes directly will
automatically invoke this method.

gtk.Adjustment.value_changed

 def value_changed()

The value_changed() method emits a "value_changed" signal from the adjustment. This must typically be
called after the value attribute of the adjustment has changed. Applications usually will not need to use this
method since setting the attribute directly will automatically invoke this method as will using the
set_value() method.

gtk.Adjustment.clamp_page

 def clamp_page(lower, upper)

lower : the lower value
upper : the upper value
The clamp_page() method updates the adjustment value to ensure that the range between lower and
upper is in the current page (i.e. between value and value + page_size). If the range is larger than the page
size, then only the start of it will be in the current page. A "changed" signal will be emitted if the value is
changed.

PyGTK 2.0 Reference Manual

Constructor 191

gtk.Adjustment.get_value

 def get_value()

Returns : The current value of the adjustment.
The get_value() method gets the current value of the adjustment.

gtk.Adjustment.set_value

 def set_value(value)

value : the new value
The set_value() method sets the value of the adjustment to the specified value.

Signals

The "changed" gtk.Adjustment Signal

 def callback(adjustment, user_param1, ...)

adjustment : the object that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "changed" signal is emitted when one (or more) of the adjustment attributes (except the value attribute)
has changed.

The "value−changed" gtk.Adjustment Signal

 def callback(adjustment, user_param1, ...)

adjustment : the object that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "value−changed" signal is emitted when the adjustment value attribute has changed.

Prev Up Next
gtk.ActionGroup Home gtk.Alignment

gtk.Alignment
Prev The gtk Class Reference Next

gtk.Alignment

gtk.Alignment � a widget that controls the alignment and size of its child

Synopsis

class gtk.Alignment(gtk.Bin):
gtk.Alignment(xalign=0.0, yalign=0.0, xscale=0.0, yscale=0.0)

 def set(xalign, yalign, xscale, yscale)

PyGTK 2.0 Reference Manual

gtk.Adjustment.get_value 192

 def set_padding(padding_top, padding_bottom, padding_left, padding_right)
 def get_padding()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Alignment

Properties

"xalign" Read/Write The fraction of horizontal free space to the left of the child. 0.0 means
no free space to the left, 1.0 means all free space to the left.

"yalign" Read/Write The fraction of vertical free space above the child. 0.0 means no free
space above, 1.0 means all free space above.

"xscale" Read/Write The fraction of horizontal free space (beyond that needed by the
child) that the child will absorb. 0.0 means the child will absorb none,
1.0 means the child will absorb all

"yscale" Read/Write The fraction of vertical free space (beyond that needed by the child)
that the child will absorb. 0.0 means the child will absorb none, 1.0
means the child will absorb all

"bottom−padding" Read/Write The padding to insert at the bottom of the widget. GTK+ 2.4 and
above.

"top−padding" Read/Write The padding to insert at the top of the widget. GTK+ 2.4 and above.
"left−padding" Read/Write The padding to insert at the left of the widget. GTK+ 2.4 and above.
"right−padding" Read/Write The padding to insert at the right of the widget. GTK+ 2.4 and above.

Description

The gtk.Alignment widget controls the alignment and size of its child widget. It has four properties:
xscale, yscale, xalign, and yalign. The scale properties are used to specify how much of the free (extra) space
allocated to the gtk.Alignment should be absorbed by the child widget. The values can range from 0.0
(meaning the child absorbs none) to 1.0 (meaning the child absorbs all of the free space). If the value is 0.5,
the child widget absorbs half the free space. The align properties are used to place the child widget within the
available area by specifying the fraction of free space that will be placed above or to the left of the child
widget. The values range from 0.0 (no free space above or to the left of the child) to 1.0 (all free space above
or to the left of the child). Of course, if the scale properties are both set to 1.0, the alignment properties have
no effect.

An example may make this clearer. A gtk.Button widget (32 pixels wide by 32 pixels high) is placed
inside a gtk.Alignment widget (256 pixels wide by 128 pixels high) which has xalign of 0.25, yalign of
0.25, xscale of 0.25 and yscale of 0.25. The horizontal free space is 256−32=224 pixels and the vertical free
space is 128−32=96 pixels. The button will absorb 0.25x224=56 pixels horizontally and 0.25x96=24 pixels
vertically since the xscale and yscale are 0.25 thus becoming 32+56=88 pixels wide by 32+24=56 pixels high.
This will leave 256−88=168 pixels of horizontal free space and 128−56=72 pixels of vertical free space. Since
the xalign value is 0.25 the horizontal free space will be allocated as 0.25x168=42 pixels to the left of the
button and 0.72x168=126 pixels to the right. Likewise since the yalign is 0.25 the vertical free space is
allocated as 0.25x72=18 pixels above the button and 0.75*72=54 pixels below.

PyGTK 2.0 Reference Manual

Synopsis 193

Constructor

gtk.Alignment(xalign=0.0, yalign=0.0, xscale=0.0, yscale=0.0)

xalign : the fraction of horizontal free space to the left of the child widget. Ranges from 0.0 to 1.0
yalign : the fraction of vertical free space above the child widget. Ranges from 0.0 to 1.0
xscale : the fraction of horizontal free space that the child widget absorbs, from 0.0 to 1.0
yscale : the fraction of vertical free space that the child widget absorbs, from 0.0 to 1.0
Returns : a new alignment object
Creates a new alignment widget with the specified properties. If the scale and alignment parameters are not
specified they default to 0.0.

Methods

gtk.Alignment.set

 def set(xalign, yalign, xscale, yscale)

xalign : the fraction of horizontal free space to the left of the child widget. Ranges from 0.0 to 1.0
yalign : the fraction of vertical free space above the child widget. Ranges from 0.0 to 1.0
xscale : the fraction of horizontal free space that the child widget absorbs, from 0.0 to 1.0
yscale : the fraction of vertical free space that the child widget absorbs, from 0.0 to 1.0
The set() method sets the properties of the alignment widget to the specified values.

gtk.Alignment.set_padding

 def set_padding(padding_top, padding_bottom, padding_left, padding_right)

padding_top : the padding at the top of the widget
padding_bottom : the padding at the bottom of the widget
padding_left : the padding at the left of the widget
padding_right : the padding at the right of the widget.

Note

This method is available in PyGTK 2.4 and above.

The set_padding() method sets the padding around the sides of the alignment widget to the values
specified by padding_top, padding_bottom, padding_left and padding_right. The padding
adds blank space to the sides of the widget. For instance, this can be used to indent the child widget toward
the right by adding padding on the left.

gtk.Alignment.get_padding

 def get_padding()

Returns : a 4−tuple containing the padding set on the top, bottom, left and right sides of the widget

PyGTK 2.0 Reference Manual

Constructor 194

Note

This method is available in PyGTK 2.4 and above.

The get_padding() method returns a 4−tuple containing the padding set on the sides of the widget.

Prev Up Next
gtk.Adjustment Home gtk.Arrow

gtk.Arrow
Prev The gtk Class Reference Next

gtk.Arrow

gtk.Arrow � produces an arrow pointing in one of the four cardinal directions.

Synopsis

class gtk.Arrow(gtk.Misc):
gtk.Arrow(arrow_type, shadow_type)

 def set(arrow_type, shadow_type)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Misc
 +−− gtk.Arrow

Properties

"arrow−type" Read/Write The direction the arrow should point (gtk.ARROW_UP, gtk.ARROW_DOWN,
gtk.ARROW_LEFT, or gtk.ARROW_RIGHT)

"shadow−type" Read/Write Appearance of the shadow surrounding the arrow (gtk.SHADOW IN,
gtk.SHADOW OUT, gtk.ETCHED IN, or gtk.ETCHED OUT)

Description

The gtk.Arrow is used to draw simple arrows that point in one of the four cardinal directions
(gtk.ARROW_UP, gtk.ARROW_DOWN, gtk.ARROW_LEFT, or gtk.ARROW_RIGHT). The shadow style
of the arrow can be one of gtk.SHADOW IN, gtk.SHADOW OUT, gtk.ETCHED IN, or gtk.ETCHED OUT.

A gtk.Arrow will fill any space alloted to it, but since it is inherited from gtk.Misc, it can be padded
and/or aligned, to fill exactly the space desired.

Arrows are created with a call to gtk.Arrow(). The direction or style of an arrow can be changed after
creation by using arrow_set().

PyGTK 2.0 Reference Manual

Note 195

Constructor

gtk.Arrow(arrow_type, shadow_type)

arrow_type : one of the GTK Arrow Type Constants
shadow_type : one of the GTK Shadow Type Constants
Returns : a gtk.Arrow widget
Creates a new arrow widget with the specified arrow_type and arrow_shadow.

Methods

gtk.Arrow.set

 def set(arrow_type, shadow_type)

arrow_type : a GtkArrowType
shadow_type : one of the GTK Shadow Type Constants
The set() method sets the arrow_type and shadow_type of the arrow widget.

Prev Up Next
gtk.Alignment Home gtk.AspectFrame

gtk.AspectFrame
Prev The gtk Class Reference Next

gtk.AspectFrame

gtk.AspectFrame � A frame that constrains its child to a particular aspect ratio.

Synopsis

class gtk.AspectFrame(gtk.Frame):
gtk.AspectFrame(label=None, xalign=0.5, yalign=0.5, ratio=1.0, obey_child=TRUE)

 def set(xalign=0.0, yalign=0.0, ratio=1.0, obey_child=TRUE)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Frame
 +−− gtk.AspectFrame

Properties

PyGTK 2.0 Reference Manual

Constructor 196

"xalign" Read/Write The fraction of horizontal free space to the left of the child. 0.0 means no free
space to the left, 1.0 means all free space to the left.

"yalign" Read/Write The fraction of vertical free space above the child. 0.0 means no free space above,
1.0 means all free space above.

"ratio" Read/Write The aspect ratio of the widget in the range of 0.0001 to 10000.0 if "obey−child" is
FALSE.

"obey−child" Read/Write Make aspect ratio match that of the child widget

Description

The gtk.AspectFrame packs a widget so that it can resize but always retains the same aspect ratio. For
instance, one might be drawing a small preview of a larger image. gtk.AspectFrame derives from
gtk.Frame, so it can draw a label and a frame around the child. The frame will be "shrink−wrapped" to the
size of the child.

The aspect frame "ratio" property determines the widget width:height ratio. An aspect ratio of 0.5 means the
width is one half the height; an aspect ratio of 2.0 means the width is twice the height. The default value for
the "ratio" property is 1.0.

The align properties are used to place the child widget within the available area by specifying the fraction of
free space (space in the aspect frame that is not used by the child widget) that is placed above or to the left of
the child widget. The values range from 0.0 (meaning no free space above or to the left of the child) to 1.0
(meaning all free space above or to the left of the child) . The default value for both align properties is 0.5.

If the "obey−child" property is TRUE (the default value), the "ratio" property is ignored and the aspect ratio is
set by the child widget.

Constructor

gtk.AspectFrame(label=None, xalign=0.5, yalign=0.5, ratio=1.0, obey_child=TRUE)

label : a string used to set the aspect frame label

xalign : The fraction of horizontal free space to the left of the child. 0.0 means no free space to the
left, 1.0 means all free space to the left.

yalign : The fraction of vertical free space above the child. 0.0 means no free space above, 1.0 means
all free space above.

ratio : the ratio of the child width to height (in the range 0.0001 to 10000.0) if obey_child is
FALSE

obey_child : if TRUE, ratio is ignored, and the aspect ratio is taken from the requisition of the child.
Returns : a new aspect frame object
Creates a new aspect frame object with the specified label, xalign and yalign values. The default
values are: label, None; xalign, 0.5; and, yalign, 0.5. If obey_child is TRUE the ratio value is
ignored. If obey_child is FALSE, ratio sets the aspect ratio for the child widget. The default value for
ratio is 1.0. The default value for obey_child is TRUE.

Methods

PyGTK 2.0 Reference Manual

Properties 197

gtk.AspectFrame.set

 def set(xalign=0.0, yalign=0.0, ratio=1.0, obey_child=TRUE)

xalign : The fraction of horizontal free space to the left of the child. 0.0 means no free space to the
left, 1.0 means all free space to the left.

yalign : The fraction of vertical free space above the child. 0.0 means no free space above, 1.0 means
all free space above.

ratio : the ratio of the child width to height (in the range 0.0001 to 10000.0) if obey_child is
FALSE

obey_child : if TRUE, ratio is ignored, and the aspect ratio is taken from the requisition of the child
The set() method changes the aspect frame properties to the values specified by xalign, yalign, ratio
and obey_child. The default values are: xalign, 0; yalign, 0.0; ratio, 1.0; and, obey_child,
TRUE.

Prev Up Next
gtk.Arrow Home gtk.Bin

gtk.Bin
Prev The gtk Class Reference Next

gtk.Bin

gtk.Bin � an abstract base class defining a container with just one child.

Synopsis

class gtk.Bin(gtk.Container):
 def get_child()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin

Attributes

"child" Read The child widget or None if there is no child.

Description

gtk.Bin is an abstract base class defining a widget that is a container with just one child. It is useful for
deriving subclasses, since it provides the common code needed for handling a single child widget. Many
PyGTK widgets are subclasses of gtk.Bin, including gtk.Window, gtk.Button, gtk.Frame,
gtk.HandleBox, and gtk.ScrolledWindow.

PyGTK 2.0 Reference Manual

gtk.AspectFrame.set 198

Methods

gtk.Bin.get_child

 def get_child()

Returns : a reference to the child widget
The get_child() method returns a reference to the child of the bin, or None if the bin contains no child
widget.

Prev Up Next
gtk.AspectFrame Home gtk.Border

gtk.Border
Prev The gtk Class Reference Next

gtk.Border

gtk.Border � an object containing data for a border (new in PyGTK 2.4)

Synopsis

class gtk.Border(gobject.GBoxed):
 def copy()
 def free()

Description

Note

This object is available in PyGTK 2.4 and above.

A gtk.Border object contains the integer values for the left, right, top and bottom values of a border.
gtk.Border is used in gtk.Style specifications. gtk.Border has two methods: copy() and free().

Methods

gtk.Border.copy

 def copy()

Returns : a copy of the border.

Note

This method is available in PyGTK 2.4 and above.

The copy() method returns a copy of the border object.

PyGTK 2.0 Reference Manual

Methods 199

gtk.Border.free

 def free()

Note

This method is available in PyGTK 2.4 and above.

The free() method frees the memory used by the border.

Prev Up Next
gtk.Bin Home gtk.Box

gtk.Box
Prev The gtk Class Reference Next

gtk.Box

gtk.Box � an abstract base class for box containers

Synopsis

class gtk.Box(gtk.Container):
 def pack_start(child, expand=TRUE, fill=TRUE, padding=0)
 def pack_end(child, expand=TRUE, fill=TRUE, padding=0)
 def pack_start_defaults(widget)
 def pack_end_defaults(widget)
 def set_homogeneous(homogeneous)
 def get_homogeneous()
 def set_spacing(spacing)
 def get_spacing()
 def reorder_child(child, position)
 def query_child_packing(child)
 def set_child_packing(child, expand, fill, padding, pack_type)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box

Properties

"spacing" Read/Write The amount of space between children.
"homogeneous" Read/Write If TRUE the children should all be the same size.

Child Properties

PyGTK 2.0 Reference Manual

gtk.Border.free 200

"expand" Read/Write If TRUE the child should receive extra space when the parent grows
"fill" Read/Write If TRUE extra space given to the child should be allocated to the child; if FALSE

extra space given to the child should be used as padding
"padding" Read/Write The amount of extra space to put between the child and its neighbors, in pixels
"pack−type" Read/Write Indicates whether the child is packed with reference to the start

(gtk.PACK_START) or end (gtk.PACK_END) of the parent
"position" Read/Write The index of the child in the parent

Description

The gtk.Box class is an abstract base class defining a widget that encapsulates functionality for a particular
kind of container, one that organizes a variable number of widgets into a rectangular area. gtk.Box currently
has two derived classes, gtk.HBox and gtk.VBox.

The rectangular area of a gtk.Box is organized into either a single row or a single column of child widgets
depending upon whether the box is of type gtk.HBox or gtk.VBox, respectively. Thus, all children of a
gtk.Box are allocated one dimension in common, which is the height of a row, or the width of a column.

gtk.Box uses a notion of packing. Packing refers to adding widgets with reference to a particular position in
a gtk.Container. For a gtk.Box, there are two reference positions: the start and the end of the box. For
a gtk.VBox, the start is defined as the top of the box and the end is defined as the bottom. For a gtk.HBox
the start is defined as the left side and the end is defined as the right side.

Repeated calls to pack_start() pack widgets into a gtk.Box from start to end. The pack_end() method
adds widgets from end to start. You may intersperse these calls and add widgets from both ends of the same
gtk.Box.

Because gtk.Box is a gtk.Container, you may also use add() to insert widgets into the box, and they
will be packed as if with the pack_start() method. Use remove() to remove widgets from the gtk.Box.

The set_homogeneous() method specifies whether or not all children of the gtk.Box are forced to get
the same amount of space.

The set_spacing() method determines how much space will be minimally placed between all children in
the gtk.Box.

The reorder_child() method moves a gtk.Box child to a different place in the box.

The set_child_packing() method resets the expand, fill, and padding attributes of any gtk.Box child.
Use the query_child_packing() to query these properties.

Methods

gtk.Box.pack_start

 def pack_start(child, expand=TRUE, fill=TRUE, padding=0)

child : the widget to be added to the box

expand : TRUE if child is to be given extra space allocated to box. The extra space will be divided
evenly between all children of box that use this option.

PyGTK 2.0 Reference Manual

Child Properties 201

fill :

TRUE if space given to child by the expand option is actually allocated to child, rather than
just padding it. This parameter has no effect if expand is set to FALSE. A child is always
allocated the full height of a gtk.HBox and the full width of a gtk.VBox. This option affects
the other dimension.

padding :
extra space in pixels to put between child and its neighbors, over and above the global amount
specified by spacing in gtk.Box. If child is a widget at one of the reference ends of box,
then padding pixels are also put between child and the reference edge of box.

The pack_start() method adds child to the box, packed with reference to the start of box. The child is
packed after any other child packed with reference to the start of box.

gtk.Box.pack_end

 def pack_end(child, expand=TRUE, fill=TRUE, padding=0)

child : the widget to be added to the box

expand : TRUE if child is to be given extra space allocated to box. The extra space will be divided
evenly between all children of box that use this option.

fill :

TRUE if space given to child by the expand option is actually allocated to child, rather than
just padding it. This parameter has no effect if expand is set to FALSE. A child is always
allocated the full height of a gtk.HBox and the full width of a gtk.VBox. This option affects
the other dimension.

padding :
extra space in pixels to put between child and its neighbors, over and above the global amount
specified by spacing in gtk.Box. If child is a widget at one of the reference ends of box,
then padding pixels are also put between child and the reference edge of box.

The pack_end() method adds child to the box, packed with reference to the end of the box. The child is
packed after (away from end of) any other child packed with reference to the end of the box.

gtk.Box.pack_start_defaults

 def pack_start_defaults(widget)

widget : the widget to be added to the box

Warning

This method is deprecated in PyGTK 2.4 and above.

The pack_start_defaults() method adds widget to the box, packed with reference to the start of the
box. The widget is packed after any other child widget packed with reference to the start of box. The
parameters for packing the child widget: expand, fill, and padding are given their default values, TRUE,
TRUE, and 0, respectively.

gtk.Box.pack_end_defaults

 def pack_end_defaults(widget)

widget : the widget to be added to the box

Warning

This method is deprecated in PyGTK 2.4 and above.

The pack_end_defaults() method adds widget to the box, packed with reference to the end of the box.
The widget is packed after (away from the end of) any other child widget packed with reference to the end

PyGTK 2.0 Reference Manual

gtk.Box.pack_start 202

of the box. The parameters for packing the child widget: expand, fill, and padding are given their default
values, TRUE, TRUE, and 0, respectively.

gtk.Box.set_homogeneous

 def set_homogeneous(homogeneous)

homogeneous : If TRUE the box is homogeneous i.e. all children are allocated the same space otherwise
the allocations vary for each child.

The set_homogeneous() method sets the homogeneous (all children are allocated the same space)
property of the box.

gtk.Box.get_homogeneous

 def get_homogeneous()

Returns : TRUE if the box is homogeneous.
The get_homogeneous() method returns whether the box is homogeneous (all children are allocated the
same space). See gtk.Box.set_homogeneous().

gtk.Box.set_spacing

 def set_spacing(spacing)

spacing : the number of pixels to put between children.
The set_spacing() method sets the number of pixels to place between children of the box.

gtk.Box.get_spacing

 def get_spacing()

Returns : the spacing in pixels between children
The get_spacing() method returns the number of pixels used as padding between children as set by the
set_spacing().

gtk.Box.reorder_child

 def reorder_child(child, position)

child : the child widget to move

position : the new position for child in the children list of the box starting from 0. If negative, indicates
the end of the list.

Moves child to a new position in the list of the box children. The list contains both widgets packed
gtk.PACK_START as well as widgets packed gtk.PACK_END, in the order that these widgets were added to
box.

A widget's position in the box children list determines where the widget is packed into box. A child widget at
some position in the list will be packed just after all other widgets of the same packing type that appear earlier
in the list.

PyGTK 2.0 Reference Manual

Warning 203

gtk.Box.query_child_packing

 def query_child_packing(child)

child : the child widget to be queried for its packing information
expand : the child's expand value
fill : the child's fill value
padding : the child's padding value
pack_type : the child's pack_type value
The query_child_packing() method returns a tuple containing information about how child is packed
into the box. The tuple members are: (expand, fill, padding, pack_type) where: expand and fill are 0 or 1
(corresponding to FALSE or TRUE); padding is the number of pixels of padding; and pack_type is
gtk.PACK_START or gtk.PACK_END.

gtk.Box.set_child_packing

 def set_child_packing(child, expand, fill, padding, pack_type)

child : the child widget to be queried for its packing information
expand : the child's new expand value
fill : the child's new fill value
padding : the child's new padding value
pack_type : the child's new pack_type value
The set_child_packing() method sets the way child is packed into the box.

Prev Up Next
gtk.Border Home gtk.Button

gtk.Button
Prev The gtk Class Reference Next

gtk.Button

gtk.Button � A pushbutton widget that issues a signal when clicked.

Synopsis

class gtk.Button(gtk.Bin):
gtk.Button(label=None, stock=None, use_underline=TRUE)

 def pressed()
 def released()
 def clicked()
 def enter()
 def leave()
 def set_relief(newstyle)
 def get_relief()
 def set_label(label)
 def get_label()
 def set_use_underline(use_underline)
 def get_use_underline()
 def set_use_stock(use_stock)
 def get_use_stock()
 def set_focus_on_click(focus_on_click)
 def get_focus_on_click()

PyGTK 2.0 Reference Manual

gtk.Box.query_child_packing 204

 def set_alignment(xalign, yalign)
 def get_alignment()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Button

Properties

"focus−on−click" Read/Write If TRUE the button grabs focus when it is clicked with the
mouse. This property is available in GTK+ 2.4 and above.

"label" Read/Write Text of the label widget inside the button, if the button
contains a label widget.

"relief" Read/Write The border relief style. One of: gtk.RELIEF_NORMAL,
gtk.RELIEF_HALF or gtk.RELIEF_NONE

"use−underline" Read/Write If TRUE, an underscore in the text indicates the next
character should be underlined and used for the mnemonic
accelerator key if it is the first character so marked

"use−stock" Read/Write If TRUE, the label text is used to pick a stock item instead of
being displayed

"xalign" Read/Write If the child of the button is a gtk.Misc or
gtk.Alignment, this property can be used to control it's
horizontal alignment. The value ranges from 0.0 to 1.0
representing the fraction of freespace to the left of the
widget. This property is available in GTK+ 2.4 and above.

"yalign" Read/Write If the child of the button is a gtk.Misc or
gtk.Alignment, this property can be used to control it's
vertical alignment. The value ranges from 0.0 to 1.0
representing the fraction of freespace above the widget. This
property is available in GTK+ 2.4 and above.

Style Properties

"child−displacement−y" Read/Write The number of pixels in the y direction to move the
child when the button is depressed

"child−displacement−x" Read/Write The number of pixels in the x direction to move the
child when the button is depressed

"default−border" Read/Write The extra space to add for gtk.CAN_DEFAULT
buttons

"default−outside−border" Read/Write The extra space to add for gtk.CAN_DEFAULT
buttons always drawn outside the border

Signal Prototypes

"activate" def callback(button, user_param1, ...)

PyGTK 2.0 Reference Manual

Synopsis 205

"clicked" def callback(button, user_param1, ...)

"enter" def callback(button, user_param1, ...)

"leave" def callback(button, user_param1, ...)

"pressed" def callback(button, user_param1, ...)

"released" def callback(button, user_param1, ...)

Description

The gtk.Button widget is usually displayed as a pushbutton with a text label (gtk.Label) though it can
contain any valid widget. The gtk.Button is generally used to attach a callback function or method that is
called when the button is clicked. Buttons generate signals that indicate:

"clicked" − the user pressed and released a mouse button over the button•
"pressed" − the user pressed a mouse button over the button•
"released" − the user released a mouse button over the button•
"enter" − the pointer entered the button•
"leave" − the pointer left the button•

The "clicked" signal is usually the only signal that an application needs to handle.

If a label is being used by the button its text (the "label" property) is retrieved using the get_label()
method. The label text is changed using the set_label() method.

The property ("use_underline") that tells a button to use the first underscore to indicate a mnemonic key is
changed using the set_use_underline(). method. It can be retrieved using the
get_use_underline() method.

The button's relief style (the "relief" property) is retrieved using the method get_relief(). The relief style
is set to one of gtk.RELIEF_NONE, gtk.RELIEF_HALF or gtk.RELIEF_NORMAL using the method
set_relief().

Constructor

gtk.Button(label=None, stock=None, use_underline=TRUE)

label : the text to be displayed by the button label including an underscore to indicate the
mnemonic character if desired or None if no label is required.

stock : the stock id identifying the stock image and text to be used in the button or None if no
stock id is to be used.

use_underline :
if TRUE, an underscore in the text indicates the next character should be underlined and
used for the mnemonic accelerator key if it is the first character so marked. Available in
PyGTK 2.4 and above.

Returns : a new button object
Creates a new button widget with the content depending on the parameters: label, stock and
use_underline. The default values for stock and label are None and, in PyGTK 2.4 and above,
use_underline is available and defaults to TRUE. If both label and stock are specified stock takes
precedence. If neither is specified the button is created with no child widget. A child widget can be added later
with the add() method.

If stock is specified the "use−stock" property will be set to TRUE.

PyGTK 2.0 Reference Manual

Signal Prototypes 206

If label is specified the "label" property will be set with the text of the label, the "use_underline" property
will be set to TRUE and any characters that are preceded by an underscore are underlined (use two
underscores to insert an underscore in a label). The first underscored character will become the mnemonic
character used as the keyboard accelerator for the button when pressed simultaneously with the Alt key. In
PyGTK 2.4 and above the "use−underline" property can be set by using the optional use_underline
parameter.

Methods

gtk.Button.pressed

 def pressed()

The pressed() method emits the "pressed" signal to the button.

gtk.Button.released

 def released()

The released() method emits the "released" signal to the button.

gtk.Button.clicked

 def clicked()

The clicked() method emits the "clicked" signal to the button.

gtk.Button.enter

 def enter()

The enter() method emits the "enter" signal to the button.

gtk.Button.leave

 def leave()

The leave() method emits the "leave" signal to the button.

gtk.Button.set_relief

 def set_relief(newstyle)

newstyle : one of gtk.RELIEF_NONE, gtk.RELIEF_NORMAL or gtk.RELIEF_HALF
The set_relief() method sets the relief style of the edges of the button. Three styles exist,
gtk.RELIEF_NORMAL, gtk.RELIEF_HALF, gtk.RELIEF_NONE. The default style is, as one can
guess, gtk.RELIEF_NORMAL.

PyGTK 2.0 Reference Manual

Constructor 207

gtk.Button.get_relief

 def get_relief()

Returns : the relief style
The get_relief() method retrieves the current relief style (the "relief" property) set for the button.

gtk.Button.set_label

 def set_label(label)

label : a string to be set as the text in the button label
The set_label() method sets the text of the button label to label (also sets the "label" property). This
string is also used to select the stock item if the "use_stock" property is TRUE and the string references a stock
item. Any previously set labels will be cleared.

gtk.Button.get_label

 def get_label()

Returns : the text of the label widget.
The get_label() method retrieves the text from the label of the button, as set by set_label() or by the
gtk.Button() constructor. This string is owned by the widget and must not be modified or freed. If the
label text has not been set the return value will be None. This will be the case if you create an empty button
with gtk.Button() to use as a container.

gtk.Button.set_use_underline

 def set_use_underline(use_underline)

use_underline : TRUE if underscores in the text indicate mnemonics
The set_use_underline() method sets the "use_underline" property to the value of use_underline.
If use_underline is TRUE, an underscore in the text of the button label indicates that the next character
should be underlined and used for the mnemonic accelerator key if it is also the first underlined character.

gtk.Button.get_use_underline

 def get_use_underline()

Returns : TRUE if an underscore in the button label indicates the mnemonic accelerator keys.
The get_use_underline() method returns whether the "use_underline" property is TRUE meaning that
an underscore in the button label indicates a mnemonic. See set_use_underline().

gtk.Button.set_use_stock

 def set_use_stock(use_stock)

use_stock : If TRUE the button should use a stock item
The set_use_stock() method sets the "use_stock" property to the value of use_stock. If use_stock
is TRUE, the label set on the button is used as a stock id to select the stock item for the button.

PyGTK 2.0 Reference Manual

gtk.Button.get_relief 208

gtk.Button.get_use_stock

 def get_use_stock()

Returns : the value of the "use_stock" property.
The get_use_stock() method returns the value of the "use_stock" property. If TRUE the button label is
used to select a stock item instead of being used directly as the label text.

gtk.Button.set_focus_on_click

 def set_focus_on_click(focus_on_click)

focus_on_click : If TRUE the button grabs focus when clicked with the mouse.

Note

This method is available in PyGTK 2.4 and above.

The set_focus_on_click() method sets the "focus−on−click" property to the value of
focus_on_click. If focus_on_click is TRUE, the button grabs focus when it is clicked by the mouse.

gtk.Button.get_focus_on_click

 def get_focus_on_click()

Returns : the value of the "focus−on−click" property.

Note

This method is available in PyGTK 2.4 and above.

The get_focus_on_click() method returns the value of the "focus−on−click" property. If TRUE the
button grabs focus when it is clicked by the mouse .

gtk.Button.set_alignment

 def set_alignment(xalign, yalign)

xalign : the horizontal alignment of the child widget. The value ranges from 0.0 to 1.0 and represents the
fraction of freespace to the left of the child widget.

yalign : the vertical alignment of the child widget. The value ranges from 0.0 to 1.0 and represents the
fraction of freespace above the child widget.

Note

This method is available in PyGTK 2.4 and above.

The set_alignment() method sets the "xalign" and "yalign" properties to the value of xalign and
yalign respectively. This property has no effect unless the child is a gtk.Misc or a gtk.Alignment.

gtk.Button.get_alignment

 def get_alignment()

Returns : a 2−tuple containing the values of the "xalign" and "yalign" properties.

PyGTK 2.0 Reference Manual

gtk.Button.get_use_stock 209

Note

This method is available in PyGTK 2.4 and above.

The get_alignment() method returns the values of the "xalign" and "yalign" properties. See the
set_alignment() method for more information.

Signals

The "activate" gtk.Button Signal

 def callback(button, user_param1, ...)

button : the button that received the "activate" signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "activate" signal is emitted when the gtk.Widget.activate() method is called. For a button it
causes the "clicked" signal to be emitted.

The "clicked" gtk.Button Signal

 def callback(button, user_param1, ...)

button : the button that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "clicked" signal is emitted when the mouse button is pressed and released while the pointer is over the
button.

The "enter" gtk.Button Signal

 def callback(button, user_param1, ...)

button : the button that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "enter" signal is emitted when the pointer enters the button.

The "leave" gtk.Button Signal

 def callback(button, user_param1, ...)

button : the button that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "leave" signal is emitted when the pointer leaves the button.

PyGTK 2.0 Reference Manual

Note 210

The "pressed" gtk.Button Signal

 def callback(button, user_param1, ...)

button : the button that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "pressed" signal is emitted when the mouse button is pressed while the pointer is over the button.

The "released" gtk.Button Signal

 def callback(button, user_param1, ...)

button : the button that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "released" signal is emitted when the button is released no matter where the pointer is.

Prev Up Next
gtk.Box Home gtk.ButtonBox

gtk.ButtonBox
Prev The gtk Class Reference Next

gtk.ButtonBox

gtk.ButtonBox � the base class for widgets that contain multiple buttons

Synopsis

class gtk.ButtonBox(gtk.Box):
 def get_layout()
 def set_layout(layout_style)
 def get_child_secondary(child)
 def set_child_secondary(child, is_secondary)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.ButtonBox

Properties

"layout−style" Read/Write the style used to layout the buttons in the box. The layout styles are:
gtk.BUTTONBOX_SPREAD, gtk.BUTTONBOX_EDGE,
gtk.BUTTONBOX_START and gtk.BUTTONBOX_END.

PyGTK 2.0 Reference Manual

The "pressed" gtk.Button Signal 211

Child Properties

"secondary" Read/Write If TRUE, the child appears in a secondary group of children, suitable for,
e.g., help buttons.

Style Properties

"child−min−width" Read The minimum width of buttons inside the box.
"child−min−height" Read The minimum height of buttons inside the box.
"child−internal−pad−y" Read The amount of padding that increases a child's size on the top and bottom
"child−internal−pad−x" Read The amount of padding that increases a child's size on the top and bottom

Description

A button box is used to provide a consistent layout of buttons throughout an application. The
gtk.ButtonBox is subclassed by the gtk.HButtonBox and gtk.VButtonBox classes to provide
horizontal and vertical button layouts respectively. The same effect could be achieved by using a gtk.Box
but less conveniently.

A buttonbox provides one default layout and a default spacing value that are persistent across all widgets. The
layout/spacing can then be altered by the programmer, or if desired, by the user to alter the 'feel' of a program
to a small degree.

The gtk.Box.get_spacing() method and the gtk.Box.set_spacing() methods retrieve and
change the default number of pixels between buttons. The get_layout() and set_layout() methods
retrieve and alter the style used to spread the buttons in a button box across the container. The layout styles
are: gtk.BUTTONBOX_SPREAD, gtk.BUTTONBOX_EDGE, gtk.BUTTONBOX_START and
gtk.BUTTONBOX_END.

Methods

gtk.ButtonBox.get_layout

 def get_layout()

Returns : the layout style used by the buttonbox
The get_layout() method returns the current value of the "layout−style" property. The possible values are:
gtk.BUTTONBOX_SPREAD, gtk.BUTTONBOX_EDGE, gtk.BUTTONBOX_START and
gtk.BUTTONBOX_END.

gtk.ButtonBox.set_layout

 def set_layout(layout_style)

layout_style : the new layout style
The set_layout() method sets the "layout−style" property to the value in layout_style. The possible
values are: gtk.BUTTONBOX_SPREAD, gtk.BUTTONBOX_EDGE, gtk.BUTTONBOX_START and
gtk.BUTTONBOX_END.

PyGTK 2.0 Reference Manual

Child Properties 212

gtk.ButtonBox.get_child_secondary

 def get_child_secondary(child)

child : a child button of the buttonbox
Returns : if TRUE, the child appears in a secondary group of the button box.

Note

This method is available in PyGTK 2.4 and above.

The get_child_secondary() method returns TRUE if child should appear in a secondary group of
children. See the set_child_secondary() method for more information.

gtk.ButtonBox.set_child_secondary

 def set_child_secondary(child, is_secondary)

child : a child button of the buttonbox
is_secondary : if TRUE, the child appears in a secondary group of the button box.
The set_child_secondary() method sets whether child should appear in a secondary group of
children. The typical use of a secondary child is the help button in a dialog that is displayed away from the
main group of buttons e.g. right aligned.

The secondary group appears after the other children if the style is gtk.BUTTONBOX_START,
gtk.BUTTONBOX_SPREAD or gtk.BUTTONBOX_EDGE, and before the the other children if the style is
gtk.BUTTONBOX_END. For horizontal button boxes, the definition of before/after depends on direction of
the widget (see gtk.Widget.set_direction()). If the style is gtk.BUTTONBOX_START or
gtk.BUTTONBOX_END, then the secondary children are aligned at the other end of the button box from the
main children. For the other styles, they appear immediately next to the main children.

Prev Up Next
gtk.Button Home gtk.Calendar

gtk.Calendar
Prev The gtk Class Reference Next

gtk.Calendar

gtk.Calendar � a widget that displays a calendar and allows the user to select a date.

Synopsis

class gtk.Calendar(gtk.Widget):
gtk.Calendar()

 def select_month(month, year)
 def select_day(day)
 def mark_day(day)
 def unmark_day(day)
 def clear_marks()
 def get_display_options()
 def set_display_options(flags)
 def display_options(flags)
 def get_date()
 def freeze()

PyGTK 2.0 Reference Manual

gtk.ButtonBox.get_child_secondary 213

 def thaw()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Calendar

Properties

Note

These properties are available in GTK+ 2.4 and above.

"day" Read−Write The selected day (as a number between 1 and 31, or 0 to unselect the
currently selected day).

"month" Read−Write The selected month (as a number between 0 and 11).
"no−month−change" Read−Write If TRUE the selected month cannot be changed.
"show−day−names" Read−Write If TRUE, day names are displayed.
"show−heading" Read−Write If TRUE, a heading is displayed.
"show−week−numbers" Read−Write If TRUE, week numbers are displayed.
"year" Read−Write The selected year.

Signal Prototypes

"day−selected" def callback(calendar, user_param1, ...)

"day−selected−double−click" def callback(calendar, user_param1, ...)

"month−changed" def callback(calendar, user_param1, ...)

"next−month" def callback(calendar, user_param1, ...)

"next−year" def callback(calendar, user_param1, ...)

"prev−month" def callback(calendar, user_param1, ...)

"prev−year" def callback(calendar, user_param1, ...)

Description

The gtk.Calendar is a widget that displays a simple calendar, one month at a time. In addition, the
calendar can display the days of the week and navigation controls that allow a user to change the month and
year displayed by calling the display_options() (set_display_options() in PyGTK 2.4 and
above) method. The possible display options are:

gtk.CALENDAR_SHOW_HEADING Specifies that the month and year should be displayed.
gtk.CALENDAR_SHOW_DAY_NAMES Specifies that three letter day descriptions should be present.
gtk.CALENDAR_NO_MONTH_CHANGE Prevents the user from switching months with the calendar.

gtk.CALENDAR_SHOW_WEEK_NUMBERS
Displays each week numbers of the current year, down the left
side of the calendar.

gtk.CALENDAR_WEEK_START_MONDAY
Starts the calendar week on Monday, instead of the default
Sunday.

PyGTK 2.0 Reference Manual

Synopsis 214

The month and year currently displayed are programatically changed by calling the select_month()
method. The exact day is selected from the displayed month using the select_day() method.

To place a visual marker on a particular day, use the mark_day() method and to remove the marker, the
unmark_day() method. All marks are cleared by calling the clear_marks() method.

The selected date can be retrieved from a gtk.Calendar using the get_date() method. If performing
many 'mark' operations, the calendar can be frozen to prevent flicker, using the freeze() method, and
'thawed' again using the thaw() method.

Constructor

gtk.Calendar()

Returns : a calendar object
Creates a calendar object that displays the current month and year with the current day selected. The default
calendar display style is: gtk.CALENDAR_SHOW_HEADING | gtk.CALENDAR_SHOW_DAY_NAMES
that shows the days of the week and the month and year heading with navigation controls.

Methods

gtk.Calendar.select_month

 def select_month(month, year)

month : the new month number between 0 and 11
year : the new year number
Returns : TRUE if the month is set
The select_month() method changes the calendar display to the specified month and year.

gtk.Calendar.select_day

 def select_day(day)

day : the new day number between 1 and 31 − 0 removes the current selection
The select_day() method selects the specified day on the calendar when day has a value between 1 and
31. If day is 0 then the current day selection is removed.

gtk.Calendar.mark_day

 def mark_day(day)

day : the number of the day to be marked
Returns : TRUE
The mark_day() method marks the specified month day with a visual marker (typically by making the
number bold). If the calendar month and year are changed the marked days remain marked.

PyGTK 2.0 Reference Manual

Description 215

gtk.Calendar.unmark_day

 def unmark_day(day)

day : the number of the day to be unmarked
Returns : TRUE
The unmark_day() method unmarks the specified month day.

gtk.Calendar.clear_marks

 def clear_marks()

The clear_marks() method clears all marked days.

gtk.Calendar.get_display_options

 def get_display_options()

Returns : the calendar display options

Note

This method is available in PyGTK 2.4 and above.

The get_display_options() method returns the current calendar display options. See the
set_display_options() method for more information.

gtk.Calendar.set_display_options

 def set_display_options(flags)

flags : the new calendar display options

Note

This method is available in PyGTK 2.4 and above.

The set_display_options() method sets the calendar display options to the value specified by flags.
The possible display options are a combination of:

gtk.CALENDAR_SHOW_HEADING Specifies that the month and year should be displayed.
gtk.CALENDAR_SHOW_DAY_NAMES Specifies that three letter day descriptions should be present.
gtk.CALENDAR_NO_MONTH_CHANGE Prevents the user from switching months with the calendar.

gtk.CALENDAR_SHOW_WEEK_NUMBERS
Displays each week numbers of the current year, down the left
side of the calendar.

gtk.CALENDAR_WEEK_START_MONDAY
Starts the calendar week on Monday, instead of the default
Sunday.

The display options can be removed by passing 0 as the value of flags.

gtk.Calendar.display_options

 def display_options(flags)

flags : the new calendar display options

PyGTK 2.0 Reference Manual

gtk.Calendar.unmark_day 216

Warning

This method is deprecated in PyGTK 2.4 and should be replaced by the set_display_options()
method.

The display_options() method sets the calendar display options to the value specified by flags. The
possible display options are a combination of:

gtk.CALENDAR_SHOW_HEADING Specifies that the month and year should be displayed.
gtk.CALENDAR_SHOW_DAY_NAMES Specifies that three letter day descriptions should be present.
gtk.CALENDAR_NO_MONTH_CHANGE Prevents the user from switching months with the calendar.

gtk.CALENDAR_SHOW_WEEK_NUMBERS
Displays each week numbers of the current year, down the left
side of the calendar.

gtk.CALENDAR_WEEK_START_MONDAY
Starts the calendar week on Monday, instead of the default
Sunday.

The display options can be removed by passing 0 as the value of flags.

gtk.Calendar.get_date

 def get_date()

Returns : a tuple containing the year, month and day
The get_date() method retrieves the calendar's current year, month and selected day numbers as a tuple
(year, month, day).

gtk.Calendar.freeze

 def freeze()

The freeze() method stops the update of the calendar display until the thaw() method is called. This
method is used to reduce calendar flicker when doing a large number of updates to the calendar.

gtk.Calendar.thaw

 def thaw()

The thaw() method reenables the update of the calendar after a freeze() method is called. All changes
made since the last freeze() are displayed

Signals

The "day−selected" gtk.Calendar Signal

 def callback(calendar, user_param1, ...)

calendar : the calendar that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "day−selected" signal is emitted when a day is selected either by the user or programatically.

PyGTK 2.0 Reference Manual

Warning 217

The "day−selected−double−click" gtk.Calendar Signal

 def callback(calendar, user_param1, ...)

calendar : the calendar that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "day−selected−double−click" signal is emitted when a calendar day is doubled−clicked by the user.

The "month−changed" gtk.Calendar Signal

 def callback(calendar, user_param1, ...)

calendar : the calendar that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "month−changed" signal is emitted when the calendar month is changed programatically or by the user.

The "next−month" gtk.Calendar Signal

 def callback(calendar, user_param1, ...)

calendar : the calendar that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "next−month" signal is emitted when the user clicks the "next−month" navigation control in the calendar
header.

The "next−year" gtk.Calendar Signal

 def callback(calendar, user_param1, ...)

calendar : the calendar that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "next−year" signal is emitted when the user clicks the "next−year" navigation control in the calendar
header.

The "prev−month" gtk.Calendar Signal

 def callback(calendar, user_param1, ...)

calendar : the calendar that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "prev−month" signal is emitted when the user clicks the "prev−month" navigation control in the calendar
header.

PyGTK 2.0 Reference Manual

The "day−selected−double−click" gtk.Calendar Signal 218

The "prev−year" gtk.Calendar Signal

 def callback(calendar, user_param1, ...)

calendar : the calendar that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "prev−year" signal is emitted when the user clicks the "prev−year" navigation control in the calendar
header.

Prev Up Next
gtk.ButtonBox Home gtk.CellEditable

gtk.CellEditable
Prev The gtk Class Reference Next

gtk.CellEditable

gtk.CellEditable � an interface for editing a TreeView cell

Synopsis

class gtk.CellEditable(gobject.GInterface):
 def start_editing(event)
 def editing_done()
 def remove_widget()

Signal Prototypes

"editing−done" def callback(celleditable, user_param1, ...)

"remove−widget" def callback(celleditable, user_param1, ...)

Description

The gtk.CellEditable is an interface that provides editing of a cell in a gtk.TreeView cell.

Methods

gtk.CellEditable.start_editing

 def start_editing(event)

event : A gtk.gdk.Event, or None
The start_editing() method begins the editing on a cell_editable widget that has been reparented
over the treeview cell. event is the gtk.gdk.Event that began the editing process. If the editing was
initiated through programmatic means, event may be None, .

PyGTK 2.0 Reference Manual

The "prev−year" gtk.Calendar Signal 219

gtk.CellEditable.editing_done

 def editing_done()

The editing_done() method emits the "editing_done" signal that notifies the cell renderer to update it's
value from the cell.

gtk.CellEditable.remove_widget

 def remove_widget()

The remove_widget() method emits the "remove_widget" signal that indicates that the cell is finished editing,
and the celleditable widget may now be destroyed.

Signals

The "editing−done" gtk.CellEditable Signal

 def callback(celleditable, user_param1, ...)

celleditable : the celleditable that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "editing−done" signal is emitted when the editing_done() method is called.

The "remove−widget" gtk.CellEditable Signal

 def callback(celleditable, user_param1, ...)

celleditable : the celleditable that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "remove−widget" signal is emitted when the cellrenderer for the treeview cell has retrieved the edited
information and the celleditable widget can be destroyed.

Prev Up Next
gtk.Calendar Home gtk.CellLayout

gtk.CellLayout
Prev The gtk Class Reference Next

gtk.CellLayout

gtk.CellLayout � an interface for packing cells

Synopsis

class gtk.CellLayout(gobject.GInterface):
 def pack_start(cell, expand=TRUE)
 def pack_end(cell, expand=TRUE)

PyGTK 2.0 Reference Manual

gtk.CellEditable.editing_done 220

 def clear()
 def set_attributes(cell, ...)
 def add_attribute(cell, attribute, column)
 def set_cell_data_func(cell, func, func_data)
 def clear_attributes(cell)
 def reorder(cell, position)

Description

Note

This interface is available in PyGTK 2.4 and above.

gtk.CellLayout is an interface to be implemented by all objects that want to provide a
gtk.TreeViewColumn−like API for packing cells, setting attributes and data funcs. The
gtk.CellLayout interface is implemented by the gtk.ComboBoxEntry, gtk.ComboBox,
gtk.EntryCompletion and gtk.TreeViewColumn widgets.

Methods

gtk.CellLayout.pack_start

 def pack_start(cell, expand=TRUE)

cell : A gtk.CellRenderer.
expand : if TRUE, the cell is to be given extra space that is allocated to the cell layout.

Note

This method is available in PyGTK 2.4 and above.

The pack_start() method packs the gtk.CellRenderer specified by cell into the beginning of the
cell layout. If the optional parameter expand is FALSE, then cell is allocated no more space than it needs.
Any unused space is divided evenly between cells for which expand is TRUE.

gtk.CellLayout.pack_end

 def pack_end(cell, expand=TRUE)

cell : A gtk.CellRenderer.
expand : if TRUE, the cell is to be given extra space that is allocated to the cell layout.

Note

This method is available in PyGTK 2.4 and above.

The pack_end() method adds the gtk.CellRenderer specified by cell to the end of the cell layout. If
the optional parameter expand is FALSE, then the cell is allocated no more space than it needs. Any
unused space is divided evenly between cells for which expand is TRUE.

PyGTK 2.0 Reference Manual

Synopsis 221

gtk.CellLayout.clear

 def clear()

Note

This method is available in PyGTK 2.4 and above.

The clear() method unsets all the attribute mappings on all cell renderers in the cell layout.

gtk.CellLayout.set_attributes

 def set_attributes(cell, ...)

cell : A gtk.CellRenderer.
... : Zero or more keyword−value arguments in the format attribute=column.

Note

This method is available in PyGTK 2.4 and above.

The set_attributes() method sets the attributes provided as a keyword argument list as the attributes of
the gtk.CellRenderer specified by cell. The attributes should be supplied as keyword−value
arguments in the format: attribute=column (e.g. text=0, background=1). All existing attributes are removed,
and replaced with the new attributes.

gtk.CellLayout.add_attribute

 def add_attribute(cell, attribute, column)

cell : A gtk.CellRenderer.
attribute : An attribute on the renderer.
column : The column number in the model to get the attribute from.

Note

This method is available in PyGTK 2.4 and above.

The add_attribute() method adds an attribute mapping to the list in the cell layout. The column
parameter is the column of the model to get a value from, and the attribute parameter is the attribute of
cell to be set from the value. So for example if column 2 of the model contains strings, you could have the
"text" attribute of a gtk.CellRendererText get its values from column 2.

gtk.CellLayout.set_cell_data_func

 def set_cell_data_func(cell, func, func_data)

cell : A gtk.CellRenderer.
func : The function to use.
func_data : The user data for func.

PyGTK 2.0 Reference Manual

gtk.CellLayout.clear 222

Note

This method is available in PyGTK 2.4 and above.

The set_cell_data_func() method sets the function (or method) specified by func to be used for
setting the column value of the gtk.CellRenderer specified by cell instead of using the standard
attribute mapping method. func may be None to remove the current function. The signature of func is:

 def celldatafunction(celllayout, cell, model, iter, user_data)

 def celldatamethod(self, celllayout, cell, model, iter, user_data)

where celllayout is the gtk.CellLayout, cell is the gtk.CellRenderer for celllayout,
model is the gtk.TreeModel and iter is the gtk.TreeIter pointing at the row.

gtk.CellLayout.clear_attributes

 def clear_attributes(cell)

cell : A gtk.CellRenderer to clear the attribute mapping on.

Note

This method is available in PyGTK 2.4 and above.

The clear_attributes() method clears all existing attribute mappings from the gtk.CellRenderer
specified by cell previously set with the set_attributes() or add_attribute() methods.

gtk.CellLayout.reorder

 def reorder(cell, position)

cell : A gtk.CellRenderer to reorder.
position : New position to insert cell at.

Note

This method is available in PyGTK 2.4 and above.

The reorder() method re−inserts the gtk.CellRenderer specified by cell at position. Note that
cell has to already be packed into cell_layout for this to function properly.

Prev Up Next
gtk.CellEditable Home gtk.CellRenderer

gtk.CellRenderer
Prev The gtk Class Reference Next

gtk.CellRenderer

gtk.CellRenderer � a base class for objects that render into Treeview cells

PyGTK 2.0 Reference Manual

Note 223

Synopsis

class gtk.CellRenderer(gtk.Object):
 def get_size(widget, cell_area=None)
 def render(window, widget, background_area, cell_area, expose_area, flags)
 def activate(event, widget, path, background_area, cell_area, flags)
 def start_editing(event, widget, path, background_area, cell_area, flags)
 def editing_canceled()
 def stop_editing(canceled)
 def set_fixed_size(width, height)
 def get_fixed_size()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.CellRenderer

Properties

"mode" Read/Write The editable mode of the cellrenderer. One of:
gtk.CELL_RENDERER_MODE_INERT,
gtk.CELL_RENDERER_MODE_ACTIVATABLE or
gtk.CELL_RENDERER_MODE_EDITABLE

"visible" Read/Write If TRUE the cell is displayed
"xalign" Read/Write The fraction of free space to the left of the cell in the range 0.0 to 1.0.
"yalign" Read/Write The fraction of free space above the cell in the range 0.0 to 1.0.
"xpad" Read/Write The amount of padding to the left and right of the cell.
"ypad" Read/Write The amount of padding above and below cell.
"width" Read/Write The fixed width of the cell.
"height" Read/Write The fixed height of the cell.
"is−expander" Read/Write If TRUE the row has children
"is−expanded" Read/Write If TRUE the row has children and it is expanded to show the children.
"cell−background" Write The background color of the cell as a string.
"cell−background−gdk" Read/Write The background color of the cell as a gtk.gdk.Color.
"cell−background−set" Read/Write If TRUE the cell background color is set by this cellrenderer

Signal Prototypes

"editing−canceled" def callback(cellrenderer, user_param1, ...)

"editing−started" def callback(cellrenderer, editable, path, user_param1,
...)

Description

The gtk.CellRenderer is a base class for a set of objects used for rendering a cell to a
gtk.gdk.Drawable. The gtk.CellRenderer provides the common attributes and methods for its
subclasses (gtk.CellRendererPixbuf, gtk.CellRendererText and
gtk.CellRendererToggle).

PyGTK 2.0 Reference Manual

Synopsis 224

The primary use of a gtk.CellRenderer is for drawing a certain graphical elements on a
gtk.gdk.Drawable. Typically, one cell renderer is used to draw many cells on the screen. To this extent,
it isn't expected that a CellRenderer keep any permanent state around. Instead, any state is set just prior to use
using the GObjects property system. Then, the cell is measured using the get_size() method. Finally, the
cell is rendered in the correct location using the render() method.

Methods

gtk.CellRenderer.get_size

 def get_size(widget, cell_area)

widget : the widget the renderer is rendering to
cell_area : The area a cell will be allocated, or None
Returns : a tuple containing the xoffset, yoffset, width and height
The get_size() method obtains the width and height needed to render the cell. These values are returned as
part of a tuple containing the x_offset, y_offset, width and height. get_size() is used by view widgets to
determine the appropriate size for the cell_area to be passed to the gtk.CellRenderer.render()
method. If cell_area is not None, the x and y offsets of the cell relative to this location are returned.
Please note that the values set in the returned width and height, as well as those in x_offset and y_offset are
inclusive of the xpad and ypad properties.

gtk.CellRenderer.render

 def render(window, widget, background_area, cell_area, expose_area, flags)

window : a gtk.gdk.Drawable to draw to
widget : the widget owning window
background_area : entire cell area (including tree expanders and maybe padding on the sides)
cell_area : area normally rendered by a cell renderer
expose_area : area that actually needs updating
flags : flags that affect rendering
The render() method invokes the virtual render function of the gtk.CellRenderer. The three
passed−in rectangles are areas of window. Most renderers will draw within cell_area; the xalign, yalign,
xpad, and ypad properties of the gtk.CellRenderer should be honored with respect to cell_area.
background_area includes the blank space around the cell, and also the area containing the tree expander;
so the background_area rectangles for all cells tile to cover the entire window. expose_area is a clip
rectangle.

The flags value is one of: gtk.CELL_RENDERER_SELECTED, gtk.CELL_RENDERER_PRELIT,
gtk.CELL_RENDERER_INSENSITIVE or gtk.CELL_RENDERER_SORTED

gtk.CellRenderer.activate

 def activate(event, widget, path, background_area, cell_area, flags)

event : a gtk.gdk.Event
widget : widget that received the event

path : widget−dependent string representation of the event location; e.g. for
gtk.TreeView, a string representation of gtk.TreePath

PyGTK 2.0 Reference Manual

Description 225

background_area : background area as passed to render()
cell_area : cell area as passed to render()
flags : render flags
Returns : TRUE if the event was consumed/handled
The activate() method passes an activate event to the cell renderer for possible processing. Some cell
renderers may use events; for example, gtk.CellRendererToggle toggles when it gets a mouse click.

The flags value is one of: gtk.CELL_RENDERER_SELECTED, gtk.CELL_RENDERER_PRELIT,
gtk.CELL_RENDERER_INSENSITIVE or gtk.CELL_RENDERER_SORTED

gtk.CellRenderer.start_editing

 def start_editing(event, widget, path, background_area, cell_area, flags)

event : a gtk.gdk.Event
widget : the widget that received the event

path : a widget−dependent string representation of the event location; e.g. for
gtk.TreeView, a string representation of gtk.TreePath

background_area : background area as passed to render().
cell_area : cell area as passed to render()
flags : render flags
Returns : A new gtk.CellEditable, or None
The start_editing() method initiates the editing of a cell.

gtk.CellRenderer.editing_canceled

 def editing_canceled()

Note

This method is available in PyGTK 2.4 and above.

Warning

This method is deprecated in PyGTK 2.6 and above. Use the stop_editing() method instead.

The editing_canceled() method causes the cell renderer to emit the "editing−canceled" signal. This
method is for use only by implementations of cell renderers that need to notify the client program that an
editing process was canceled and the changes were not committed.

gtk.CellRenderer.stop_editing

 def stop_editing(canceled)

canceled : if TRUE the editing has been canceled

Note

This method is available in PyGTK 2.6 and above.

The stop_editing() method informs the cell renderer that the editing is stopped. If canceled is TRUE,
the cell renderer will emit the "editing−canceled" signal. This method should be called by cell renderer

PyGTK 2.0 Reference Manual

gtk.CellRenderer.activate 226

implementations in response to the "editing−done" signal of gtk.CellEditable.

gtk.CellRenderer.set_fixed_size

 def set_fixed_size(width, height)

width : the width of the cell renderer, or −1
height : the height of the cell renderer, or −1
The set_fixed_size() method sets the renderer size to the specified width and height, independent
of the properties set.

gtk.CellRenderer.get_fixed_size

 def get_fixed_size()

Returns : a tuple containing the width and height of the cell
The get_fixed_size() method retrieves a tuple containing the fixed width and height of the cell.

Signals

The "editing−canceled" gtk.CellRenderer Signal

 def callback(cellrenderer, user_param1, ...)

cellrenderer : the cellrenderer that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "editing−canceled" signal is emitted when the user cancels the process of editing a cell. For example, an
editable cell renderer could be written to cancel editing when the user presses Escape. Also see the
editing_canceled() method.

The "editing−started" gtk.CellRenderer Signal

 def callback(cellrenderer, editable, path, user_param1, ...)

cellrenderer : the cellrenderer that received the signal
editable : the gtk.CellEditable
path : he path identifying the edited cell
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.6 and above.

PyGTK 2.0 Reference Manual

Note 227

The "editing−started" signal is emitted when a cell starts to be edited. The intended use of this signal is to do
special setup on editable, e.g. adding a gtk.EntryCompletion or setting up additional columns in a
gtk.ComboBox.

Note that GTK+ doesn't guarantee that cell renderers will continue to use the same kind of widget for editing
in future releases, therefore you should check the type of editable before doing any specific setup, as in the
following example:

def text_editing_started(cell, editable, path, data):
 if isinstance(editable, gtk.Entry):
 # ... create a GtkEntryCompletion
 completion = gtk.EntryCompletion()
 editable.set_completion(completion)
 ...
 ...

Prev Up Next
gtk.CellLayout Home gtk.CellRendererCombo

gtk.CellRendererCombo
Prev The gtk Class Reference Next

gtk.CellRendererCombo

gtk.CellRendererCombo � an object that renders a gtk.ComboBoxEntry into a gtk.TreeView cell
(new in PyGTK 2.6)

Synopsis

class gtk.CellRendererCombo(gtk.CellRendererText):
gtk.CellRendererCombo()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.CellRenderer
 +−− gtk.CellRendererText
 +−− gtk.CellRendererCombo

Properties

"has−entry" Read/Write If FALSE, don't allow entering strings other than the given ones. Default
value: TRUE. Available in GTK+ 2.6 and above.

"model" Read/Write The tree model containing the possible values for the combo box entry.
Available in GTK+ 2.6 and above.

"text−column" Read/Write A column in the data source model to get the strings from. Allowed
values: >= −1. Default value: −1. Available in GTK+ 2.6 and above.

PyGTK 2.0 Reference Manual

Note 228

Description

Note

This object is available in PyGTK 2.6 and above.

The gtk.CellRendererCombo manages the rendering of a gtk.ComboBoxEntry into a
gtk.TreeView cell.

Constructor

gtk.CellRendererCombo()

Returns : the new cell renderer

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new gtk.CellRendererCombo. Rendering parameters are adjusted using the object properties.
The object properties can be set globally (with set_property()). Also, with gtk.TreeViewColumn,
you can bind a property to a value in a gtk.TreeModel. For example, you can bind the "text" property on
the cell renderer to a string value in the model, thus rendering a different string in each row of the
gtk.TreeView.

Prev Up Next
gtk.CellRenderer Home gtk.CellRendererPixbuf

gtk.CellRendererPixbuf
Prev The gtk Class Reference Next

gtk.CellRendererPixbuf

gtk.CellRendererPixbuf � an object that renders a pixbuf into a gtk.TreeView cell

Synopsis

class gtk.CellRendererPixbuf(gtk.CellRenderer):
gtk.CellRendererPixbuf()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.CellRenderer
 +−− gtk.CellRendererPixbuf

Properties

PyGTK 2.0 Reference Manual

Description 229

"pixbuf" Read/Write The pixbuf to render.
"pixbuf−expander−open" Read/Write Pixbuf for open expander.
"pixbuf−expander−closed" Read/Write Pixbuf for closed expander.
"stock−id" Read/Write The stock ID of the stock icon to render
"stock−size" Read/Write The size of the rendered icon
"stock−detail" Read/Write Render detail to pass to the theme engine

Description

The gtk.CellRendererPixbuf manages the rendering of a pixbuf into a gtk.TreeView cell.

Constructor

gtk.CellRendererPixbuf()

Returns : the new cell renderer
Creates a new gtk.CellRendererPixbuf. Rendering parameters are adjusted using the object
properties. The object properties can be set globally (with set_property()). Also, with
gtk.TreeViewColumn, you can bind a property to a value in a gtk.TreeModel. For example, you can
bind the "pixbuf" property on the cell renderer to a pixbuf value in the model, thus rendering a different image
in each row of the gtk.TreeView.

Prev Up Next
gtk.CellRendererCombo Home gtk.CellRendererProgress

gtk.CellRendererProgress
Prev The gtk Class Reference Next

gtk.CellRendererProgress

gtk.CellRendererProgress � an object that renders numbers as progress bars in a gtk.TreeView (new in
PyGTK 2.6)

Synopsis

class gtk.CellRendererProgress(gtk.CellRenderer):
gtk.CellRendererProgress()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.CellRenderer
 +−− gtk.CellRendererProgress

Properties

"text" Read/Write The text in the label that will be drawn over the progress bar. Setting this property to
None causes the default label to be displayed. Setting this property to an empty string

PyGTK 2.0 Reference Manual

Properties 230

causes no label to be displayed. Default value: None. Available in GTK+ 2.6 and above.
"value" Read/Write The percentage that the progress bar is "filled in". Available in GTK+ 2.6 and above.

Description

Note

This object is available in PyGTK 2.6 and above.

The gtk.CellRendererProgress manages the rendering of a number as a progress bar in a
gtk.TreeView cell.

Constructor

gtk.CellRendererProgress()

Returns : the new cell renderer

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new gtk.CellRendererProgress. Rendering parameters are adjusted using the object
properties. The object properties can be set globally (with set_property()). Also, with
gtk.TreeViewColumn, you can bind a property to a value in a gtk.TreeModel. For example, you can
bind the "text" property on the cell renderer to a string value in the model, thus rendering a different string in
each row of the gtk.TreeView.

Prev Up Next
gtk.CellRendererPixbuf Home gtk.CellRendererText

gtk.CellRendererText
Prev The gtk Class Reference Next

gtk.CellRendererText

gtk.CellRendererText � an object that renders text into a gtk.TreeView cell

Synopsis

class gtk.CellRendererText(gtk.CellRenderer):
gtk.CellRendererText()

 def set_fixed_height_from_font(number_of_rows)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.CellRenderer
 +−− gtk.CellRendererText

PyGTK 2.0 Reference Manual

Properties 231

Properties

"attributes" Read/Write A list of style attributes to apply to the text of the renderer.
"background" Write Background color as a string. Default: None
"background−gdk" Read/Write Background color as a gtk.gdk.Color
"background−set" Read/Write If TRUE this tag affects the background color. Default: FALSE
"editable" Read/Write If TRUE the text can be modified by the user. GTK+ 2.4 and above.

Default: FALSE
"editable−set" Read/Write If TRUE this tag affects the text editability. GTK+ 2.4 and above.

Default: FALSE
"ellipsize" Read/Write The preferred place to ellipsize the string, if the cell renderer does not

have enough room to display the entire string, if at all. GTK+ 2.6 and
above. Default: pango.ELLIPSIZE_NONE

"ellipsize−set" Read/Write If TRUE this tag affects the text editability. Default: FALSE
"family" Read/Write Name of the font family, e.g. Sans, Helvetica, Times, Monospace.

Default: None
"family−set" Read/Write If TRUE this tag affects the font family. Default: FALSE
"font" Read/Write Font description as a string. Default: None
"font−desc" Read/Write Font description as a pango.FontDescription
"foreground" Write Foreground color as a string. Default: None
"foreground−gdk" Read/Write Foreground color as a gtk.gdk.Color
"foreground−set" Read/Write If TRUE this tag affects the foreground color. Default: FALSE
"language" Read/Write The language this text is in, as an ISO code. Pango can use this as a

hint when rendering the text. If you don't understand this parameter,
you probably don't need it. GTK+ 2.4 and above. Default: None

"language−set" Read/Write If TRUE this tag affects the language used to render the text. GTK+
2.4 and above. Default: FALSE

"markup" Write Marked up text to render. Default: None
"rise" Read/Write Offset of text above the baseline (below the baseline if rise is

negative). Default: 0
"rise−set" Read/Write If TRUE this tag affects the rise. Default: FALSE
"scale" Read/Write Font scaling factor. Allowed values >= 0. Default: 1
"scale−set" Read/Write If TRUE this tag scales the font. Default: FALSE
"single−paragraph−mode" Read/Write If TRUE, keep all text in a single paragraph. GTK+ 2.4 and above.

Default: FALSE
"size" Read/Write Font size. Allowed values >= 0. Default: 0
"size−points" Read/Write Font size in points. Allowed values >= 0. Default: 0
"size−set" Read/Write If TRUE this tag affects the font size. Default: FALSE
"stretch" Read/Write Font stretch. Default: pango.STRETCH_NORMAL
"stretch−set" Read/Write If TRUE this tag affects the font stretch. Default: FALSE
"strikethrough" Read/Write If TRUE strike through the text. Default: FALSE
"strikethrough−set" Read/Write If TRUE this tag affects the strikethrough. Default: FALSE
"style" Read/Write Font style. Default: pango.STYLE_NORMAL
"style−set" Read/Write If TRUE this tag affects the font style. Default: FALSE
"text" Read/Write Text to render. Default: None
"underline" Read/Write Style of underline for this text. Default:

PyGTK 2.0 Reference Manual

Properties 232

pango.UNDERLINE_NONE

"underline−set" Read/Write If TRUE this tag affects the text underlining. Default: FALSE
"variant" Read/Write Font variant. Default: pango.VARIANT_NORMAL
"variant−set" Read/Write If TRUE this tag affects the font variant. Default: FALSE
"weight" Read/Write Font weight. Allowed values >= 0. Default value: 400
"weight−set" Read/Write If TRUE this tag affects the font weight. Default: FALSE
"width−chars" Read/Write The desired width of the cell, in characters. If this property is set to

−1, the width will be calculated automatically, otherwise the cell will
request either 3 characters or the property value, whichever is greater.
GTK+ 2.6 and above. Allowed values >= −1. Default value: −1

Signal Prototypes

"edited" def callback(cellrenderertext, path, new_text, user_param1, ...)

Description

The gtk.CellRendererText manages the rendering of text into a gtk.TreeView cell.

Constructor

gtk.CellRendererText()

Returns : the new cell renderer
Creates a new gtk.CellRendererText. The way that text is drawn is changed using object properties.
The object properties can be set globally (with set_property()). Also, with gtk.TreeViewColumn,
you can bind a property to a value in a gtk.TreeModel. For example, you can bind the "text" property on
the cell renderer to a string value in the model, thus rendering a different string in each row of the
gtk.TreeView.

Methods

gtk.CellRendererText.set_fixed_height_from_font

 def set_fixed_height_from_font(number_of_rows)

number_of_rows : Number of rows of text each cell renderer is allocated, or −1
The set_fixed_height_from_font() sets the height of a renderer to explicitly be determined by the
"font" and "ypad" properties set on it. This method must be called each time these properties are changed to
affect the height. This function is inflexible, and should really only be used if calculating the size of a cell is
too slow (i.e. a massive number of cells displayed). If number_of_rows is −1, then the fixed height is
unset, and the height is determined by the properties again.

Signals

PyGTK 2.0 Reference Manual

Signal Prototypes 233

The "edited" gtk.CellRendererText Signal

 def callback(cellrenderertext, path, new_text, user_param1, ...)

cellrenderertext : the cellrenderertext that received the "edited" signal
path : the path string of the cellrenderertext
new_text : the new text of the cellrenderertext
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "edited" signal is emitted when the text in the cell has been edited.

Prev Up Next
gtk.CellRendererProgress Home gtk.CellRendererToggle

gtk.CellRendererToggle
Prev The gtk Class Reference Next

gtk.CellRendererToggle

gtk.CellRendererToggle � an object that renders a toggle button into a TreeView cell

Synopsis

class gtk.CellRendererToggle(gtk.CellRenderer):
gtk.CellRendererToggle()

 def get_radio()
 def set_radio(radio)
 def get_active()
 def set_active(setting)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.CellRenderer
 +−− gtk.CellRendererToggle

Properties

"activatable" Read/Write If TRUE, the toggle button can be activated
"active" Read/Write If TRUE, the button is active.
"radio" Read/Write If TRUE, draw the toggle button as a radio button
"inconsistent" Read/Write If TRUE, the button is in an inconsistent state. GTK+ 2.2 and above.

Signal Prototypes

"toggled" def callback(cellrenderertoggle, path, user_param1, ...)

PyGTK 2.0 Reference Manual

The "edited" gtk.CellRendererText Signal 234

Description

The gtk.CellRendererToggle manages the rendering of toggle button into a gtk.TreeView cell.

Constructor

gtk.CellRendererToggle()

Returns : the new cell renderer
Creates a new gtk.CellRendererToggle. The toggle button rendering parameters are adjusted using
the object properties. The object properties can be set globally (with set_property()). Also, with
gtk.TreeViewColumn, you can bind a property to a value in a gtk.TreeModel. For example, you can
bind the "active" property on the cell renderer to a boolean value in the model, thus causing the check button
to reflect the state of the model.

Methods

gtk.CellRendererToggle.get_radio

 def get_radio()

Returns : TRUE if we're rendering radio toggles rather than checkboxes
The get_radio() method returns TRUE if radio toggles rather than checkboxes are being rendered.

gtk.CellRendererToggle.set_radio

 def set_radio(radio)

radio : If TRUE make the toggle look like a radio button
The set_radio() method sets the style of the toggle button. If radio is TRUE, the cell renderer renders a
radio toggle (i.e. a toggle in a group of mutually−exclusive toggles). If FALSE, it renders a check toggle (a
standalone boolean option). This can be set globally for the cell renderer, or changed just before rendering
each cell in the model (for gtk.TreeView, you set up a per−row setting using gtk.TreeViewColumn
to associate model columns with cell renderer properties).

gtk.CellRendererToggle.get_active

 def get_active()

Returns : TRUE if the cell renderer is active.
The get_active() method returns TRUE if the cell renderer is active. See
gtk.CellRendererToggle.set_active().

gtk.CellRendererToggle.set_active

 def set_active(setting)

setting : the value to set.
The set_active() method activates a cell renderer if setting is TRUE and or deactivates a cell renderer
if setting is FALSE.

PyGTK 2.0 Reference Manual

Description 235

Signals

The "toggled" gtk.CellRendererToggle Signal

 def callback(cellrenderertoggle, path, user_param1, ...)

cellrenderertoggle : the cellrenderertoggle that received the "toggled" signal
path : the path of the cellrenderertoggle
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "toggled" signal is emitted when the toggle button in the cell changes state.

Prev Up Next
gtk.CellRendererText Home gtk.CellView

gtk.CellView
Prev The gtk Class Reference Next

gtk.CellView

gtk.CellView � a widget displaying a single row of a gtk.TreeModel (new in PyGTK 2.6).

Synopsis

class gtk.CellView(gtk.Widget):
gtk.CellView()

 def set_model(model)
 def set_displayed_row(path)
 def get_displayed_row()
 def get_size_of_row(path, requisition)
 def set_background_color(color)
 def get_cell_renderers()

Functions

 def gtk.cell_view_new_with_text(text)
 def gtk.cell_view_new_with_markup(markup)
 def gtk.cell_view_new_with_pixbuf(pixbuf)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.CellView

Properties

"background" Write The background color as a string. Default value: None
"background−gdk" Read−Write The background color as a gtk.gdk.Color.
"background−set" Read−Write If TRUE, use the "background−gdk" property to set the background color.

PyGTK 2.0 Reference Manual

Signals 236

Description

Note

This widget is available in PyGTK 2.6 and above.

The gtk.CellView is a widget that displays one row of a gtk.TreeModel. gtk.CellView
implements the gtk.CellLayout interface that provides for the addition and management of
gtk.CellRenderer objects.

Constructor

gtk.CellView()

Returns : a new gtk.CellView

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new gtk.CellView widget.

Methods

gtk.CellView.set_model

 def set_model(model)

model : a gtk.TreeModel or None

Note

This method is available in PyGTK 2.6 and above.

The set_model() method sets the gtk.TreeModel used by the cell view to that specified by model. If
model is None the cell view's model will be unset.

gtk.CellView.set_displayed_row

 def set_displayed_row(path)

path : a tree path or None to unset the row

Note

This method is available in PyGTK 2.6 and above.

The set_displayed_row() method sets the row of the model that is currently displayed to the path
specified by path. If path is None the display row will be unset, and the contents of the cell view "stick" at
their last value. This is not normally a desired result, but may be a needed intermediate state if say, the model
for the cell view becomes temporarily empty.

PyGTK 2.0 Reference Manual

Description 237

gtk.CellView.get_displayed_row

 def get_displayed_row()

Returns : the path of the currently displayed row in the cell view's model

Note

This method is available in PyGTK 2.6 and above.

The get_displayed_row() method returns the path of the currently displayed row as set by the
set−displayed_row() method.

gtk.CellView.get_size_of_row

 def get_size_of_row(path)

path : the path of a row
Returns : a gtk.Requisition containing the required size data

Note

This method is available in PyGTK 2.6 and above.

The get_size_of_row() method returns a gtk.Requisition containing the size required for
displaying the row with the tree path specified by path.

gtk.CellView.set_background_color

 def set_background_color(color)

color :

Note

This method is available in PyGTK 2.6 and above.

The set_background_color() method sets the background color of the cell view to the
gtk.gdk.Color specified by color.

gtk.CellView.get_cell_renderers

 def get_cell_renderers()

Returns : a list of the gtk.CellRenderer objects of the cell view.

Note

This method is available in PyGTK 2.6 and above.

The get_cell_renderers() method returns a list containing the gtk.CellRenderer objects used by
the cell view.

PyGTK 2.0 Reference Manual

gtk.CellView.get_displayed_row 238

Functions

gtk.cell_view_new_with_text

 def gtk.cell_view_new_with_text(text)

text : a string
Returns : a new gtk.CellView

Note

This function is available in PyGTK 2.6 and above.

The gtk.cell_view_new_with_text() function creates a new gtk.CellView with a
gtk.CellRendererText displaying the string specified by text.

gtk.cell_view_new_with_markup

 def gtk.cell_view_new_with_markup(markup)

markup : a string containing Pango markup to be displayed.
Returns : a new gtk.CellView

Note

This function is available in PyGTK 2.6 and above.

The gtk.cell_view_new_with_markup() function creates a new gtk.CellView with a
gtk.CellRendererText displaying the Pango markup specified by markup.

gtk.cell_view_new_with_pixbuf

 def gtk.cell_view_new_with_pixbuf(pixbuf)

pixbuf : a gtk.gdk.Pixbuf
Returns : a new gtk.CellView

Note

This function is available in PyGTK 2.6 and above.

The gtk.cell_view_new_with_pixbuf() function creates a new gtk.CellView with a
gtk.CellRendererPixbuf displaying the gtk.gdk.Pixbuf specified by pixbuf.

Prev Up Next
gtk.CellRendererToggle Home gtk.CheckButton

gtk.CheckButton
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

Functions 239

gtk.CheckButton

gtk.CheckButton � a toggle button widget styled as a checkbox and label

Synopsis

class gtk.CheckButton(gtk.ToggleButton):
gtk.CheckButton(label=None, use_underline=TRUE)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Button
 +−− gtk.ToggleButton
 +−− gtk.CheckButton

Style Properties

"indicator−spacing" Read/Write The spacing around the check or radio indicator
"indicator−size" Read/Write The size of the check or radio indicator

Description

A gtk.CheckButton places a discrete gtk.ToggleButton next to a widget, (usually a gtk.Label).
See the section on gtk.ToggleButton widgets for more information about toggle and check buttons. The
signal ('toggled') is also inherited from gtk.ToggleButton.

Constructor

gtk.CheckButton(label=None, use_underline=TRUE)

label : a string to be used as the label text or None

use_underline :
if TRUE, an underscore in the label text indicates the next character should be underlined
and used for the mnemonic accelerator key if it is the first character so marked.
Available in PyGTK 2.4 and above.

Returns : a new checkbutton object
Creates a new checkbutton with a text label specified by label. If label is None or not specified then no
label is created. If label contains underscore characters then the character following the underscore will be
underlined and the character following the first underscore will be used as the mnemonic keyboard
accelerator.

In PyGTK 2.4 and above the use_underline parameter is available and defaults to TRUE. If
use_underline is set to FALSE the label text will not be parsed for mnemonic characters.

Prev Up Next
gtk.CellView Home gtk.CheckMenuItem

PyGTK 2.0 Reference Manual

gtk.CheckButton 240

gtk.CheckMenuItem
Prev The gtk Class Reference Next

gtk.CheckMenuItem

gtk.CheckMenuItem � a menu item with a check box.

Synopsis

class gtk.CheckMenuItem(gtk.MenuItem):
gtk.CheckMenuItem(label=None, use_underline=TRUE)

 def set_active(is_active)
 def get_active()
 def toggled()
 def set_inconsistent(setting)
 def get_inconsistent()
 def set_draw_as_radio(draw_as_radio)
 def get_draw_as_radio()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Item
 +−− gtk.MenuItem
 +−− gtk.CheckMenuItem

Properties

"active" Read/Write If TRUE, the menu item is checked.
"inconsistent" Read/Write If TRUE, display an "inconsistent" state.
"draw−as−radio" Read/Write If TRUE, display like a radio menu item. GTK+ 2.4 and above.

Style Properties

"indicator−size" Read The size of the check or radio indicator.

Attributes

"active" Read If TRUE, the menu item is checked.

Signal Prototypes

"toggled" def callback(checkmenuitem, user_param1, ...)

PyGTK 2.0 Reference Manual

Constructor 241

Description

A gtk.CheckMenuItem is a menu item that maintains the state of a boolean value in addition to a
gtk.MenuItem's usual role in activating application code. A check box indicating the state of the boolean
value is displayed at the left side of the gtk.MenuItem. Activating the gtk.MenuItem toggles the value.

Constructor

gtk.CheckMenuItem(label=None, use_underline=TRUE)

label : a string to be used as the label text or None

use_underline :
if TRUE, an underscore in the label text indicates the next character should be underlined
and used for the mnemonic accelerator key if it is the first character so marked.
Available in PyGTK 2.4 and above.

Returns : a new checkmenuitem
Creates a new checkmenuitem with a text label specified by label. If label is None or not specified then
no label is created. If label contains underscore characters then the character following the underscore will
be underlined and the character following the first underscore will be used as the mnemonic keyboard
accelerator.

In PyGTK 2.4 and above the use_underline parameter is available and defaults to TRUE. If
use_underline is set to FALSE the label text will not be parsed for mnemonic characters.

Methods

gtk.CheckMenuItem.set_active

 def set_active(is_active)

is_active : If TRUE set the check box active
The set_active() method sets the active state of the menu item's check box according to the value of
is_active.

gtk.CheckMenuItem.get_active

 def get_active()

Returns : TRUE if the menu item is checked (check box is active).
The get_active() method returns whether the check menu item is active. See
gtk.CheckMenuItem.set_active().

gtk.CheckMenuItem.toggled

 def toggled()

The toggle() method emits the "toggled" signal on the checkmenuitem

PyGTK 2.0 Reference Manual

Description 242

gtk.CheckMenuItem.set_inconsistent

 def set_inconsistent(setting)

setting : If TRUE display an "inconsistent" third state check
The set_inconsistent() method sets the check box to display an "inconsistent" state if the value of
setting is TRUE. The "inconsistent" state display is removed if setting is FALSE.

An application may want to display an "inconsistent" state if the user has selected a range of elements (such as
some text or spreadsheet cells) that are affected by a boolean setting, and the current values for those elements
cannot be represented by a single checkmenuitem state. The set_inconsistent() method only affects
visual appearance, it doesn't affect the semantics of the widget.

gtk.CheckMenuItem.get_inconsistent

 def get_inconsistent()

Returns : TRUE if the checkmenuitem displays the "inconsistent" state
The get_inconsistent() method retrieves the value set by the set_inconsistent() method.

gtk.CheckMenuItem.set_draw_as_radio

 def set_draw_as_radio(draw_as_radio)

draw_as_radio : If TRUE display the check menu item like a radio menu item

Note

This method is available in PyGTK 2.4 and above.

The set_draw_as_radio() method displays the check menu item like a radio menu item if the value of
draw_as_radio is TRUE. If draw_as_radio is FALSE the check menu item is displayed as normal.

gtk.CheckMenuItem.get_draw_as_radio

 def get_draw_as_radio()

Returns : TRUE if the checkmenuitem should be displayed like a radio menu item.

Note

This method is available in PyGTK 2.4 and above.

The get_draw_as_radio() method retrieves the value set by the set_draw_as_radio() method.

Signals

The "toggled" gtk.CheckMenuItem Signal

 def callback(checkmenuitem, user_param1, ...)

checkmenuitem : the checkmenuitem that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method

PyGTK 2.0 Reference Manual

gtk.CheckMenuItem.set_inconsistent 243

... : additional user parameters (if any)
The "toggled" signal is emitted when the checkmenuitem changes state.

Prev Up Next
gtk.CheckButton Home gtk.Clipboard

gtk.Clipboard
Prev The gtk Class Reference Next

gtk.Clipboard

gtk.Clipboard � an object to store data to and retrieve data from (new in PyGTK 2.2)

Synopsis

class gtk.Clipboard(gobject.GObject):
gtk.Clipboard(display=gtk.gdk.display_get_default(), selection="CLIPBOARD")

 def get_display()
 def set_with_data(targets, get_func, clear_func, user_data)
 def get_owner()
 def clear()
 def set_text(text, len=−1)
 def request_contents(target, callback, user_data=None)
 def request_text(callback, user_data=None)
 def request_targets(callback, user_data=None)
 def wait_for_contents(target)
 def wait_for_text()
 def wait_is_text_available()
 def wait_for_targets()
 def wait_is_target_available(target)
 def set_can_store(targets)
 def store()

Functions

 def gtk.clipboard_get(selection="CLIPBOARD")

Ancestry

+−− gobject.GObject
 +−− gtk.Clipboard

Description

Note

This object is available in PyGTK 2.2 and above.

The gtk.Clipboard object represents a clipboard of data shared between different processes or between
different widgets in the same process. Each clipboard is identified by a name encoded as a gtk.gdk.Atom.
The gtk.Clipboard is basically a higher−level interface to the lower−level gtk.SelectionData and
selection interface. The built−in atoms are:

"PRIMARY"•
"SECONDARY"•

PyGTK 2.0 Reference Manual

The "toggled" gtk.CheckMenuItem Signal 244

"CLIPBOARD"•
"BITMAP"•
"COLORMAP"•
"DRAWABLE"•
"PIXMAP"•
"STRING"•
"WINDOW"•

Creating a gtk.gdk.Atom from strings can be done with the gtk.gdk.atom_intern() constructor function
though PyGTK will usually do the conversion under the covers as needed. The name of a gtk.gdk.Atom
can be retrieved using the Python str() function:

 name = str(atom)

The default clipboard corresponds to the "CLIPBOARD" atom; another commonly used clipboard is the
"PRIMARY" clipboard, which, in X, traditionally contains the currently selected text.

To simultaneously support different formats on the clipboard, the clipboard mechanism allows you to provide
callbacks instead of the actual data. When you set the contents of the clipboard, you can either supply the data
directly (via a method like set_text()), or you can supply a callback to be called when the data is needed
(via the set_with_data() method.) Providing a callback also avoids making unnecessary copies of the
data.

Along with the methods to get the clipboard contents as an arbitrary data chunk, there is a method to retrieve
it as text, the wait_for_text() method. This method takes care of determining which formats are
advertised by the clipboard provider, asking for the clipboard in the best available format and converting the
results into the UTF−8 encoding. (The standard form for representing strings in GTK+.)

Constructor

gtk.Clipboard(display=gtk.gdk.display_get_default(), selection="CLIPBOARD")

display : the gtk.gdk.Display for which the clipboard is to be retrieved or created.
selection :a string that identifies the clipboard to use.

Returns : the appropriate clipboard object or if no clipboard already exists, a new one will be created.
Once a clipboard object has been created, it is persistent for all time and cannot be freed.

Note

This constructor is available in PyGTK 2.2 and above.

Returns the clipboard object for the gtk.gdk.Display specified by display and the selection specified
by the string in selection. Cut/copy/paste menu items and keyboard shortcuts should use the default
clipboard, returned by passing "CLIPBOARD" for selection. The currently−selected object or text should
be provided on the clipboard identified by "PRIMARY". Cut/copy/paste menu items conceptually copy the
contents of the "PRIMARY" clipboard to the default clipboard, i.e. they copy the selection to what the user
sees as the clipboard.

See http://www.freedesktop.org/standards/clipboards−spec/clipboards.txt for a detailed discussion of the
"CLIPBOARD" vs. "PRIMARY" selections under the X window system. On Win32 the "PRIMARY"
clipboard is essentially ignored.

It's possible to have arbitrarily named clipboards. If you do invent new clipboards, you should prefix the
selection name with an underscore (because the ICCCM requires that nonstandard atoms are
underscore−prefixed), and namespace it as well. For example, if your application called "Foo" has a

PyGTK 2.0 Reference Manual

Note 245

http://www.freedesktop.org/standards/clipboards-spec/clipboards.txt

special−purpose clipboard, you might call it "_FOO_SPECIAL_CLIPBOARD".

In PyGTK 2.4 and above, the display argument is optional and defaults to the default display returned from
the gtk.gdk.display_get_default() function.

In PyGTK 2.4 and above, the selection argument is optional and defaults to "CLIPBOARD".

Methods

gtk.Clipboard.get_display

 def get_display()

Returns : the gtk.gdk.Display associated with the clipboard

Note

This method is available in PyGTK 2.2 and above.

The get_display() method returns the gtk.gdk.Display associated with the clipboard.

gtk.Clipboard.set_with_data

 def set_with_data(targets, get_func, clear_func, user_data)

targets : a list of 3−tuples containing information about the available forms for the clipboard
data

get_func : a function to call to get the actual clipboard data

clear_func : when the clipboard contents are set again, this function will be called, and
get_func will not be subsequently called.

user_data : the user data to pass to get_func and clear_func.

Returns : TRUE if setting the clipboard data succeeded. If setting the clipboard data failed the
provided callback functions will be ignored.

Note

This method is available in PyGTK 2.2 and above.

The set_with_data() method virtually sets the contents of the specified clipboard by providing a list of
supported formats (specified by targets) for the clipboard data and a function (specified by get_func) to
call to get the actual data when it is requested. clear_func is a function that is called when the contents of
the clipboard are being changed to provide cleanup operations on user_data. user_data is passed to
get_func and clear_func when they are invoked. The 3−tuples listed in targets contain the
following items:

a string representing a target supported by the clipboard•
a flags value used for drag and drop − a combination of: gtk.TARGET_SAME_APP and
gtk.TARGET_SAME_WIDGET

•

an application assigned integer that is passed as a signal parameter to help identify the target type•

The signature of get_func is:

 def get_func(clipboard, selectiondata, info, data):

PyGTK 2.0 Reference Manual

Note 246

where clipboard is the gtk.Clipboard, selectiondata is a gtk.SelectionData object to set
with the data, info is the application assigned integer associated with a target, and data is the user_data
argument.

The signature of clear_func is:

 def clear_func(clipboard, data):

where clipboard is the gtk.Clipboard and data is the user_data argument.

gtk.Clipboard.get_owner

 def get_owner()

Returns : the owner of the clipboard, if any; otherwise None.

Note

This method is available in PyGTK 2.2 and above.

The get_owner() method returns the owner set by the set_with_owner() method if neither the
set_with_data() method nor the clear() method have been subsequently called. This method returns
None otherwise.

gtk.Clipboard.clear

 def clear()

Note

This method is available in PyGTK 2.2 and above.

The clear() method clears the contents of the clipboard. Generally this should only be called between the
time you call the set_with_data(), and when the clear_func you supplied is called. Otherwise, the
clipboard may be owned by someone else.

gtk.Clipboard.set_text

 def set_text(text, len=−1)

text : a string.
len : the length of text, in bytes, or −1, to calculate the length.

Note

This method is available in PyGTK 2.2 and above.

The set_text() method sets the contents of the clipboard to the string specified by text. If len is given it
determines the length of text to be copied. If len is not specified it defaults to −1 and the method calculates
the text length.

PyGTK 2.0 Reference Manual

Note 247

gtk.Clipboard.request_contents

 def request_contents(target, callback, user_data=None)

target : a gtk.gdk.Atom or string representing the form that the clipboard owner should
convert the selection to.

callback : a function to call when the results are received (or the retrieval fails).
user_data : user data to pass to callback

Note

This method is available in PyGTK 2.4 and above.

The request_contents() method requests the contents of clipboard in the form specified by target.
When the results of the request are later received the function specified by callback will be invoked and
passed the data specified by user_data. The signature of callback is:

 def callback(clipboard, selection_data, data):

where clipboard is the gtk.Clipboard that invoked callback and selection_data is the
gtk.SelectionData containing the target data and data is user_data.

gtk.Clipboard.request_text

 def request_text(callback, user_data=None)

callback : a function to call when the text is received, or the retrieval fails. (It will always be called one
way or the other.)

user_data : user data to pass to callback.

Note

This method is available in PyGTK 2.4 and above.

The request_text() method requests the contents of the clipboard as text. When the text is later received,
it will be converted to UTF−8 if necessary, and callback will be called with the data specified by
user_data. The signature of callback is:

 def callback(clipboard, text, data):

where clipboard is the gtk.Clipboard that text is retrieved from and data is user_data. text
will contain the resulting text if the request succeeded, or the empty string if it failed. This could happen for
various reasons, in particular if the clipboard was empty or if the contents of the clipboard could not be
converted into text form.

gtk.Clipboard.request_targets

 def request_targets(callback, user_data=None)

callback : a function to call when the targets are received, or the retrieval fails. (It will always be called
one way or the other.)

user_data : user data to pass to callback.

Note

This method is available in PyGTK 2.4 and above.

PyGTK 2.0 Reference Manual

gtk.Clipboard.request_contents 248

The request_targets() method requests the contents of the clipboard as list of supported targets. When
the list is later received, callback will be called with the data specified by user_data. The signature of
callback is:

 def callback(clipboard, targets, data):

where clipboard is the gtk.Clipboard that targets is retrieved from. targets is a tuple
containing the gtk.gdk.Atom objects corresponding to the targets of clipboard. targets will contain the
resulting targets if the request succeeded, or an empty tuple if it failed.

gtk.Clipboard.wait_for_contents

 def wait_for_contents(target)

target : an atom or string representing the form into which the clipboard owner should convert the
selection.

Returns : a newly−allocated gtk.SelectionData object or None if retrieving the given target failed.

Note

This method is available in PyGTK 2.2 and above.

The wait_for_contents() method requests the contents of the clipboard using the target specified by
target. This method waits for the data to be received using the main loop, so events, timeouts, etc, may be
dispatched during the wait.

gtk.Clipboard.wait_for_text

 def wait_for_text()

Returns :
a string, or None if retrieving the selection data failed. (This could happen for various reasons,
in particular if the clipboard was empty or if the contents of the clipboard could not be
converted into text form.)

Note

This method is available in PyGTK 2.2 and above.

The wait_for_text() method requests the contents of the clipboard as text and converts the result to
UTF−8 if necessary. This method waits for the data to be received using the main loop, so events, timeouts,
etc, may be dispatched during the wait.

gtk.Clipboard.wait_is_text_available

 def wait_is_text_available()

Returns : TRUE is there is text available.

Note

This method is available in PyGTK 2.2 and above.

The wait_is_text_available() method tests to see if there is text available to be copied from the
clipboard. This is done by requesting the "TARGETS" atom and checking if it contains any of the names:
"STRING", "TEXT", "COMPOUND_TEXT", "UTF8_STRING". This method waits for the data to be
received using the main loop, so events, timeouts, etc, may be dispatched during the wait.

PyGTK 2.0 Reference Manual

Note 249

This method is a little faster than calling the wait_for_text() since it doesn't need to retrieve the actual
text.

gtk.Clipboard.wait_for_targets

 def wait_for_targets()

Returns : returns a tuple containing any targets that are present on the clipboard or None.

Note

This method is available in PyGTK 2.4 and above.

The wait_for_targets() method returns a tuple containing the targets (as gtk.gdk.Atom objects) that
are present on the clipboard, or None if there aren't any targets available. This function waits for the data to
be received using the main loop, so events, timeouts, etc, may be dispatched during the wait.

gtk.Clipboard.wait_is_target_available

 def wait_is_target_available(target)

target : an atom or string representing the target of interest.
Returns : TRUE if the target is available.

Note

This method is available in PyGTK 2.6 and above.

The wait_is_target_available() method tests to see if the target specified by target is available
to be copied from the clipboard. This method can be used to determine if a Paste menu item should be
insensitive or not.

If you want to see if there's text available on the clipboard, use the wait_is_text_available() method
instead.

gtk.Clipboard.set_can_store

 def set_can_store()

targets : a list of 3−tuples containing information about the available forms that should be stored or
None to indicate that all forms should be stored.

Note

This method is available in PyGTK 2.6 and above.

The set_can_store() method sets a hint that the gtk.Clipboard can store the list of targets specified
by targets can be stored somewhere when the application exits or when the store() method is called.
This value is reset when the clipboard owner changes. Where the clipboard data is stored is platform
dependent, see the gtk.gdk.Display.store_clipboard() method for more information. If
targets is None all target forms currently available on the clipboard should be stored.

The 3−tuples listed in targets contain the following items:

a string representing a target supported by the clipboard•

PyGTK 2.0 Reference Manual

Note 250

a flags value used for drag and drop − a combination of: gtk.TARGET_SAME_APP and
gtk.TARGET_SAME_WIDGET

•

an application assigned integer that is passed as a signal parameter to help identify the target type•

gtk.Clipboard.store

 def store()

Note

This method is available in PyGTK 2.6 and above.

The store() method stores the current clipboard data (as specified by the set_can_store() method)
somewhere so that it will stay around after the application has quit.

Functions

gtk.clipboard_get

 def gtk.clipboard_get(selection="CLIPBOARD")

selection :a string specifying a gtk.Clipboard. If not specified it defaults to "CLIPBOARD".

Returns : the appropriate clipboard object or if no clipboard already exists, a new one will be created.
Once a clipboard object has been created, it is persistent for all time and cannot be freed.

Note

This function is available in PyGTK 2.4 and above.

The gtk.clipboard_get() function returns the gtk.Clipboard specified by selection for the default
gtk.gdk.Display. See the gtk.Clipboard constructor for more information.

Prev Up Next
gtk.CheckMenuItem Home gtk.ColorButton

gtk.ColorButton
Prev The gtk Class Reference Next

gtk.ColorButton

gtk.ColorButton � a button to launch a color selection dialog (new in PyGTK 2.4)

Synopsis

class gtk.ColorButton(gtk.Button):
gtk.ColorButton(color)

 def set_color(color)
 def get_color()
 def set_alpha(alpha)
 def get_alpha()
 def set_use_alpha(use_alpha)
 def get_use_alpha()

PyGTK 2.0 Reference Manual

Note 251

 def set_title(title)
 def get_title()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Button
 +−− gtk.ColorButton

Properties

"alpha" Read−Write The selected opacity value (0 fully transparent, 65535 fully opaque). Available in
GTK+ 2.4 and above.

"color" Read−Write The selected color. Available in GTK+ 2.4 and above.
"title" Read−Write The title of the color selection dialog. Available in GTK+ 2.4 and above.
"use−alpha" Read−Write If TRUE, the color swatch on the button is rendered against a checkerboard

background to show its opacity and the opacity slider is displayed in the color
selection dialog. Available in GTK+ 2.4 and above.

Signal Prototypes

"color−set" def callback(colorbutton, user_param1, ...)

Description

The gtk.ColorButton is a button which displays the currently selected color and, when clicked, opens a
gtk.ColorSelectionDialog to change the color. It's a suitable widget for selecting a color in a
preference dialog. The gtk.ColorButton is available in PyGTK 2.4 and above.

Constructor

gtk.ColorButton(color=gtk.gdk.Color(0,0,0))

color : an optional gtk.gdk.Color to set the current color with
Returns : a new color button.

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new color button with the current color set to the color specified by the optional gtk.gdk.Color
color. A color button is a small button containing a swatch representing the current selected color. When the
button is clicked, a gtk.ColorSelectionDialog will open, allowing the user to select a color. The
swatch will be updated to reflect the new color the user selects.

PyGTK 2.0 Reference Manual

Synopsis 252

Methods

gtk.ColorButton.set_color

 def set_color(color)

color : A gtk.gdk.Color to set the current color with.

Note

This method is available in PyGTK 2.4 and above.

The set_color() method sets the current color (and the "color" property) to the color specified by the
gtk.gdk.Color color.

gtk.ColorButton.get_color

 def get_color()

Returns : a gtk.gdk.Color specifying the current color.

Note

This method is available in PyGTK 2.4 and above.

The get_color() method returns the value of the "color" property which is a gtk.gdk.Color specifying
the current color in the gtk.ColorButton widget.

gtk.ColorButton.set_alpha

 def set_alpha(alpha)

alpha : The opacity in the range 0 to 65535.

Note

This method is available in PyGTK 2.4 and above.

The set_alpha() method sets the current opacity (and the "alpha" property) to the value specified by
alpha.

gtk.ColorButton.get_alpha

 def get_alpha()

Returns : the opacity in the range 0 to 65535.

Note

This method is available in PyGTK 2.4 and above.

The get_alpha() method returns the value of the "alpha" property that contains the opacity setting.

PyGTK 2.0 Reference Manual

Methods 253

gtk.ColorButton.set_use_alpha

 def set_use_alpha(use_alpha)

use_alpha : if TRUE, the color button should use the alpha channel.

Note

This method is available in PyGTK 2.4 and above.

The set_use_alpha() method sets the "use−alpha" property to the value of use_alpha. If use_alpha
is TRUE, the color swatch on the button is rendered against a checkerboard background to show its opacity
and the opacity slider is displayed in the color selection dialog.

gtk.ColorButton.get_use_alpha

 def get_use_alpha()

Returns : TRUE if the color sample should use the alpha channel

Note

This method is available in PyGTK 2.4 and above.

The get_use_alpha() method returns the value of the "use−alpha" property. If TRUE the color selection
dialog should use the alpha channel.

gtk.ColorButton.set_title

 def set_title(title)

title : a string containing the new gtk.ColorSelectionDialog title.

Note

This method is available in PyGTK 2.4 and above.

The set_title() method sets the title for the color selection dialog to the string contained in title. The
"title" property is also set.

gtk.ColorButton.get_title

 def get_title()

Returns : the title of the gtk.ColorSelectionDialog

Note

This method is available in PyGTK 2.4 and above.

The get_title() method returns the value of the "title" property that contains the title of the color selection
dialog.

PyGTK 2.0 Reference Manual

gtk.ColorButton.set_use_alpha 254

Signals

The "color−set" gtk.ColorButton Signal

 def callback(colorbutton, user_param1, ...)

colorbutton : the colorbutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "color−set" signal is emitted when the user selects a color. When handling this signal, use the
get_color() and the get_alpha() methods to find out what color was just selected.

Prev Up Next
gtk.Clipboard Home gtk.ColorSelection

gtk.ColorSelection
Prev The gtk Class Reference Next

gtk.ColorSelection

gtk.ColorSelection � a widget used to select a color.

Synopsis

class gtk.ColorSelection(gtk.VBox):
gtk.ColorSelection()

 def get_has_opacity_control()
 def set_has_opacity_control(has_opacity)
 def get_has_palette()
 def set_has_palette(has_palette)
 def set_current_color(color)
 def set_current_alpha(alpha)
 def get_current_color()
 def get_current_alpha()
 def set_previous_color(color)
 def set_previous_alpha(alpha)
 def get_previous_color()
 def get_previous_alpha()
 def is_adjusting()

Functions

 def gtk.color_selection_palette_from_string(str)
 def gtk.color_selection_palette_to_string(colors)

Ancestry

+−− gobject.GObject
 +−−gtk.Object
 +−− gtk.Widget
 +−− gtk.Container

PyGTK 2.0 Reference Manual

Signals 255

 +−− gtk.Box
 +−− gtk.VBox
 +−− gtk.ColorSelection

Properties

"has−palette" Read/Write If TRUE, a palette should be used
"has−opacity−control" Read/Write If TRUE, the color selector should allow setting opacity
"current−color" Read/Write The current color as a gtk.gdk.Color
"current−alpha" Read/Write The current opacity value (0 fully transparent, 65535 fully opaque)

Signal Prototypes

"color−changed" def callback(colorselection, user_param1, ...)

Description

The gtk.ColorSelection is a widget that is used to select a color. It consists of a color wheel and entry
boxes for color parameters such as hue, saturation, value, red, green, blue, and color name and optionally an
opacity control and/or a color palette. It is found on the standard color selection dialog box
gtk.ColorSelectionDialog. The color wheel can be manipulated to set a new color or new entries
can be made in the entry boxes. The new color is displayed next to the previous color. An eyedropper button
is available to allow the selection of a color from a pixel location on the display.

Constructor

gtk.ColorSelection()

Returns : a new gtk.ColorSelection
Creates a new gtk.ColorSelection widget.

Methods

gtk.ColorSelection.get_has_opacity_control

 def get_has_opacity_control()

Returns : TRUE if the colorsel has an opacity control; FALSE if it doesn't.
The get_opacity() method determines whether the colorselection is displaying an opacity control.

gtk.ColorSelection.set_has_opacity_control

 def set_has_opacity_control(has_opacity)

has_opacity : If TRUE the colorselection will display the opacity control.
The set_has_opacity_control() method sets the "has−opacity−control" property to the value of
has_opacity. If has_opacity is TRUE the colorselection will display the opacity control slider and
entry box; otherwise the opacity control is not displayed.

PyGTK 2.0 Reference Manual

Ancestry 256

gtk.ColorSelection.get_has_palette

 def get_has_palette()

Returns : TRUE if the selector has a palette; FALSE if it hasn't.
The get_has_palette() method returns the value of the "has−palette" property that determines whether
the color selector displays a color palette.

gtk.ColorSelection.set_has_palette

 def set_has_palette(has_palette)

has_palette : If TRUE the color palette is displayed.
The set_has_palette() method sets the "has−palette" property to the value of has_palette. If
has_palette is TRUE the palette will be displayed; otherwise the palette will be hidden.

gtk.ColorSelection.set_current_color

 def set_current_color(color)

color : A gtk.gdk.Color to set the current color with.
The set_current_color() method sets the current color to the value of color. The first time this is
called, it will also set the previous color to the value of color too.

gtk.ColorSelection.set_current_alpha

 def set_current_alpha(alpha)

alpha : an integer between 0 and 65535.
The set_current_alpha() method sets the "current−alpha" property (the opacity) to the value of alpha.
The alpha (opacity) is displayed in the range of 0 to 255 in the colorselection. The first time this is called, it
will also set the previous opacity to the value of alpha too.

gtk.ColorSelection.get_current_color

 def get_current_color()

Returns : a gtk.gdk.Color representing the current color.
The get_current_color() method retrieves the current color in the colorselection.

gtk.ColorSelection.get_current_alpha

 def get_current_alpha()

Returns : the current alpha value in the range 0 to 65535.
The get_current_alpha() method returns the value of the "current_alpha" property that controls the
opacity value.

gtk.ColorSelection.set_previous_color

 def set_previous_color(color)

PyGTK 2.0 Reference Manual

gtk.ColorSelection.get_has_palette 257

color : a gtk.gdk.Color to set the previous color with.
The set_previous_color() method sets the 'previous' color to the value of color. Applications usually
do not call this method. The first time set_current_color() the 'previous' color will be set.

gtk.ColorSelection.set_previous_alpha

 def set_previous_alpha(alpha)

alpha : an integer between 0 and 65535.
The set_previous_alpha() method sets the 'previous' alpha to the value of alpha. Applications usually do not
call this method. The first time set_current_alpha() the 'previous' alpha will be set.

gtk.ColorSelection.get_previous_color

 def get_previous_color()

Returns : a gtk.gdk.Color with the previous color value.
The get_previous_color() method retrieves the previous color value.

gtk.ColorSelection.get_previous_alpha

 def get_previous_alpha()

Returns : an integer between 0 and 65535.
The get_previous_alpha() method returns the previous alpha value.

gtk.ColorSelection.is_adjusting

 def is_adjusting()

Returns : TRUE if the user is currently dragging a color around, and FALSE if the selection has stopped.
The is_adjusting() method retrieves the current state of the colorselection. If TRUE the user is in the
process of changing the current color.

Functions

gtk.color_selection_palette_from_string

 def gtk.color_selection_palette_from_string(str)

str : the string containing the list of colors
Returns : a list of gtk.gdk.Color objects or None if the conversion fails
The gtk.color_selection_palette_from_string() function returns a list of gtk.gdk.Color
objects corresponding to the color specifications in the string specified by str. str is a colon−separated list of
color names readable by gtk.gtk.color_parse(). If str cannot be converted to a list of color this
function returns None.

PyGTK 2.0 Reference Manual

gtk.ColorSelection.set_previous_color 258

gtk.color_selection_palette_to_string

 def gtk.color_selection_palette_to_string(colors)

colors : a list or tuple of gtk.gdk.Color objects
Returns : a string containing a colon−separated list of colors
The gtk.color_selection_palette_to_string() function returns a string containing a
colon−separated list of the representation of the gtk.gdk.Color objects in colors.

This function is useful to save a special palette of colors for a gtk.ColorSelection as a string that can
later be used by calling the gobject.set_property() method to set the "gtk−color−palette" property on
the default gtk.Settings returned from the gtk.settings_get_default()) function.

Signals

The "color−changed" gtk.ColorSelection Signal

 def callback(colorselection, user_param1, ...)

colorselection : the colorselection that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "color−changed" signal is emitted when the current color in the colorselection changes.

Prev Up Next
gtk.ColorButton Home gtk.ColorSelectionDialog

gtk.ColorSelectionDialog
Prev The gtk Class Reference Next

gtk.ColorSelectionDialog

gtk.ColorSelectionDialog � a standard dialog for selecting a color.

Synopsis

class gtk.ColorSelectionDialog(gtk.Dialog):
gtk.ColorSelectionDialog(title)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Dialog
 +−− gtk.ColorSelectionDialog

PyGTK 2.0 Reference Manual

gtk.color_selection_palette_to_string 259

Attributes

"colorsel" Read The gtk.ColorSelection widget contained in the dialog.
"ok_button" Read The "OK" button contained in the dialog.
"cancel_button" Read The "Cancel" button contained in the dialog.
"help_button" Read The "Help" button contained in the dialog.

Description

The gtk.ColorSelectionDialog provides a standard dialog that allows a user to select a color. The
gtk.ColorSelectionDialog uses an embedded gtk.ColorSelection to provide color selection
capability.

Use the attributes (ok_button, cancel_button and help_button) of the colorselectiondialog to connect handlers
to the "OK", "Cancel" and "Help" button "clicked" signals. The colorsel attribute provides access to the
colorselection widget. Connect a handler to its "color−changed" signal to be notified when the color is
changed. The current color can be retrieved using the gtk.ColorSelection.get_current_color()
method.

Constructor

gtk.ColorSelectionDialog(title)

title : a string to be used as the dialog title.
Returns : a new colorselectiondialog
Creates a new gtk.ColorSelectionDialog using the string contained in title as the text for the
dialog title.

Prev Up Next
gtk.ColorSelection Home gtk.Combo

gtk.Combo
Prev The gtk Class Reference Next

gtk.Combo

gtk.Combo � a text entry field with a dropdown list.

Synopsis

class gtk.Combo(gtk.HBox):
gtk.Combo()

 def set_value_in_list(val, ok_if_empty)
 def set_use_arrows(val)
 def set_use_arrows_always(val)
 def set_case_sensitive(val)
 def set_item_string(item, item_value)
 def set_popdown_strings(strings)
 def disable_activate()

PyGTK 2.0 Reference Manual

Attributes 260

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.HBox
 +−− gtk.Combo

Properties

"enable−arrow−keys" Read/Write If TRUE, the arrow keys move through the list of items
"enable−arrows−always" Read/Write If TRUE, the arrow keys work, even if the entry contents are not

in the list
"case−sensitive" Read/Write If TRUE, list item matching is case sensitive
"allow−empty" Read/Write If TRUE, an empty value may be entered in this field
"value−in−list" Read/Write If TRUE, entered values must already be present in the list

Attributes

"entry" Read the text entry widget
"list" Read the list shown in the drop−down window

Description

Note

The gtk.Combo is deprecated in GTK+ 2.4 and PyGTK 2.4 in favor of the gtk.ComboBox.

The gtk.Combo widget consists of a single−line text entry field and a drop−down list. The drop−down list is
displayed when the user clicks on a small arrow button to the right of the entry field. The drop−down list is a
gtk.List widget and can be accessed using the list attribute of the gtk.Combo. List elements can contain
arbitrary widgets, but if an element is not a plain label, then you must use the
gtk.List.set_item_string() method. This sets the string which will be placed in the text entry field
when the item is selected.

By default, the user can step through the items in the list using the arrow (cursor) keys, though this behavior
can be turned off with the set_use_arrows() method. Normally the arrow keys are only active when the
contents of the text entry field matches one of the items in the list. If the contents of the entry field do not
match any of the list items, then pressing the arrow keys does nothing. However, by calling
set_use_arrows_always() you can specify that the arrow keys are always active. If the contents of the
entry field does not match any of the items in the list, then pressing the up or down arrow key will set the
entry field to the last or first item in the list, respectively.

Note the list attribute references a gtk.List which is a deprecated widget so the combo widget may be changed
or deprecated in the future.

PyGTK 2.0 Reference Manual

Ancestry 261

Constructor

gtk.Combo()

Returns : a combo object*
Creates an new gtk.Combo object.

Methods

gtk.Combo.set_value_in_list

 def set_value_in_list(val, ok_if_empty)

val : If TRUE the value entered must match one of the values in the list.
ok_if_empty : If TRUE an empty value is considered valid.
The set_value_in_list() method specifies whether the value entered in the text entry field must match
one of the values in the list. This method sets the "value−in−list" property to the value of val and the
"allow−empty" property to the value of ok_if_empty.

If val is TRUE the user will not be able to perform any other action (the widget grabs the focus) until a valid
value has been entered. If ok_if_empty is TRUE an empty field is considered an acceptable value.

gtk.Combo.set_use_arrows

 def set_use_arrows(val)

val : If TRUE can be used to navigate through the list items
The set_use_arrows() method sets the "enable−use−arrows" property to the value of val. If val is
TRUE the arrows keys can be used to navigate through the list items.

gtk.Combo.set_use_arrows_always

 def set_use_arrows_always(val)

val : If TRUE the arrow keys will still work even if the text entry field does not match any of the list
items.

The set_use_arrows_always() method sets the "enable−arrows−always" property to the values of val.
If val is TRUE the arrow keys will work even if the text entry field does not match any of the list items.

gtk.Combo.set_case_sensitive

 def set_case_sensitive(val)

val : If TRUE the text in the list items is case sensitive.
The set_case_sensitive() method sets the "case−sensitive" property to the value of val. If val is
TRUE the text in the combo list items and the text entry field are case sensitive. The default value of
"set−case−sensitive" is FALSE.

PyGTK 2.0 Reference Manual

Constructor 262

gtk.Combo.set_item_string

 def set_item_string(item, item_value)

item : a list item
item_value : a string to place in the entry field when item is selected
The set_item_string() method sets the string (from item_value) to place in the combo text entry
field when the item is selected. This method is only needed if the list item is other than a simple label (e.g. a
pixmap).

gtk.Combo.set_popdown_strings

 def set_popdown_strings(strings)

strings : a list of strings to populate the list
The set_popdown_strings() method is a convenience method that sets the strings used in the popdown
list from. strings (a Python list or tuple object).

gtk.Combo.disable_activate

 def disable_activate()

The disable_activate() method prevents the combo from showing the popup list when the entry emits
the "activate" signal, i.e. when the Return key is pressed. This may be useful if, for example, you want the
Return key to close a dialog instead.

Prev Up Next
gtk.ColorSelectionDialog Home gtk.ComboBox

gtk.ComboBox
Prev The gtk Class Reference Next

gtk.ComboBox

gtk.ComboBox � a widget used to choose from a list of items (new in PyGTK 2.4)

Synopsis

class gtk.ComboBox(gtk.Bin, gtk.CellLayout):
gtk.ComboBox(model=None)

 def get_wrap_width()
 def set_wrap_width(width)
 def get_row_span_column()
 def set_row_span_column(row_span)
 def get_column_span_column()
 def set_column_span_column(column_span)
 def get_active()
 def set_active(index)
 def get_active_iter()
 def set_active_iter(iter)
 def set_model(model=None)
 def get_model()
 def append_text(text)
 def insert_text(position, text)
 def prepend_text(text)

PyGTK 2.0 Reference Manual

gtk.Combo.set_item_string 263

 def remove_text(position)
 def get_active_text()
 def popup()
 def popdown()
 def get_popup_accessible()
 def set_row_separator_func(func=None, data=None)
 def get_add_tearoffs()
 def set_add_tearoffs(add_tearoffs)
 def get_focus_on_click()
 def set_focus_on_click(focus_on_click)

Functions

 def gtk.combo_box_new_text()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ComboBox (implements gtk.CellLayout)

Properties

"active" Read−Write The index of the item that is currently active.
"add−tearoffs" Read−Write If TRUE generated menus have tearoff menu items. Note that this only

affects menu style combo boxes. Default value: FALSE. Available in
GTK+ 2.6 and above.

"column−span−column" Read−Write The TreeModel column containing the column span values.
"has−frame" Read−Write If TRUE the combo box grabs focus when it is clicked with the mouse.

Default value: TRUE. Available in GTK+ 2.6 and above.
"model" Read−Write The TreeModel for the combo box.
"row−span−column" Read−Write The TreeModel column containing the row span values.
"wrap−width" Read−Write The number of columns to use to lay out the popup items.

Style Properties

"appears−as−list" Read−Write If TRUE, the combo box dropdowns should look like lists rather than menus.

Signal Prototypes

"changed" def callback(combobox, user_param1, ...)

Description

Note

This widget is available in GTK+ 2.4 and PyGTK 2.4 and above.

The gtk.ComboBox is a replacement for the gtk.OptionMenu. The gtk.ComboBox implements the
gtk.CellLayout interface that provides a number of useful methods for managing the contents. A

PyGTK 2.0 Reference Manual

Synopsis 264

gtk.ComboBox is created with the gtk.ComboBox() constructor that is associated with the optional
gtk.TreeModel. If no gtk.TreeModel is specified it can be added later with the set_model()
method.

Alternatively, the gtk.combo_box_new_text() function creates a simple gtk.ComboBox and
associated gtk.ListStore model. A gtk.CellRendererText is also created and packed in the new
combo box. In this simple combo box each list item is a text string that can be selected. The convenience
methods append_text(), prepend_text(), insert_text() and remove_text() can be used to
manage the contents of the gtk.ComboBox. Using the gtk.combo_box_new_text() function is
equivalent to:

 liststore = gtk.ListStore(gobject.TYPE_STRING)
 combobox = gtk.ComboBox(liststore)
 cell = gtk.CellRendererText()
 combobox.pack_start(cell, gtk.TRUE)
 combobox.add_attribute(cell, 'text', 0)

Constructor

gtk.ComboBox(model=None)

model : A valid gtk.TreeModel.
Returns : A new gtk.ComboBox.

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.ComboBox associated with the optional gtk.TreeModel specified by model. If
model is not specified the combo box will not have an associated tree model.

Methods

gtk.ComboBox.get_wrap_width

 def get_wrap_width()

Returns : The wrap width.

Note

This method is available in PyGTK 2.6 and above.

The get_wrap_width() method returns the value of the "wrap−width" property of the combo box as set by
the set_wrap_width() method. The wrap width is basically the preferred number of columns to use to lay
out the popup i.e. lays out the popup items in a table with width columns.

gtk.ComboBox.set_wrap_width

 def set_wrap_width(width)

width : The preferred number of columns of width.

PyGTK 2.0 Reference Manual

Note 265

Note

This method is available in PyGTK 2.4 and above.

The set_wrap_width() method sets the wrap width (and the "wrap−width" property) of the combo box to
the value specified by width. The wrap width is basically the preferred number of columns to use to lay out
the popup i.e. lays out the popup items in a table with width columns.

gtk.ComboBox.get_row_span_column

 def get_row_span_column()

Returns : The row span column.

Note

This method is available in PyGTK 2.6 and above.

The get_row_span_column() method returns the value of the "row−span−column" property. The
"row−span−column" property indicates the column in the associated gtk.TreeModel row that contains an
integer that indicates how many rows the item should span.

gtk.ComboBox.set_row_span_column

 def set_row_span_column(row_span)

row_span : A column in the model passed during construction.

Note

This method is available in PyGTK 2.4 and above.

The set_row_span_column() method sets the "row−span−column" property to the value specified by
row_span. The "row−span−column" property indicates the column in the associated gtk.TreeModel
row that contains an integer that indicates how many rows the item should span.

gtk.ComboBox.get_column_span_column

 def get_column_span_column()

Returns : The column span column.

Note

This method is available in PyGTK 2.6 and above.

The get_column_span_column() method returns the value of the "column−span−column" property. The
"column−span−column" property indicates the column in the associated gtk.TreeModel row that contains
an integer that indicates how many columns the item should span.

gtk.ComboBox.set_column_span_column

 def set_column_span_column(column_span)

column_span : A column in the model passed during construction.

PyGTK 2.0 Reference Manual

Note 266

Note

This method is available in PyGTK 2.4 and above.

The set_column_span_column() method sets the "column−span−column" property to the value
specified by column_span. The "column−span−column" property indicates the column in the associated
gtk.TreeModel row that contains an integer that indicates how many columns the item should span.

gtk.ComboBox.get_active

 def get_active()

Returns : An integer which is the model index of the currently active item, or −1 if there's no active item.

Note

This method is available in PyGTK 2.4 and above.

The get_active() method returns the value of the "active" property which is the index in the model of the
currently active item, or −1 if there's no active item.

gtk.ComboBox.set_active

 def set_active(index)

index : An index in the model passed during construction, or −1 to have no active item.

Note

This method is available in PyGTK 2.4 and above.

The set_active() method sets the active item of the combo_box to the item with the model index specified
by index. If index is −1 the combo box will have no active item. The "active" property is also set to the
value of index.

gtk.ComboBox.get_active_iter

 def get_active_iter()

Returns : A gtk.TreeIter that points at the active item or None if there is no active item.

Note

This method is available in PyGTK 2.4 and above.

The get_active_iter() method returns a gtk.TreeIter that points to the current active item or
None if there is no active item.

gtk.ComboBox.set_active_iter

 def set_active_iter(iter)

iter : A valid gtk.TreeIter pointing at an item in the associated gtk.TreeModel.

PyGTK 2.0 Reference Manual

Note 267

Note

This method is available in PyGTK 2.4 and above.

The set_active_iter() method sets the current active item to be the one referenced by iter in the
associated gtk.TreeModel. iter must correspond to a path of depth one. The "active" property is also set
by this method.

gtk.ComboBox.set_model

 def set_model(model=None)

model : A gtk.TreeModel.

Note

This method is available in PyGTK 2.4 and above.

The set_model() method sets the model used by the combo box to the value specified by model. The
"model" property will also be set to the value of model. A previously set model will be unset. If model is
None or not specified, the old model will be unset.

Note

In PyGTK 2.4.0 the model could not be None and did not default to None.

gtk.ComboBox.get_model

 def get_model()

Returns : A gtk.TreeModel or None.

Note

This method is available in PyGTK 2.4 and above.

The get_model() method returns the value of the "model" property which contains the gtk.TreeModel
that is acting as data source for the combo_box or None if no gtk.TreeModel is associated with the
combo box.

gtk.ComboBox.append_text

 def append_text(text)

text : A string.

Note

This method is available in PyGTK 2.4 and above.

The append_text() method appends the string specified by text to the list of strings stored in the combo
box gtk.ListStore. Note that you can only use this method with combo boxes constructed with the
gtk.combo_box_new_text() function.

PyGTK 2.0 Reference Manual

Note 268

gtk.ComboBox.insert_text

 def insert_text(position, text)

position : A model index where the text should be inserted.
text : A string.

Note

This method is available in PyGTK 2.4 and above.

The insert_text() method inserts the string specified by text in the combo box gtk.ListStore at
the index specified by position. Note that you can only use this method with combo boxes constructed
with the gtk.combo_box_new_text() function.

gtk.ComboBox.prepend_text

 def prepend_text(text)

text : A string.

Note

This method is available in PyGTK 2.4 and above.

The prepend_text() method prepends the string specified by text to the list of strings stored in the
gtk.ListStore associated with the combo_box. Note that you can only use this method with combo
boxes constructed with the gtk.combo_box_new_text() function.

gtk.ComboBox.remove_text

 def remove_text(position)

position : Index of the item to remove.

Note

This method is available in PyGTK 2.4 and above.

The remove_text() method removes the string at the index specified by position in the associated
gtk.ListStore. Note that you can only use this function with combo boxes constructed with the
gtk.combo_box_new_text() function.

gtk.ComboBox.get_active_text

 def get_active_text()

Returns : The currently active text.

Note

This method is available in PyGTK 2.6 and above.

The get_active_text() method returns the currently active string or None if no entry is selected. Note
that you can only use this function with combo boxes constructed with the gtk.combo_box_new_text()
function.

PyGTK 2.0 Reference Manual

gtk.ComboBox.insert_text 269

gtk.ComboBox.popup

 def popup()

Note

This method is available in PyGTK 2.4 and above.

The popup() method pops up the menu or dropdown list of the combo box. This method is mostly intended
for use by accessibility technologies; applications should have little use for it.

gtk.ComboBox.popdown

 def popdown()

Note

This method is available in PyGTK 2.4 and above.

The popdown() method hides the menu or dropdown list of the combo box. This method is mostly intended
for use by accessibility technologies; applications should have little use for it.

gtk.ComboBox.get_popup_accessible

 def get_popup_accessible()

Returns : the accessible object corresponding to the popup.

Note

This method is available in PyGTK 2.6 and above.

The get_popup_accessible() method gets the accessible object corresponding to the popup. This
method is mostly intended for use by accessibility technologies; applications should have little use for it.

gtk.ComboBox.set_row_separator_func

 def set_row_separator_func(func=None, data=None)

func : a function or None
data : user data to pass to func

Note

This method is available in PyGTK 2.6 and above.

The set_row_separator_func() method sets the row separator function to func, which is used to
determine if a row should be drawn as a separator. If func is None, no separators are drawn. This is the
default value.

The signature of func is:

 def func(model, iter, user_data):

where model is the gtk.TreeModel used by the combo box, iter is a gtk.TreeIter pointing at a
row in model and user_data is data. func returns TRUE if the row is a separator. A common way to

PyGTK 2.0 Reference Manual

gtk.ComboBox.popup 270

implement func is to have a boolean column in model, that indicates if the row is a separator.

gtk.ComboBox.get_add_tearoffs

 def get_add_tearoffs()

Returns : TRUE if menus should have a tearoff menuitem.

Note

This method is available in PyGTK 2.6 and above.

The get_add_tearoffs() method returns the value of the "add−tearoffs" property.

gtk.ComboBox.set_add_tearoffs

 def set_add_tearoffs(add_tearoffs)

add_tearoffs : if TRUE add tearoff menu items

Note

This method is available in PyGTK 2.6 and above.

The set_add_tearoffs() method sets the "add−tearoffs" property to the value of add_tearoffs. If
add_tearoffs is TRUE, the popup menu should have a tearoff menu item.

gtk.ComboBox.get_focus_on_click

 def get_focus_on_click()

Returns : TRUE if the combo box grabs focus when it is clicked with the mouse.

Note

This method is available in PyGTK 2.6 and above.

The get_focus_on_click() method returns the value of the "focus−on−click" property.

gtk.ComboBox.set_focus_on_click

 def set_focus_on_click(focus_on_click)

focus_on_click : if TRUE the combo box grabs focus when clicked with the mouse.

Note

This method is available in PyGTK 2.6 and above.

The set_focus_on_click() method sets the value of the "focus−on−click" property to the value of
focus_on_click. If focus_on_click is TRUE the combo box grabs focus when clicked with the
mouse.

PyGTK 2.0 Reference Manual

Note 271

Functions

gtk.combo_box_new_text

 def gtk.combo_box_new_text()

Returns : A new gtk.ComboBox for text items.

Note

This function is available in PyGTK 2.4 and above.

The gtk.combo_box_new_text() function is a convenience function that constructs a new text combo
box, which is a gtk.ComboBox just displaying strings. If you use this function to create a text combo box,
you should only manipulate its data source with the following convenience methods: append_text(),
insert_text(), prepend_text() and remove_text().

Signals

The "changed" gtk.ComboBox Signal

 def callback(combobox, user_param1, ...)

combobox : the combo box that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "changed" signal is emitted when a new item in the combo box is selected.

Prev Up Next
gtk.Combo Home gtk.ComboBoxEntry

gtk.ComboBoxEntry
Prev The gtk Class Reference Next

gtk.ComboBoxEntry

gtk.ComboBoxEntry � a text entry field with a dropdown list (new in PyGTK 2.4)

Synopsis

class gtk.ComboBoxEntry(gtk.ComboBox, gtk.CellLayout):
gtk.ComboBoxEntry(model=None, column=−1)

 def set_text_column(text_column)
 def get_text_column()

Functions

 def gtk.combo_box_entry_new_text()

PyGTK 2.0 Reference Manual

Functions 272

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ComboBox
 +−− gtk.ComboBoxEntry (implements gtk.CellLayout)

Properties

"text−column" Read−Write The column in the gtk.TreeModel to get the strings from.

Description

Note

This widget is available in GTK+ 2.4 and PyGTK 2.4 and above.

The gtk.ComboBoxEntry is a replacement for the gtk.Combo. The gtk.ComboBoxEntry is
subclassed from gtk.ComboBox and implements the gtk.CellLayout interface; refer to their
descriptions for a number of useful methods and properties for managing the contents of a combo box entry.
A gtk.ComboBoxEntry also contains a child gtk.Entry accessed by using the child attribute of the
combo box entry:

 entry = comboboxentry.child

A gtk.ComboBoxEntry is created with the gtk.ComboBoxEntry() constructor. The constructor can also be
called with the optional parameters model (a gtk.TreeModel − default None) and column (a number of
a column in model − default 0). If no gtk.TreeModel is specified it can be added later with the
set_model() method. The text column can be changed using the set_text_column() method. A new
combo box entry is created and packed with a gtk.CellRendererText but no attribute mappings are set
on the cell renderer.

Alternatively, the gtk.combo_box_entry_new_text() function creates a gtk.ComboBoxEntry
with an associated gtk.ListStore model and the text column attribute mapping set to 0. In this combo
box entry each list item is a text string that can be selected. The convenience methods
gtk.ComboBox.append_text(), gtk.ComboBox.prepend_text(),
gtk.ComboBox.insert_text() and gtk.ComboBox.remove_text() can be used to manage the
contents of the gtk.ComboBoxEntry. Using the gtk.combo_box_entry_new_text() function is
equivalent to:

 liststore = gtk.ListStore(gobject.TYPE_STRING)
 comboboxentry = gtk.ComboBoxEntry(liststore, 0)

Constructor

gtk.ComboBoxEntry(model=None, column=−1)

model : The gtk.TreeModel to associate with the combo box entry, or None
column : The number of the column to use for setting the strings of the combo box entry.
Returns : A new gtk.ComboBoxEntry.

PyGTK 2.0 Reference Manual

Ancestry 273

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.ComboBoxEntry that has a gtk.Entry as child and associated with the
gtk.TreeModel specified by model and using the column of model specified by column to retrieve
strings. If model was not specified it defaults to None but you can change the model using the
gtk.ComboBox.set_model() method. If column was not specified it defaults to −1 meaning the text
column is unset but you can change it using the set_text_column() method. Once the text column is set
either in the constructor or using the set_text_column() method it cannot be changed. A ValueError
exception is thrown if column is outside the range of column numbers for model.

Methods

gtk.ComboBoxEntry.set_text_column

 def set_text_column(text_column)

text_column : A column in the associated gtk.TreeModel to use as the data source for the strings.

Note

This method is available in PyGTK 2.4 and above.

The set_text_column() method sets the "text−column" property to the value of tree_column only if
the text column has not been set (that is, "text−column" is −1). The value of tree_column is the number of
the tree model column used as the data source for the strings of the combo box entry.

gtk.ComboBoxEntry.get_text_column

 def get_text_column()

Returns : The number of the column in the associated gtk.TreeModel used as the data source for the
combo box entry.

Note

This method is available in PyGTK 2.4 and above.

The get_text_column() method returns the number of the gtk.TreeModel column that is used as the
data source for the strings of the combo box entry.

Functions

gtk.combo_box_entry_new_text

 def gtk.combo_box_entry_new_text()

Returns : A new gtk.ComboBoxEntry widget.

PyGTK 2.0 Reference Manual

Note 274

Note

This function is available in PyGTK 2.4 and above.

The gtk.combo_box_entry_new_text() function is a convenience function which constructs a new
gtk.ComboBoxEntry, just displaying strings. If you use this function to create a combo box entry, you
should only manipulate its gtk.TreeModel data source with the following gtk.ComboBox convenience
methods: gtk.ComboBox.append_text(), gtk.ComboBox.insert_text(),
gtk.ComboBox.prepend_text() and gtk.ComboBox.remove_text().

Prev Up Next
gtk.ComboBox Home gtk.Container

gtk.Container
Prev The gtk Class Reference Next

gtk.Container

gtk.Container � a base class for widgets that contain other widgets

Synopsis

class gtk.Container(gtk.Widget):
 def set_border_width(border_width)
 def get_border_width()
 def add(widget)
 def remove(widget)
 def set_resize_mode(resize_mode)
 def get_resize_mode()
 def check_resize()
 def forall(callback, callback_data)
 def foreach(callback, callback_data)
 def get_children()
 def propagate_expose(child, event)
 def set_focus_chain(focusable_widgets)
 def get_focus_chain()
 def unset_focus_chain()
 def set_reallocate_redraws(needs_redraws)
 def set_focus_child(child)
 def set_focus_vadjustment(adjustment)
 def get_focus_vadjustment()
 def set_focus_hadjustment(adjustment)
 def get_focus_hadjustment()
 def resize_children()
 def child_type()
 def add_with_properties(widget, first_prop_name, first_prop_value, ...)
 def child_set(child, first_prop_name, first_prop_value, ...)
 def child_get(child, first_prop_name, ...)
 def child_set_property(child, property_name, value)
 def child_get_property(child, property_name)

Functions

 def gtk.container_class_install_child_property(klass, property_id, pspec)
 def gtk.container_class_list_child_properties(klass)

PyGTK 2.0 Reference Manual

Note 275

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container

Properties

"border−width" Read/Write The width of the empty border outside the containers children.
"resize−mode" Read/Write Specify how resize events are handled. One of: gtk.RESIZE_PARENT,

gtk.RESIZE_QUEUE or gtk.RESIZE_IMMEDIATE
"child" Read The child widget in the container

Attributes

"border_width" Read The width of the empty border outside the
containers children.

"resize_mode" Read Specify how resize events are handled. One of:
gtk.RESIZE_PARENT, gtk.RESIZE_QUEUE
or gtk.RESIZE_IMMEDIATE

"focus_child" Read The child widget that has the focus

"need_resize" Read If TRUE the container needs resizing

"reallocate_redraws" Read if TRUE redraw the container when a child gets
reallocated

"has_focus_chain" Read If TRUE the container had its focus chain explicitly
set

Signal Prototypes

"add" def callback(container, widget, user_param1, ...)

"check−resize" def callback(container, user_param1, ...)

"remove" def callback(container, widget, user_param1, ...)

"set−focus−child" def callback(container, widget, user_param1, ...)

Description

The gtk.Container class provides common attributes and methods for a large number of widget
subclasses that manage the layout of other widgets within the area of a window.

A PyGTK user interface is constructed by nesting widgets inside widgets. Container widgets are the inner
nodes in the resulting tree of widgets: they contain other widgets. So, for example, you might have a
gtk.Window containing a gtk.Frame containing a gtk.Label. If you wanted an image instead of a
textual label inside the frame, you might replace the gtk.Label widget with a gtk.Image widget.

PyGTK 2.0 Reference Manual

Ancestry 276

There are two major kinds of container widgets. Both are subclasses of the abstract gtk.Container base
class.

The first type of container widget has a single child widget and derives from gtk.Bin. These containers are
decorators, that add some kind of functionality to the child. For example, a gtk.Button makes its child into
a clickable button; a gtk.Frame draws a frame around its child and a gtk.Window places its child widget
inside a top−level window.

The second type of container can have more than one child; its purpose is to manage layout. This means that
these containers assign sizes and positions to their children. For example, a gtk.HBox arranges its children
in a horizontal row, and a gtk.Table arranges the widgets it contains in a two−dimensional grid.

To fulfill its task, a layout container must negotiate the size requirements with its parent and its children. This
negotiation is carried out in two phases, size requisition and size allocation.

Size Requisition

The size requisition of a widget is it's desired width and height. This is represented by a
gtk.Requisition.

How a widget determines its desired size depends on the widget. A gtk.Label, for example, requests
enough space to display all its text. Container widgets generally base their size request on the requisitions of
their children.

The size requisition phase of the widget layout process operates top−down. It starts at a top−level widget,
typically a GtkWindow. The top−level widget asks its child for its size requisition by calling
gtk_widget_size_request(). To determine its requisition, the child asks its own children for their requisitions
and so on. Finally, the top−level widget will get a requisition back from its child.

Size Allocation

When the top−level widget has determined how much space its child would like to have, the second phase of
the size negotiation, size allocation, begins. Depending on its configuration (see the
gtk.Window.set_resizable() method), the top−level widget may be able to expand in order to satisfy
the size request or it may have to ignore the size request and keep its fixed size. It then tells its child widget
how much space it gets by calling the size_allocate() method. The child widget divides the space
among its children and tells each child how much space it got, and so on. Under normal circumstances, a
gtk.Window will always give its child the amount of space the child requested.

A child's size allocation is represented by a gtk.gdk.Rectangle that contains not only a width and
height, but also a position (i.e. X and Y coordinates), so that containers can tell their children not only how
much space is available, but also where they are positioned inside the space available to the container.

Widgets are required to honor the size allocation they receive; a size request is only a request, and widgets
must be able to cope with any size.

Child Properties

gtk.Container introduces child properties − these are object properties that are not specific to either the
container or the contained widget, but rather to their relation. Typical examples of child properties are the
"position" or "pack−type" of a widget which is contained in a gtk.Box.

PyGTK 2.0 Reference Manual

Description 277

Use the gtk.container_class_install_child_property() function to install child properties
for a container class and the gtk.container_class_list_child_properties() function to get
information about existing child properties.

To set the value of a child property, use the child_set_property(), or child_set() methods. To
obtain the value of a child property, use the child_get_property(), or child_get() methods. To emit
notification about child property changes, use the gtk.Widget.child_notify() method.

Methods

gtk.Container.set_border_width

 def set_border_width(border_width)

border_width : The amount of blank space to leave outside the container. Valid values are in the range
0−65535 pixels.

The set_border_width() method sets the "border−width" property of the container. The border width of
a container is the amount of space to leave around the outside of the container. The only exception to this is
gtk.Window; because toplevel windows can't leave space outside, they leave the space inside. The border is
added on all sides of the container.

gtk.Container.get_border_width

 def get_border_width()

Returns : the current border width
The get_border_width() method retrieves the value of the "border−width" property of the container. See
set_border_width().

gtk.Container.add

 def add(widget)

widget : a widget to be placed inside the container
The add() method adds widget to the container. This method is typically used for simple containers such as
gtk.Window, gtk.Frame, or gtk.Button that hold a single child widget. For layout containers that
handle multiple children such as gtk.Box or gtk.Table, this function will pick default packing
parameters that may not be correct. Containers that handle multiple children usually have additional methods
such as gtk.Box.pack_start() and gtk.Table.attach() as an alternative to add(). Adding a
widget to a container usually results in the resizing and redrawing of the container contents.

gtk.Container.remove

 def remove(widget)

widget : a current child of container
The remove() method removes widget from the container. widget must be inside the container. Note that
the container will own a reference to widget, and that this may be the last reference held; so removing a
widget from its container can cause that widget to be destroyed. If you want to use widget again, you should
add a reference to it.

PyGTK 2.0 Reference Manual

Child Properties 278

gtk.Container.set_resize_mode

 def set_resize_mode(resize_mode)

resize_mode : the new resize mode.
The set−resize_mode() method sets the "resize=mode" property of the container. The resize mode of a
container determines whether a resize request will be passed to the container's parent
(gtk.RESIZE_PARENT), queued for later execution (gtk.RESIZE_QUEUE) or executed immediately
(gtk.RESIZE_IMMEDIATE).

gtk.Container.get_resize_mode

 def get_resize_mode()

Returns : the current resize mode
The get_resize_mode() method returns the value of the "resize−mode" property for of the container. See
set_resize_mode().

gtk.Container.check_resize

 def check_resize()

The check_resize() method emits the "check−resize" signal on the container.

gtk.Container.forall

 def foreach(callback, callback_data=None)

callback : a callback
callback_data : the callback user data
The forall() method arranges to invoke callback on each child of the container including children that
are considered "internal" (implementation details of the container). "Internal" children generally weren't added
by the user of the container, but were added by the container implementation itself. Most applications should
use the foreach() method, rather than the forall() method.

gtk.Container.foreach

 def foreach(callback, callback_data=None)

callback : a callback
callback_data : the callback user data
The foreach() method arranges to invoke callback on each non−internal child of the container.

gtk.Container.get_children

 def get_children()

Returns : a list of the container's non−internal children.
The get_children() method returns the the container's non−internal children.

PyGTK 2.0 Reference Manual

gtk.Container.set_resize_mode 279

gtk.Container.propagate_expose

 def propagate_expose(child, event)

child : a child of the container
event : a expose event sent to the container
The propagate_expose() method sends synthetic expose events to all children that don't have their own
gtk.gdk.Windows when the container receives an expose event.

The propagate_expose() takes care of deciding whether an expose event needs to be sent to the child,
intersecting the event's area with the child area, and sending the event.

In most cases, a container can simply either simply inherit the expose implementation from
gtk.Container, or, do some drawing and then chain to the expose implementation from
gtk.Container.

gtk.Container.set_focus_chain

 def set_focus_chain(focusable_widgets)

focusable_widgets : a list or tuple containing a chain of focusable widgets.
The set_focus_chain() method sets a focus chain, overriding the one computed automatically by GTK.
In principle each widget in the chain should be a descendant of the container, but this is not enforced by this
method, since it's allowed to set the focus chain before you pack the widgets, or have a widget in the chain
that isn't always packed. The necessary checks are done when the focus chain is actually traversed.

gtk.Container.get_focus_chain

 def get_focus_chain()

Returns : a list containing the widgets in the focus chain if the focus chain of the container has been set
explicitly or None if no focus chain has been explicitly set.

The get_focus_chain() method retrieves the focus chain of the container, if one has been set explicitly.
If no focus chain has been explicitly set, GTK computes the focus chain based on the positions of the children.
In that case, the method returns None.

gtk.Container.unset_focus_chain

 def unset_focus_chain()

The unset_focus_chain() method removes a focus chain explicitly set with set_focus_chain().

gtk.Container.set_reallocate_redraws

 def set_reallocate_redraws(needs_redraws)

needs_redraws : the new value for the container's reallocate_redraws attribute.
The set_reallocate_redraws() method sets the reallocate_redraws attribute of the container to the
value of needs_redraws. Containers requesting reallocation redraws get automatically redrawn if any of
their children change allocation.

PyGTK 2.0 Reference Manual

gtk.Container.propagate_expose 280

gtk.Container.set_focus_child

 def set_focus_child(child)

child : the child widget that will get the focus.
The set_focus_child() method emits the "set−focus−child" signal that arranges for the child widget
referenced by child to get the focus and recalculates the container adjustments.

gtk.Container.set_focus_vadjustment

 def set_focus_vadjustment(adjustment)

adjustment : The new vertical focus adjustment
The set_focus_vadjustment() method sets the vertical focus adjustment to the value of
adjustment.

gtk.Container.get_focus_vadjustment

 def get_focus_vadjustment()

Returns : the vertical focus adjustment, or None if none has been set.
The get_focus_vadjustment() method retrieves the vertical focus adjustment for the container. See the
set_focus_vadjustment() method.

gtk.Container.set_focus_hadjustment

 def set_focus_hadjustment(adjustment)

adjustment : The new horizontal focus adjustment
The set_focus_hadjustment() method sets the horizontal focus adjustment to the value of
adjustment.

gtk.Container.get_focus_hadjustment

 def get_focus_hadjustment()

Returns : the horizontal focus adjustment, or None if none has been set.
The get_focus_hadjustment() method retrieves the horizontal focus adjustment for the container. See
set_focus_hadjustment().

gtk.Container.resize_children

 def resize_children()

The resize_children() method causes the container to recalculate its size and its children's sizes.

gtk.Container.child_type

 def child_type()

Returns : a type.
The child_type() method returns the type of the children that can be added to the container. Note that this

PyGTK 2.0 Reference Manual

gtk.Container.set_focus_child 281

may return a void type to indicate that no more children can be added, e.g. for a gtk.Paned which already
has two children or a gtk.Window that already has a child.

gtk.Container.add_with_properties

 def add_with_properties(widget, first_prop_name, first_prop_value, ...)

widget : a widget to be added
first_prop_name : the first property name
first_prop_value : a value for the first property
... : additional property name and value pairs
The add_with_properties() method adds the child widget specified by widget to the container while
allowing the setting of zero or more container child property values at the same time. Containers supporting
add with settable child properties are: gtk.Box, gtk.Fixed, gtk.Notebook and gtk.Table.

For example the following adds a button to a gtk.Fixed layout widget and sets the child properties "x" and
"y" specifying the child position in the layout:

 fixed.add_with_properties(button, "x", 10, "y", 20")

gtk.Container.child_set

 def child_set(child, first_prop_name, ...)

child : the child widget
first_prop_name : the first property name
first_prop_value : the value of the first property
... : additional property name and value pairs
The child_set() method sets the properties for child using the given property name and value pairs.

gtk.Container.child_get

 def child_get(child, first_prop_name, ...)

child : the child widget to get the child properties for
first_prop_name : the first property name
... : additional property names
Returns : a tuple containing the property values requested
The child_get() method retrieves the requested container child properties for child.

gtk.Container.child_set_property

 def child_set_property(child, property_name, value)

child : the child widget
property_name : the child property name
value : a value to associate with the property
The child_set_property() method sets the property name specified by property_name with the
value specified in value.

PyGTK 2.0 Reference Manual

gtk.Container.child_type 282

gtk.Container.child_get_property

 def child_get_property(child, property_name)

child : the child widget
property_name : the child property name
Returns : the value of the child property for the widget
The child_get_property() method retrieves the value of the child property specified by
property_name for the widget child.

Functions

gtk.container_class_install_child_property

 def gtk.container_class_install_child_property(klass, property_id, pspec)

klass : a gtk.Container class or instance.
property_id : an integer property ID
pspec : a 4−tuple containing a parameter specification

Note

This function is available in PyGTK 2.4 and above.

The gtk.container_class_install_child_property() function installs a child property for the
container class specified by klass using the integer ID specified by property_id. pspec is a 4−tuple
containing the parameter specification:

a string specifying the name of the property•
an object specifying the property type•
a string specifying the nickname for the property or None•
a string specifying the short deciription for the property or None•

gtk.container_class_list_child_properties

 def gtk.container_class_list_child_properties(klass)

klass : a gtk.Container class or instance.
Returns : a tuple containing the list of child properties

Note

This function is available in PyGTK 2.4 and above.

The gtk.container_class_list_child_properties() function returns a tuple containing the
child properties of the container class specified by klass.

Signals

PyGTK 2.0 Reference Manual

gtk.Container.child_get_property 283

The "add" gtk.Container Signal

 def callback(container, widget, user_param1, ...)

container : the container that received the signal
widget : the child widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "add" signal is emitted when widget is added to the container.

The "check−resize" gtk.Container Signal

 def callback(container, user_param1, ...)

container : the container that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "check−resize" signal is emitted when the check_resize() method is called forcing the recalculation
of the container and its children. See the set_resize_mode() method for details.

The "remove" gtk.Container Signal

 def callback(container, widget, user_param1, ...)

container : the container that received the signal
widget : the child widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "remove" signal is emitted when widget is removed from container.

The "set−focus−child" gtk.Container Signal

 def callback(container, widget, user_param1, ...)

container : the container that received the signal
widget : the child widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "set−focus−child" signal is emitted when the set_focus_child() method is called. widget is set as
the child in container with the focus.

Prev Up Next
gtk.ComboBoxEntry Home gtk.Curve

gtk.Curve
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

The "add" gtk.Container Signal 284

gtk.Curve

gtk.Curve � allows direct editing of a curve.

Synopsis

class gtk.Curve(gtk.DrawingArea):
gtk.Curve()

 def reset()
 def set_gamma(gamma)
 def set_range(min_x, max_x, min_y, max_y)
 def get_vector(size=−1)
 def set_vector(vector)
 def set_curve_type(type)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.DrawingArea
 +−− gtk.Curve

Properties

"curve−type" Read/Write The curve type. One of linear
(gtk.CURVE_TYPE_LINEAR), spline interpolated
(gtk.CURVE_TYPE_SPLINE), or free−form
(gtk.CURVE_TYPE_FREE).

"min−x" Read/Write The minimum possible value for X
"max−x" Read/Write The maximum possible value for X
"min−y" Read/Write The minimum possible value for Y
"max−y" Read/Write The maximum possible value for Y

Signal Prototypes

"curve−type−changed" def callback(curve, widget, user_param1, ...)

Description

Note

This widget is considered too specialized or little−used for PyGTK, and will in the future be moved to some
other package. If your application needs this widget, feel free to use it, as the widget does work and is useful
in some applications; it's just not of general interest. However, it will eventually move out of the PyGTK
distribution.

The gtk.Curve widget allows the user to edit a curve covering a range of values. It is typically used to
fine−tune color balances in graphics applications like the Gimp. The gtk.Curve widget has 3 modes of
operation − spline, linear and free. In spline mode the user places points on the curve which are automatically
connected together into a smooth curve. In linear mode the user places points on the curve which are

PyGTK 2.0 Reference Manual

gtk.Curve 285

connected by straight lines. In free mode the user can draw the points of the curve freely, and they are not
connected at all.

Constructor

gtk.Curve()

Returns : a new gtk.Curve object
Creates a new gtk.Curve object

Methods

gtk.Curve.reset

 def reset()

The reset() method resets the curve to a straight line from the minimum x and y values to the maximum x
and y values (i.e. from the bottom−left to the top−right corners). The curve type is not changed.

gtk.Curve.set_gamma

 def set_gamma(gamma)

gamma : the gamma value
The set_gamma() method recomputes the entire curve using the value in gamma. A gamma value of 1
results in a straight line. Values greater than 1 result in a curve above the straight line. Values less than 1
result in a curve below the straight line. The curve type is changed to gtk.CURVE_TYPE_FREE.

gtk.Curve.set_range

 def set_range(min_x, max_x, min_y, max_y)

min_x : the new minimum x value
max_x : the maximum x value.
min_y : the new minimum y value
max_y : the maximum y value.
The set_range() method sets the "min−x", "min−y", "max−x" and "max−y" properties from min_x,
min_y, max_x, and max_y. The curve is also reset with a call to reset().

gtk.Curve.get_vector

 def set_vector(size=−1)

size : the number of points to return or −1 to return all the points in the curve.
Returns : a tuple containing the points
The get_vector() method returns a tuple of points representing the curve. The number of points to return
is specified by size; if size is −1 all the points in the curve are returned.

PyGTK 2.0 Reference Manual

Note 286

gtk.Curve.set_vector

 def get_vector(vector)

vector : a list or tuple containing the points of the curve
The set_vector() method sets the curve using the points in vector. The curve type is set to
gtk.CURVE_TYPE_FREE.

gtk.Curve.set_curve_type

 def set_curve_type(type)

type : the new curve type: gtk.CURVE_TYPE_LINEAR, gtk.CURVE_TYPE_SPLINE or
gtk.CURVE_TYPE_FREE

The set_curve_type() method sets the "curve−type" property with the value of type. The curve type
must be one of gtk.CURVE_TYPE_LINEAR, gtk.CURVE_TYPE_SPLINE or
gtk.CURVE_TYPE_FREE. The curve will remain unchanged except when changing from a free curve to a
linear or spline curve, in which case the curve will be changed as little as possible.

Signals

The "curve−type−changed" gtk.Curve Signal

 def callback(curve, user_param1, ...)

curve : the curve that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "curve−type−changed" signal is emitted when the curve type has been changed. The curve type can be
changed explicitly with a call to set_curve_type(). It is also changed as a side−effect of calling reset()
or set_gamma()

Prev Up Next
gtk.Container Home gtk.Dialog

gtk.Dialog
Prev The gtk Class Reference Next

gtk.Dialog

gtk.Dialog � popup windows for user information and action

Synopsis

class gtk.Dialog(gtk.Window):
gtk.Dialog(title=None, parent=None, flags=0, buttons=None)

 def add_action_widget(child, response_id)
 def add_button(button_text, response_id)
 def add_buttons(buttons)
 def set_response_sensitive(response_id, setting)
 def set_default_response(response_id)

PyGTK 2.0 Reference Manual

gtk.Curve.set_vector 287

 def set_has_separator(setting)
 def get_has_separator()
 def response(response_id)
 def run()
 def set_alternative_button_order(new_order)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Dialog

Properties

"has−separator" Read/Write If TRUE, the dialog has a separator bar above its buttons

Style Properties

"button−spacing" Read The spacing between buttons in pixels.
"action−area−border" Read The width of the vborder around the button area in pixels.
"content−area−border" Read The width of the border around the main dialog area in pixels.

Attributes

"vbox" Read A gtk.VBox that is the main container of the dialog − all the other widgets are
packed in it.

"action_area" Read A gtk.HBox that contains the buttons of the dialog.

Signal Prototypes

"close" def callback(dialog, user_param1, ...)

"response" def callback(dialog, response_id, user_param1, ...)

Description

Dialog boxes are a convenient way to prompt the user for a small amount of input, e.g. to display a message,
ask a question, or anything else that does not require extensive effort on the user's part. Dialogs are organized
as a window split vertically. The top section is a gtk.VBox, and is where widgets such as a gtk.Label or
a gtk.Entry should be packed. The bottom area is known as the action_area which is generally used for
packing buttons into the dialog which may perform functions such as cancel, ok, or apply. The two areas are
separated by a gtk.HSeparator.

The gtk.Dialog boxes are created with a call to gtk.Dialog()() that sets the dialog title, some
convenient flags, and adds simple buttons. In a newly created dialog, the two primary areas of the window can
be accessed as the vbox and action_area attributes, as can be seen from the example, below. A modal dialog
(that is, one which freezes the rest of the application from user input), can be created by passing the

PyGTK 2.0 Reference Manual

Synopsis 288

gtk.DIALOG_MODAL flag to the gtk.Dialog() constructor or by calling set_modal() on the dialog.

If you add buttons to gtk.Dialog using gtk.Dialog(), add_button(), or add_action_widget(),
clicking the button will emit a signal called "response" with a response ID that you specified. PyGTK will
never assign a meaning to positive response IDs; these are entirely user−defined. But for convenience, you
can use the pre−defined response IDs (these all have values less than zero):

gtk.RESPONSE_NONE•
gtk.RESPONSE_REJECT•
gtk.RESPONSE_ACCEPT•
gtk.RESPONSE_DELETE_EVENT•
gtk.RESPONSE_OK•
gtk.RESPONSE_CANCEL•
gtk.RESPONSE_CLOSE•
gtk.RESPONSE_YES•
gtk.RESPONSE_NO•
gtk.RESPONSE_APPLY•
gtk.RESPONSE_HELP•

If a dialog receives a delete event, the "response" signal will be emitted with a response ID of
gtk.RESPONSE_NONE.

If you want to block waiting for a dialog to return before returning control flow to your code, you can call
run(). This function enters a recursive main loop and waits for the user to respond to the dialog, returning the
response ID corresponding to the button the user clicked.

Constructor

gtk.Dialog(title=None, parent=None, flags=0, buttons=None)

title : The title of the dialog, or None
parent : The transient parent of the dialog, or None
flags : flags that control the operation of the dialog
buttons : a tuple containing button text/response id pairs or None
Returns : a new gtk.Dialog
Creates a new gtk.Dialog with the title text specified by title (or None for the default title; see
gtk.Window.set_title()) and transient parent window specified by parent (or None for none; see
gtk.Window.set_transient_for()). The flags argument can be used to make the dialog modal
(gtk.DIALOG_MODAL) and/or to have it destroyed along with its transient parent
(gtk.DIALOG_DESTROY_WITH_PARENT) and/or remove the separator
(gtk.DIALOG_NO_SEPARATOR). After flags, a tuple of button text/response ID pairs should be listed,
or None (the default value) is no buttons are needed. The button text can be either a stock ID such as
gtk.STOCK_OK, or some arbitrary text. A response ID can be any positive number, or one of the
pre−defined values:

gtk.RESPONSE_NONE•
gtk.RESPONSE_REJECT•
gtk.RESPONSE_ACCEPT•
gtk.RESPONSE_DELETE_EVENT•
gtk.RESPONSE_OK•
gtk.RESPONSE_CANCEL•
gtk.RESPONSE_CLOSE•
gtk.RESPONSE_YES•

PyGTK 2.0 Reference Manual

Description 289

gtk.RESPONSE_NO•
gtk.RESPONSE_APPLY•
gtk.RESPONSE_HELP•

If the user clicks one of these dialog buttons, the gtk.Dialog will emit the "response" signal with the
corresponding response ID. If a gtk.Dialog receives the "delete_event" signal, it will emit "response" with
a response ID of gtk.RESPONSE_DELETE_EVENT. However, destroying a dialog does not emit the
"response" signal; so be careful relying on "response" when using the
gtk.DIALOG_DESTROY_WITH_PARENT flag. Buttons are added from left to right, so the first button in
the list will be the leftmost button in the dialog.

Here's a simple example:

 dialog = gtk.Dialog("My dialog",
 main_app_window,
 gtk.DIALOG_MODAL | gtk_.DIALOG_DESTROY_WITH_PARENT,
 (gtk.STOCK_OK, gtk.RESPONSE_ACCEPT,
 gtk.STOCK_CANCEL, gtk.RESPONSE_REJECT))

Methods

gtk.Dialog.add_action_widget

 def add_action_widget(child, response_id)

child : an activatable widget
response_id : a response ID
The add_action_widget() method adds an activatable widget to the action area of a gtk.Dialog,
connecting a signal handler that will emit the "response" signal on the dialog when the widget is activated.
The widget is appended to the end of the dialog's action area. If you want to add a non−activatable widget,
simply pack it into the action_area.

gtk.Dialog.add_button

 def add_button(button_text, response_id)

button_text : the text of the button, or a stock ID
response_id : the response ID for the button
Returns : the button widget that was added
The add_button() method adds a button with the text specified by button_text (or a stock button, if
button_text is a stock ID) and sets things up so that clicking the button will emit the "response" signal
with the specified response_id. The button is appended to the end of the dialog's action area. The button
widget is returned, but usually you don't need it.

gtk.Dialog.add_buttons

 def add_buttons(buttons)

buttons : a tuple containing 2−tuples each containing button text (or stock ID) and a response id
The add_buttons() method adds several buttons to the gtk.Dialog using the data specified in
buttons. This method is the same as calling the gtk.Dialog.add_button() repeatedly. buttons is a
tuple containing 2−tuples specifying the data for one button − button text and a response ID integer.

PyGTK 2.0 Reference Manual

Constructor 290

gtk.Dialog.set_response_sensitive

 def set_response_sensitive(response_id, setting)

response_id : a response ID
setting : the new value for sensitive
The set_response_sensitive() method calls the gtk.Window.set_sensitive() method with
the specified response_id for each widget in the dialog's action area. This method is a convenience
function to sensitize/desensitize all dialog buttons at once.

gtk.Dialog.set_default_response

 def set_default_response(response_id)

response_id : a response ID
The set_default_response() method sets the last widget in the dialog's action area with the specified
response_id as the default widget for the dialog. Pressing Enter normally activates the default widget.

gtk.Dialog.set_has_separator

 def set_has_separator(setting)

setting : If TRUE use a separator
The set_has_separator() method sets the "has−separator" property to the value of setting. If
setting is TRUE (the default value) the dialog has a separator above the buttons.

gtk.Dialog.get_has_separator

 def get_has_separator()

Returns : the value of the "has−separator" property
The get_has_separator() method returns the value of the "has−separator" property.

gtk.Dialog.response

 def response(response_id)

response_id : response ID
The response() method emits the "response" signal with the value specified in response_id. This
method is used to indicate that the user has responded to the dialog in some way; typically either you or
gtk.Dialog.run() will be monitoring the "response" signal and take appropriate action.

gtk.Dialog.run

 def run()

Returns : a response ID
The run() method blocks in a recursive main loop until the dialog either emits the "response" signal, or is
destroyed. If the dialog is destroyed, the run() method returns gtk.RESPONSE_NONE; otherwise, it returns
the response ID from the "response" signal emission. Before entering the recursive main loop, the run()
method calls the gtk.Widget.show() on the dialog for you. Note that you still need to show any children
of the dialog yourself.

PyGTK 2.0 Reference Manual

gtk.Dialog.set_response_sensitive 291

During the run() method, the default behavior of "delete_event" is disabled; if the dialog receives a
"delete_event", it will not be destroyed as windows usually are, and the run() method will return
gtk.RESPONSE_DELETE_EVENT. Also, during the run() method the dialog will be modal. You can force
the run() method to return at any time by calling response() to emit the "response" signal. Destroying the
dialog during the run() method is a very bad idea, because your post−run code won't know whether the
dialog was destroyed or not.

After the run() method returns, you are responsible for hiding or destroying the dialog as needed.

gtk.Dialog.set_alternative_button_order

 def set_alternative_button_order(new_order)

new_order : a sequence containing response id integer values

Note

This method is available in PyGTK 2.6 and above.

The set_alternative_button_order() method sets an alternative button order for the dialog based
on the sequence of response ids specified by new_order. If the "gtk−alternative−button−order" property of
the gtk.Settings object is set to TRUE, the dialog buttons are reordered according to the order of the
response ids passed to this method.

By default, GTK+ dialogs use the button order advocated by the Gnome Human Interface Guidelines with the
affirmative button at the far right, and the cancel button left of it. But the builtin GTK+ dialogs and
gtk.MessageDialogs do provide an alternative button order, which is more suitable on some platforms,
e.g. Windows.

Use this method after adding all the buttons to your dialog, as the following example shows:

 settings = gtk.settings_get_default()
 settings.set_property('gtk−alternative−button−order', True)

 dialog = gtk.Dialog()
 cancel_button = dialog.add_button(gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL)
 ok_button = dialog.add_button(gtk.STOCK_OK, gtk.RESPONSE_OK)
 ok_button.grab_default()
 help_button = dialog.add_button(gtk.STOCK_HELP, gtk.RESPONSE_HELP)

 dialog.set_alternative_button_order([gtk.RESPONSE_OK, gtk.RESPONSE_CANCEL,
 gtk.RESPONSE_HELP])

Signals

The "close" gtk.Dialog Signal

 def callback(dialog, user_param1, ...)

dialog : the dialog that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "close" signal is emitted when the dialog is closed.

PyGTK 2.0 Reference Manual

gtk.Dialog.run 292

The "response" gtk.Dialog Signal

 def callback(dialog, response_id, user_param1, ...)

dialog : the dialog that received the signal
response_id : the response id received by the dialog
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "response" signal is emitted when an action_area widget is activated (button "clicked"), the dialog
receives a delete_event or the application calls the response() method. When a delete_event triggers the
"response" signal the response_id will be gtk.RESPONSE_NONE.

Prev Up Next
gtk.Curve Home gtk.DrawingArea

gtk.DrawingArea
Prev The gtk Class Reference Next

gtk.DrawingArea

gtk.DrawingArea � a widget for custom user interface elements.

Synopsis

class gtk.DrawingArea(gtk.Widget):
gtk.DrawingArea()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.DrawingArea

Description

The gtk.DrawingArea widget is used for creating custom user interface elements. It's essentially a blank
widget containing a gtk.gdk.Window that you can draw on. The contained gtk.gdk.Window is
accessed using the gtk.Widget "window" attribute as:

 gdkwindow = drawingarea.window

Since a gtk.gdk.Window is a subclass of gtk.gdk.Drawable, all of the gtk.gdk.Drawable
methods are available for drawing on the gtk.DrawingArea's gdkwindow.

After creating a drawing area, the application may want to connect to:

Mouse and button press signals to respond to input from the user. Use the
gtk.Widget.add_events() method to enable events you wish to receive. To receive keyboard
events, you will need to set the gtk.CAN_FOCUS flag on the drawing area

•

The "realize" signal to take any necessary actions when the widget is instantiated on a particular
display.

•

The "configure_event" signal to take any necessary actions when the widget changes size.•

PyGTK 2.0 Reference Manual

The "response" gtk.Dialog Signal 293

The "expose_event" signal to handle redrawing the contents of the widget when a drawing area first
comes on screen, or when it's covered by another window and then uncovered (exposed). You can
also force an expose event by adding to the "damage region" of the drawing area's window using the
gtk.Widget.queue_draw_area() method.

•

See the Drawing Area chapter in the tutorial for more information on using a gtk.DrawingArea.

Sometimes a gtk.Image is a useful alternative to a drawing area. You can put a gtk.gdk.Pixmap in the
gtk.Image and draw to the gtk.gdk.Pixmap, calling the gtk.Widget.queue_draw() method on
the gtk.Image when you want to refresh to the screen.

Constructor

gtk.DrawingArea()

Returns : a new drawingarea widget
Creates a new gtk.DrawingArea widget.

Prev Up Next
gtk.Dialog Home gtk.Editable

gtk.Editable
Prev The gtk Class Reference Next

gtk.Editable

gtk.Editable � an interface for text−editing widgets.

Synopsis

class gtk.Editable(gobject.GInterface):
 def select_region(start, end)
 def get_selection_bounds()
 def insert_text(text, position=0)
 def delete_text(start_pos, end_pos)
 def get_chars(start_pos, end_pos)
 def cut_clipboard()
 def copy_clipboard()
 def paste_clipboard()
 def delete_selection()
 def set_position(position)
 def get_position()
 def set_editable(is_editable)
 def get_editable()

Signal Prototypes

"changed" def callback(editable, user_param1, ...)

"delete−text" def callback(editable, start, end, user_param1, ...)

"insert−text" def callback(editable, new_text, new_text_length, position,
user_param1, ...)

PyGTK 2.0 Reference Manual

Description 294

Description

gtk.Editable is an interface for text editing widgets, such as gtk.Entry. The editable class contains
methods for generically manipulating an editable widget, a large number of action signals used for key
bindings, and several signals that an application can connect to to modify the behavior of a widget.

Methods

gtk.Editable.select_region

 def select_region(start, end)

start : the new start position of the selection
end : the new end position of the selection
The select_region() method selects a region of text from start up to, but not including end. If end is
negative, then the selection will run from start to the end of the text.

gtk.Editable.get_selection_bounds

 def get_selection_bounds()

Returns : a tuple containing the start and end positions of the selection or an empty tuple if there is no
selection

The get_selection_bounds() method returns a tuple that contains the start and end positions of the
selection if any or an empty tuple if there is no selection.

gtk.Editable.insert_text

 def insert_text(text, position=0)

text : the text to be inserted
position : the position where the text should be inserted
The insert_text() method inserts the string specified by text at the location specified by position.

gtk.Editable.delete_text

 def delete_text(start_pos, end_pos)

start_pos : the start position of the text to delete
end_pos : the end position of the text to delete
The delete_text() method deletes a sequence of characters starting from start_pos up to, but not
including end_pos. If end_pos is negative, then the characters deleted will be those characters from
start_pos to the end of the text.

gtk.Editable.get_chars

 def get_chars(start_pos, end_pos)

start_pos : the start position

PyGTK 2.0 Reference Manual

Description 295

end_pos : the end position
Returns : a string containing the characters from start to end
The get_chars() method retrieves a string of characters starting from start_pos up to, but not including
end_pos. If end_pos is negative, then all the characters from start_pos to the end of the text are
retrieved.

gtk.Editable.cut_clipboard

 def cut_clipboard()

The cut_clipboard() method copies the characters in the current selection to the clipboard and then
deletes them from the widget.

gtk.Editable.copy_clipboard

 def copy_clipboard()

The copy_clipboard() method copies the characters in the current selection to the clipboard

gtk.Editable.paste_clipboard

 def paste_clipboard()

The paste_clipboard() method copies the contents of the clipboard to the widget at the cursor position.

gtk.Editable.delete_selection

 def delete_selection()

The delete_selection() method deletes the characters in the selection and releases the selection
ownership

gtk.Editable.set_position

 def set_position(position)

position : the new cursor position
The set_position() method sets the cursor position to be just before the character at the location specified
by position. If position is less than 0 or greater than the number of characters in the widget the cursor
is positioned after the last character in the widget. Note position is in characters not bytes.

gtk.Editable.get_position

 def get_position()

Returns : the cursor position
The get_position() method retrieves the cursor position as a character index starting from 0. If the cursor
is after the last character the position will equal the number of characters in the widget. Note position is in
characters not bytes.

PyGTK 2.0 Reference Manual

gtk.Editable.get_chars 296

gtk.Editable.set_editable

 def set_editable(is_editable)

is_editable : if TRUE the text can be edited
The set_editable() method sets the widget "editable" attribute of the widget to the value specified by
is_editable. If is_editable is TRUE the text can be edited; if FALSE, the text cannot be edited.

gtk.Editable.get_editable

 def get_editable()

Returns : TRUE if the text is editable.
The get_editable() method retrieves the value of the widget "editable" attribute that specifies whether
the text is editable. See set_editable().

Signals

The "changed" gtk.Editable Signal

 def callback(editable, user_param1, ...)

editable : the editable that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "changed" signal is emitted when the contents of the widget have changed.

The "delete−text" gtk.Editable Signal

 def callback(editable, start, end, user_param1, ...)

editable : the editable that received the signal
start : the start position
end : the end position
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "delete−text" signal is emitted when text is deleted from the widget by the user. The default handler for
this signal will normally be responsible for deleting the text, so by connecting to this signal and then stopping
the signal with the gobject.stop_emission() method, it is possible to prevent it from being deleted.
The start and end parameters are interpreted as for delete_text()

The "insert−text" gtk.Editable Signal

 def callback(editable, new_text, new_text_length, position, user_param1, ...)

editable : the editable that received the signal
new_text : the string that is being inserted
new_text_length : the length of the new text
position : a pointer to the location at which the new text will be inserted
user_param1 : the first user parameter (if any) specified with the connect() method

PyGTK 2.0 Reference Manual

gtk.Editable.set_editable 297

... : additional user parameters (if any)
The "insert−text" signal is emitted when text is inserted into the widget by the user. The default handler for
this signal will normally be responsible for inserting the text, so by connecting to this signal and then stopping
the signal with the gobject.stop_emission() method, it is possible to prevent it from being inserted
entirely. The position parameter is a gobject.GPointer object containing a pointer to the insertion
position − there is no way to access the position value from PyGTK.

Prev Up Next
gtk.DrawingArea Home gtk.Entry

gtk.Entry
Prev The gtk Class Reference Next

gtk.Entry

gtk.Entry � a single line text entry field.

Synopsis

class gtk.Entry(gtk.Widget, gtk.Editable, gtk.CellEditable):
gtk.Entry(max=0)

 def set_visibility(visible)
 def get_visibility()
 def set_invisible_char(ch)
 def get_invisible_char()
 def set_has_frame(setting)
 def get_has_frame()
 def set_max_length(max)
 def get_max_length()
 def set_activates_default(setting)
 def get_activates_default()
 def set_width_chars(n_chars)
 def get_width_chars()
 def set_text(text)
 def get_text()
 def get_layout()
 def get_layout_offsets()
 def set_alignment(xalign)
 def get_alignment()
 def set_completion(width_chars)
 def get_completion()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Entry (implements gtk.Editable, gtk.CellEditable)

Properties

PyGTK 2.0 Reference Manual

The "insert−text" gtk.Editable Signal 298

"cursor−position" Read The current position of the insertion cursor as a character index.
"selection−bound" Read The position of the opposite end of the selection from the cursor as a

character index.
"editable" Read/Write If TRUE the entry contents can be edited
"max−length" Read/Write The maximum number of characters for this entry. Zero if no maximum.
"visibility" Read/Write If FALSE displays the "invisible char" instead of the actual text (e.g.

password mode)
"has−frame" Read/Write If FALSE removes outside bevel from entry.
"invisible−char" Read/Write The character to use when masking entry contents (when "visibility" is

FALSE)
"activates−default" Read/Write If TRUE activate the default widget (such as the default button in a dialog)

when Enter is pressed.
"width−chars" Read/Write The number of characters to leave space for in the entry.
"scroll−offset" Read The number of pixels of the entry scrolled off the screen to the left.
"text" Read/Write The contents of the entry.
"xalign" Read/Write The horizontal alignment ranging from 0.0 to 1.0 representing the fraction of

freespace to the left (right for RTL layouts) of the text. Available in GTK+
2.4 and above.

Signal Prototypes

"activate" def callback(entry, user_param1, ...)

"copy−clipboard" def callback(entry, user_param1, ...)

"cut−clipboard" def callback(entry, user_param1, ...)

"delete−from−cursor" def callback(entry, delete_type, count, user_param1, ...)
"insert−at−cursor" def callback(entry, string, user_param1, ...)

"move−cursor" def callback(entry, step_size, count, extend_selection,
user_param1, ...)

"paste−clipboard" def callback(entry, user_param1, ...)

"populate−popup" def callback(entry, menu, user_param1, ...)

"toggle−overwrite" def callback(entry, user_param1, ...)

Description

The gtk.Entry widget is a single line text entry widget. A fairly large set of key bindings are supported by
default. If the entered text is longer than the allocation of the widget, the widget will scroll so that the cursor
position is visible.

Constructor

gtk.Entry(max=0)

max : the maximum length of the entry, or 0 for no maximum. (other than the maximum length of
entries.) The value passed in will be limited to the range 0−65536.

Returns : a new gtk.Entry.
Creates a new gtk.Entry widget with the maximum length specified by max.

PyGTK 2.0 Reference Manual

Properties 299

Methods

gtk.Entry.set_visibility

 def set_visibility(visible)

visible : If FALSE the contents are obscured using the "invisible−char"
The set_visibility() method sets the "visibility" property to the value of visible. If visible is TRUE
the contents of the entry are displayed as plain text. If visible is FALSE, the contents are obscured by
replacing the characters with the invisible character (specified by the "invisible−char" property). The
characters will also be obscured when the text in the entry widget is copied elsewhere. The default invisible
char is the asterisk '*', but it can be changed with set_invisible_char().

gtk.Entry.get_visibility

 def get_visibility()

Returns : TRUE if the text is currently visible
The get_visibility() method retrieves the value of the "visibility" property that determines whether the
text in entry is visible. See set_visibility().

gtk.Entry.set_invisible_char

 def set_invisible_char(ch)

ch : a Unicode character
The set_invisible_char() method sets the "invisible−char" property with the value of ch. The
"invisible−char" is the character to use in place of the actual text when set_visibility() has been called
to set text visibility to FALSE. i.e. this is the character used in "password mode" to show the user how many
characters have been typed. The default invisible character is an asterisk ('*'). If you set the invisible character
to 0, then the user will get no feedback at all; there will be no text on the screen as they type.

gtk.Entry.get_invisible_char

 def get_invisible_char()

Returns : the current invisible char, or 0, if the entry does not show invisible text at all.
The get_invisible_char() method retrieves the value of the "invisible−char" property. The "invisible−char" is
the character displayed in place of the real characters for entries with visibility set to FALSE. See
set_invisible_char().

gtk.Entry.set_has_frame

 def set_has_frame(setting)

setting : If TRUE the entry is displayed with a beveled frame around it.
The set_has_frame() method sets the "has−frame" property to the value of setting. If setting is
TRUE the entry is displayed with a beveled frame around it.

PyGTK 2.0 Reference Manual

Methods 300

gtk.Entry.get_has_frame

 def get_has_frame()

Returns : whether the entry has a beveled frame
The get_has_frame() method gets the value of the "has−frame" property. If "has−frame" is TRUE the entry
will be displayed with a beveled frame around it.

gtk.Entry.set_max_length

 def set_max_length(max)

max : the maximum length of the entry, or 0 for no maximum. (other than the maximum length of
entries.) The value passed in will be clamped to the range 0−65536.

The set_max_length() method sets the "max−length" property to the value of max. The "max−length"
property sets the maximum allowed length of the contents of the widget. If the current contents are longer
than the given length, then they will be truncated to fit. If max is 0 then there is no maximum length (other
than 65536).

gtk.Entry.get_max_length

 def get_max_length()

Returns : the maximum allowed number of characters in gtk.Entry, or 0 if there is no maximum.
The get_max_length() method retrieves the value of the "max−length" property that specifies the maximum
allowed length of the text in the entry. See set_max_length().

gtk.Entry.set_activates_default

 def set_activates_default(setting)

setting : If TRUE activate the window's default widget on an Enter key press
The set_activates_default() method sets the "activates−default" property to the value of setting.
If setting is TRUE, pressing the Enter key in the entry will activate the default widget for the window
containing the entry. This usually means that the dialog box containing the entry will be closed, since the
default widget is usually one of the dialog buttons.

(For experts: if setting is TRUE, the entry calls gtk.Window.activate_default() on the window
containing the entry, in the default handler for the "activate" signal.)

gtk.Entry.get_activates_default

 def get_activates_default()

Returns : TRUE if the entry will activate the default widget
The get_activates_default() method retrieves the value of the "activates−default" property which is
set by set_activates_default(). If "activates−default" is TRUE pressing the Enter key in the entry
will activate the default widget for the window containing the entry.

PyGTK 2.0 Reference Manual

gtk.Entry.get_has_frame 301

gtk.Entry.set_width_chars

 def set_width_chars(n_chars)

n_chars : width in chars
The set_width_chars() method sets the "width−chars" property to the value of n_char. Setting the
"width−chars" property changes the size request of the entry to be about the right size for n_chars
characters. Note that it only changes the size request, the size can still be affected by how you pack the widget
into containers. If n_chars is −1, the size reverts to the default entry size.

gtk.Entry.get_width_chars

 def get_width_chars()

Returns : number of chars to request space for, or negative if unset
The get_width_chars() method gets the value of the "width−chars" property which is set by the
set_width_chars() method.

gtk.Entry.set_text

 def set_text(text)

text : a string to use as the new contents of the entry
The set_text() method sets the "text" property to the value of text. The string in text replaces the
current contents of the entry.

gtk.Entry.get_text

 def get_text()

Returns : the contents of the entry as a string
The get_text() method returns the value of the "text" property which is a string containing the contents of
the entry.

gtk.Entry.get_layout

 def get_layout()

Returns : the pango.Layout for this entry
The get_layout() method gets the pango.Layout used to display the entry. The layout is useful to e.g.
convert text positions to pixel positions, in combination with get_layout_offsets().

gtk.Entry.get_layout_offsets

 def get_layout_offsets()

Returns : a tuple containing the X and Y offsets of the pango layout
The get_layout_offsets() method obtains the position of the pango.Layout used to render text in
the entry, in widget coordinates and returns it as a tuple. This method is used to line up the text in an entry
with some other text, e.g. when using the entry to implement editable cells in a sheet widget. It is also useful
to convert mouse events into coordinates inside the pango.Layout, e.g. to take some action if some part of
the entry text is clicked.

PyGTK 2.0 Reference Manual

gtk.Entry.set_width_chars 302

Note that as the user scrolls around in the entry the offsets will change; you'll need to connect to the
"notify::scroll_offset" signal to track this.

gtk.Entry.set_alignment

 def set_alignment(xalign)

xalign : The horizontal alignment ranging from 0.0 to 1.0 representing the freespace to the left (right for
RTL layouts) of the text.

Note

This method is available in PyGTK 2.4 and above.

The set_alignment() method sets the "xalign" property to the value of xalign. The alignment controls
the horizontal positioning of the contents when the displayed text is shorter than the width of the entry. The
value of xalign is the fraction of freespace to the left (right in RTL layouts) of the text.

gtk.Entry.get_alignment

 def get_alignment()

Returns : The horizontal alignment ranging from 0.0 to 1.0 representing the freespace to the left (right for
RTL layouts) of the text.

Note

This method is available in PyGTK 2.4 and above.

The get_alignment() method returns the value of the "xalign" property which is the fraction of freespace
(if any) to the left (right in RTL layouts) of the text.

gtk.Entry.set_completion

 def set_completion(completion)

completion : a gtk.EntryCompletion

Note

This method is available in PyGTK 2.4 and above.

The set_completion() method sets the gtk.EntryCompletion specified by completion to be the
auxiliary completion object to use with the entry. All further configuration of the completion mechanism is
done using completion and the gtk.EntryCompletion methods.

gtk.Entry.get_completion

 def get_completion()

Returns : the auxiliary completion object

PyGTK 2.0 Reference Manual

gtk.Entry.get_layout_offsets 303

Note

This method is available in PyGTK 2.4 and above.

The get_completion() method returns the gtk.EntryCompletion object currently in use by the
entry.

Signals

The "activate" gtk.Entry Signal

 def callback(entry, user_param1, ...)

entry : the entry that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "activate" signal is emitted when the entry is activated either by user action (pressing the Enter key) or
programmatically with the gtk.Widget.activate() method

The "copy−clipboard" gtk.Entry Signal

 def callback(entry, user_param1, ...)

entry : the entry that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "copy−clipboard" signal is emitted when the selection text in the entry is copied to the clipboard.

The "cut−clipboard" gtk.Entry Signal

 def callback(entry, user_param1, ...)

entry : the entry that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "cut−clipboard" signal is emitted when the selection in the entry is cut (removed from the entry) and
placed in the clipboard.

The "delete−from−cursor" gtk.Entry Signal

 def callback(entry, delete_type, count, user_param1, ...)

entry : the entry that received the signal
delete_type : the type of deletion
count : the number of deletions of the type to perform
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "delete−from−cursor" signal is emitted when the a deletion from the cursor i.e. removal o text at the
cursor position, either before it (negative count) or after it (positive count). The value of delete_type

PyGTK 2.0 Reference Manual

Note 304

can be one of:

gtk.DELETE_CHARS•
gtk.DELETE_WORD_ENDS•
gtk.DELETE_WORDS•
gtk.DELETE_DISPLAY_LINES•
gtk.DELETE_DISPLAY_LINE_ENDS•
gtk.DELETE_PARAGRAPH_ENDS•
gtk.DELETE_PARAGRAPHS•
gtk.DELETE_WHITESPACE•

The "insert−at−cursor" gtk.Entry Signal

 def callback(entry, string, user_param1, ...)

entry : the entry that received the signal
string : the text being inserted in the entry
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "insert−at−cursor" signal is emitted when text is being inserted in the entry.

The "move−cursor" gtk.Entry Signal

 def callback(entry, step, count, extend_selection, user_param1, ...)

entry : the entry that received the signal
step : the size of the step to move the cursor
count : the number of steps to move the cursor
extend_selection : if TRUE extend the selection as well as moving the cursor
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−cursor" signal is emitted when the cursor is being moved by count steps of size step. If
extend_selection is TRUE the selection is extended as the cursor is being moved. The value of step
can be one of:

gtk.MOVEMENT_LOGICAL_POSITIONS•
gtk.MOVEMENT_VISUAL_POSITIONS•
gtk.MOVEMENT_WORDS•
gtk.MOVEMENT_DISPLAY_LINES•
gtk.MOVEMENT_DISPLAY_LINE_ENDS•
gtk.MOVEMENT_PARAGRAPH_ENDS•
gtk.MOVEMENT_PARAGRAPHS•
gtk.MOVEMENT_PAGES•
gtk.MOVEMENT_BUFFER_ENDS•

The "paste−clipboard" gtk.Entry Signal

 def callback(entry, user_param1, ...)

entry : the entry that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method

PyGTK 2.0 Reference Manual

The "delete−from−cursor" gtk.Entry Signal 305

... : additional user parameters (if any)
The "paste−clipboard" signal is emitted when the contents of the clipboard are pasted into the entry.

The "populate−popup" gtk.Entry Signal

 def callback(entry, menu, user_param1, ...)

entry : the entry that received the signal
menu : the menu that needs populating
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "populate−popup" signal is emitted when the menu needs populating.

The "toggle−overwrite" gtk.Entry Signal

 def callback(entry, user_param1, ...)

entry : the entry that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "toggle−overwrite" signal is emitted when the internal entry attribute "overwrite_mode" is toggled by
pressing the Insert key.

Prev Up Next
gtk.Editable Home gtk.EntryCompletion

gtk.EntryCompletion
Prev The gtk Class Reference Next

gtk.EntryCompletion

gtk.EntryCompletion � completion functionality for gtk.Entry (new in PyGTK 2.4)

Synopsis

class gtk.EntryCompletion(gobject.GObject, gtk.CellLayout):
gtk.EntryCompletion()

 def get_entry()
 def set_model(model=None)
 def get_model()
 def set_match_func(func, func_data)
 def set_minimum_key_length(length)
 def get_minimum_key_length()
 def complete()
 def insert_action_text(index, text)
 def insert_action_markup(index, markup)
 def delete_action(index)
 def insert_prefix()
 def set_text_column(column)
 def set_inline_completion(inline_completion)
 def get_inline_completion()
 def set_popup_completion(popup_completion)
 def get_popup_completion()

PyGTK 2.0 Reference Manual

The "paste−clipboard" gtk.Entry Signal 306

Ancestry

+−− gobject.GObject
 +−− gtk.EntryCompletion (implements gtk.CellLayout)

Properties

"inline−completion" Read−Write If TRUE the common prefix should be inserted
automatically. Default value: FALSE. Available in GTK+
2.6 and above.

"minimum−key−length" Read−Write Minimum length of the search key in order to look up
matches.

"model" Read−Write The gtk.TreeModel to find matches in.
"popup−completion" Read−Write If TRUE the completions should be shown in a popup

window. Default value: TRUE. Available in GTK+ 2.6
and above.

"text−column" Read−Write The column of the model containing the strings. Allowed
values: >= −1. Default value: −1. Available in GTK+ 2.6
and above.

Signal Prototypes

"action−activated" def callback(completion, index, user_param1, ...)

"insert−prefix" def callback(completion, prefix, user_param1, ...)

"match−selected" def callback(completion, model, iter, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.4 and above.

gtk.EntryCompletion is an auxiliary object to be used in conjunction with gtk.Entry to provide
completion functionality. It implements the gtk.CellLayout interface, to allow the user to add extra cells
to the popup display of completions.

To add completion functionality to an entry, use the gtk.Entry.set_completion() method. In addition
to regular completion matches, that will be inserted into the entry when they are selected,
gtk.EntryCompletion also allows "actions" to be displayed in the popup window below any
completions. Their appearance is similar to menuitems, to differentiate them clearly from completion strings.
When an action is selected, the "action−activated" signal is emitted.

A gtk.TreeModel (e.g. a gtk.ListStore) containing the completion strings is associated with the
gtk.EntryCompletion using the set_model() method. The tree model column containing the
completion strings can be set using the convenience method set_text_column() that also creates a
gtk.CellRendererText and packs it into the entry completion.

Otherwise, you can create gtk.CellRenderer objects and pack them into the
gtk.EntryCompletion using the gtk.CellLayout methods gtk.CellLayout.pack_start()
or gtk.CellLayout.pack_start(). However, you will also have to define a match function and set it
with the set_match_func() method.

PyGTK 2.0 Reference Manual

Ancestry 307

If you wanted to create a completion list with the strings to insert and some additional info e.g. an icon or
description you could do something like:

 entry = gtk.Entry()
 completion = gtk.EntryCompletion()
 entry.set_completion(completion)
 liststore = gtk.ListStore(gobject.TYPE_STRING, gtk.gdk.Pixbuf)
 completion.set_model(liststore)
 pixbufcell = gtk.CellRendererPixbuf()
 completion.pack_start(pixbufcell)
 completion.add_attribute(pixbufcell, 'pixbuf', 1)
 # create a gtk.CellRendererText and pack it in the completion. Also set the
 # 'text' attribute
 completion.set_text_column(0)
 # load up the liststore with string − pixbuf data − assuming pixbuf created
 liststore.append(['string text', pixbuf])

This will create an entry that will display a pixbuf and the text string during completion.

Actions are easily managed using the insert_action_text(), insert_action_markup() and
delete_action() methods.

Constructor

gtk.EntryCompletion()

Returns : A newly created gtk.EntryCompletion object.

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.EntryCompletion object.

Methods

gtk.EntryCompletion.get_entry

 def get_entry()

Returns : The gtk.Entry that the completion is attached to.

Note

This method is available in PyGTK 2.4 and above.

The get_entry() method retrieves the gtk.Entry that the entry completion is attached to.

gtk.EntryCompletion.set_model

 def set_model(model=None)

model : The gtk.TreeModel to use with the entry completion.

PyGTK 2.0 Reference Manual

Note 308

Note

This method is available in PyGTK 2.4 and above.

The set_model() method sets the gtk.TreeModel specified by model to be used with the entry
completion. A previously set model will be removed before the new model is set. If model is None or not
specified, the old model will be unset.

Note

In PyGTK 2.4.0 the model could not be None and did not default to None.

gtk.EntryCompletion.get_model

 def get_model()

Returns : The current gtk.TreeModel, or None if not set.

Note

This method is available in PyGTK 2.4 and above.

The get_model() method returns the gtk.TreeModel that the entry completion is using as data source.
Returns None if the model is unset.

gtk.EntryCompletion.set_match_func

 def set_match_func(func, func_data)

func : A function to be used.
func_data : The user data for func.

Note

This method is available in PyGTK 2.4 and above.

The set_match_func() method sets the match function specified by func. The match function is used by
the entry completion to determine if a row of the associated tree model should be in the completion list.

The signature of the match function is:

 def match_func(completion, key_string, iter, func_data):

where completion is the gtk.EntryCompletion that the match function is invoked on,
key_string is the current contents of the gtk.Entry to be matched, iter is a gtk.TreeIter
pointing at a row in the gtk.TreeModel associated with completion and func_data is the data specified
when the set_match_func() method was called. The match function should return TRUE if the completion
string should be displayed; otherwise, FALSE.

A simple example match function is:

 # Assumes that the func_data is set to the number of the text column in the
 # model.
 def match_func(completion, key, iter, column):
 model = completion.get_model()
 text = model.get_value(iter, column)

PyGTK 2.0 Reference Manual

Note 309

 if text.startswith(key):
 return True
 return False

You must use the set_match_func() method to display completions if you don't use the
set_text_column() method.

gtk.EntryCompletion.set_minimum_key_length

 def set_minimum_key_length(length)

length : The minimum length of the key string in order to start completing.

Note

This method is available in PyGTK 2.4 and above.

The set_minimum_key_length() method sets the minimum length of the search key to the value
specified by length. This means that the key string (contents of the gtk.Entry) must be at least length
characters before a completion list will be displayed. This is useful for long lists, where completing using a
small key will take too much time and will likely return too large a dataset.

gtk.EntryCompletion.get_minimum_key_length

 def get_minimum_key_length()

Returns : The currently used minimum key length.

Note

This method is available in PyGTK 2.4 and above.

The get_minimum_key_length() method returns the minimum key length set for the entry completion.
See the set_minimum_key_length() method for more information.

gtk.EntryCompletion.complete

 def complete()

Note

This method is available in PyGTK 2.4 and above.

The complete() method requests a completion operation, i.e. a refiltering of the current list with
completions, using the current key. The completion list view will be updated accordingly.

gtk.EntryCompletion.insert_action_text

 def insert_action_text(index, text)

index : The index in the action list where the item should be inserted.
text : The text of the item to insert.

PyGTK 2.0 Reference Manual

Note 310

Note

This method is available in PyGTK 2.4 and above.

The insert_action_text() method inserts an action in the action item list of the entry completion at the
position specified by index with the text specified by text. If you want the action item to have markup, use
the gtk.EntryCompletion.insert_action_markup() method.

gtk.EntryCompletion.insert_action_markup

 def insert_action_markup(index, markup)

index : The index in the action list where the item should be inserted.
markup : The Pango markup of the item to insert.

Note

This method is available in PyGTK 2.4 and above.

The insert_action_markup() method inserts an action item in the action item list of the entry
completion at the position specified by index with the Pango markup specified by markup.

gtk.EntryCompletion.delete_action

 def delete_action(index)

index : The index of the item to delete.

Note

This method is available in PyGTK 2.4 and above.

The delete_action() method deletes the action item at the position in the action item list specified by
index.

gtk.EntryCompletion.insert_prefix

 def insert_prefix()

Note

This method is available in PyGTK 2.6 and above.

The insert_prefix() method requests a prefix insertion.

gtk.EntryCompletion.set_text_column

 def set_text_column(column)

column : The column in the model to get strings from.

PyGTK 2.0 Reference Manual

Note 311

Note

This method is available in PyGTK 2.4 and above.

The set_text_column() method is a convenience method for setting up the most common completion
scenario: a completion list with just strings. This method creates and adds a gtk.CellRendererText
using the column specified by column as the source for completion strings. If you don't use this method you
will have to install a gtk.CellRendererText in the entry completion and set a match function using the
set_match_func() method to display the completion strings. In GTK+ 2.6 the "text−column" property is
set to the value of column.

gtk.EntryCompletion.set_inline_completion

 def set_inline_completion(inline_completion)

inline_completion : if TRUE do inline completion

Note

This method is available in PyGTK 2.6 and above.

The set_inline_completion() method sets the "inline−completion" property to the value of
inline_completion. If inline_completion is TRUE, the common prefix of the possible
completions should be automatically inserted in the entry.

gtk.EntryCompletion.get_inline_completion

 def get_inline_completion()

Returns : TRUE if automatic inline completion is enabled.

Note

This method is available in PyGTK 2.6 and above.

The get_inline_completion() method returns the value of the "inline−completion" property. If the
value of the "inline−completion" property is TRUE the common prefix of possible completions is
automatically inserted in the entry.

gtk.EntryCompletion.set_popup_completion

 def set_popup_completion(popup_completion)

popup_completion : If TRUE do popup completion.

Note

This method is available in PyGTK 2.6 and above.

The set_popup_completion() method sets the "popup−completion" property to the value of
popup_completion. If popup_completion is TRUE the completions should be presented in a popup
window.

PyGTK 2.0 Reference Manual

Note 312

gtk.EntryCompletion.get_popup_completion

 def get_popup_completion()

Returns : TRUE if completions should be displayed in a popup.

Note

This method is available in PyGTK 2.6 and above.

The get_popup_completion() method returns the value of the "popup−completion" property. If the
value of "popup−completion" property is TRUE the completions should be presented in a popup window.

Signals

The "action−activated" gtk.EntryCompletion Signal

 def callback(completion, index, user_param1, ...)

completion : the entry completion that received the signal
index : the index of the action item that was activated.
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "action−activated" signal is emitted when an action item is selected from the popup action list.

The "insert−prefix" gtk.EntryCompletion Signal

 def callback(completion, prefix, user_param1, ...)

completion : the entry completion that received the signal
prefix : the common prefix of all possible completions
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.6 and above.

The "insert−prefix" signal is emitted when the inline auto−completion is triggered. The default behavior is to
make the entry display the whole prefix and select the newly inserted part.

Applications may connect to this signal in order to insert only a smaller part of the prefix into the entry − e.g.
the entry used in the gtk.FileChooser inserts only the part of the prefix up to the next '/'.

The "match−selected" gtk.EntryCompletion Signal

 def callback(completion, model, iter, user_param1, ...)

PyGTK 2.0 Reference Manual

gtk.EntryCompletion.get_popup_completion 313

completion : the entry completion that received the signal
model : the gtk.TreeModel that iter points into.
iter : a gtk.TreeIter pointing at the selection completion string row in model.
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "match−selected" signal is emitted when a completion string was selected from the completion list. iter
points at the row in model that contains the completion string.

Prev Up Next
gtk.Entry Home gtk.EventBox

gtk.EventBox
Prev The gtk Class Reference Next

gtk.EventBox

gtk.EventBox � a widget used to catch events for widgets which do not have their own window.

Synopsis

class gtk.EventBox(gtk.Bin):
gtk.EventBox()

 def get_visible_window()
 def set_visible_window(visible_window)
 def get_above_child()
 def set_above_child(above_child)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.EventBox

Properties

"above−child" Read−Write If TRUE, the event−trapping window of the eventbox is above the window of
the child widget as opposed to below it. Available in GTK+ 2.4 and above.

"visible−window" Read−Write If TRUE, the event box is visible, as opposed to invisible and only used to
trap events. Available in GTK+ 2.4 and above.

Description

The gtk.EventBox widget is an invisible container widget that provides a window for widgets that do not
have their own window. In GTK, widgets must have a window to be able to receive event signals. Those

PyGTK 2.0 Reference Manual

The "match−selected" gtk.EntryCompletion Signal 314

widgets that are "windowless" can use a gtk.EventBox to receive event signals.

Constructor

gtk.EventBox()

Returns : an eventbox widget
Creates a new gtk.EventBox widget.

Methods

gtk.EventBox.get_visible_window

 def get_visible_window()

Returns : TRUE if the event box window is visible.

Note

This method is available in PyGTK 2.4 and above.

The gtk_visible_window() method returns TRUE if the event box has a visible window. See the
set_visible_window() method for details.

gtk.EventBox.set_visible_window

 def set_visible_window(visible_window)

visible_window : if TRUE the event box window is visible.

Note

This method is available in PyGTK 2.4 and above.

The set_visible_window() method sets whether the event box uses a visible or invisible child window
according to the value specified by visible_window. If visible_window is TRUE the event box uses
a visible child window; otherwise, an invisible child window. The default is to use visible windows.

In an invisible window event box, the window that that the event box creates is a gtk.gdk.INPUT_ONLY
window, that is invisible and only serves to receive events. A visible window event box creates a visible
(gtk.gdk.INPUT_OUTPUT) window that acts as the parent window for all the widgets contained in the
event box.

You should generally make your event box invisible if you just want to trap events. Creating a visible window
may cause artifacts that are visible to the user, especially if the user is using a theme with gradients or
pixmaps. The main reason to create a non input−only event box is if you want to set the background to a
different color or draw on it.

Note

There is one unexpected issue for an invisible event box that has its window below the child. (See the
set_above_child() method.) Since the input−only window is not an ancestor window of any windows
that descendant widgets of the event box create, events on these windows aren't propagated up by the

PyGTK 2.0 Reference Manual

Description 315

windowing system, but only by GTK+. The practical effect of this is if an event isn't in the event mask for the
descendant window (see the gtk.Widget.add_events() method), it won't be received by the event
box.

This problem doesn't occur for visible event boxes, because the event box window is actually the ancestor of
the descendant windows, not just at the same place on the screen.

gtk.EventBox.get_above_child

 def get_above_child()

Returns : TRUE if the event box window is above the window of its child.

Note

This method is available in PyGTK 2.4 and above.

The get_above_child() method returns the value of the "above−child" property that indicates whether
the event box window is above or below the windows of its child. See the set_above_child() method
for details.

gtk.EventBox.set_above_child

 def set_above_child(above_child)

above_child : if TRUE the event box window is above the windows of its child

Note

This method is available in PyGTK 2.4 and above.

The set_above_child() method sets the "above−child" property to the value of above_child. If
above_child is TRUE, the event box window is positioned above the windows of its child; otherwise,
below it. If the window is above, all events inside the event box will go to the event box. If the window is
below, events in windows of child widgets will first got to that widget, and then to its parents. The default is
to keep the window below the child.

Prev Up Next
gtk.EntryCompletion Home gtk.Expander

gtk.Expander
Prev The gtk Class Reference Next

gtk.Expander

gtk.Expander � a container that can hide its child (new in PyGTK 2.4)

Synopsis

class gtk.Expander(gtk.Bin):
gtk.Expander(label=None)

 def set_expanded(expanded)
 def get_expanded()
 def set_spacing(spacing)

PyGTK 2.0 Reference Manual

Note 316

 def get_spacing()
 def set_label(label)
 def get_label()
 def set_use_underline(use_underline)
 def get_use_underline()
 def set_use_markup(use_markup)
 def get_use_markup()
 def set_label_widget(label_widget)
 def get_label_widget()

Functions

 def gtk.expander_new_with_mnemonic(label=None)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Expander

Properties

"expanded" Read−Write If TRUE, the expander has been opened to reveal the child
widget.

"label" Read−Write The text of the expander's label.
"label−widget" Read−Write A widget to display in place of the usual expander label.
"spacing" Read−Write The space to put between the label and the child.
"use−markup" Read−Write If TRUE, the text of the label includes Pango markup. See

the pango.parse_markup() function.
"use−underline" Read−Write If TRUE, n underline in the text indicates the next character

should be used for the mnemonic accelerator key.

Style Properties

"expander−size" Read The size of the expander arrow.
"expander−spacing" Read The spacing around expander arrow.

Signal Prototypes

"activate" def callback(expander, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.4 and above.

A gtk.Expander allows the user to hide or show its child by clicking on an expander triangle similar to the
triangles used in a gtk.TreeView.

PyGTK 2.0 Reference Manual

Synopsis 317

Normally you use an expander as you would use any other descendant of gtk.Bin; you create the child
widget and use gtk.Container.add() to add it to the expander. When the expander is toggled, it will
take care of showing and hiding the child automatically.

Special Usage

There there are situations in which you may prefer to show and hide the expanded widget yourself, such as
when you want to actually create the widget at expansion time. In this case, create a gtk.Expander but do
not add a child to it. The expander widget has the "expanded" property that can be used to monitor its
expansion state. You should watch this property with a signal connection as follows:

 expander = gtk.expander_new_with_mnemonic("_More Options")
 expander.connect("notify::expanded", expander_callback)

 ...

 def expander_callback(expander, param_spec, user_data):
 if expander.get_expanded():
 # Show or create widgets
 else:
 # Hide or destroy widgets

The "activate" signal can also be used to track the expansion though it occurs before the "expanded" property
is changed so the logic of the expander_callback() function would have to be reversed.

Constructor

gtk.Expander(label=None)

label : the text of the label or None
Returns : a new gtk.Expander widget.

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new expander using label as the text of the label. If label is None or not specified, no label will
be created.

Methods

gtk.Expander.set_expanded

 def set_expanded(expanded)

expanded : if TRUE, the child widget is revealed

Note

This method is available in PyGTK 2.4 and above.

The set_expanded() method sets the "expanded" property to the value of expanded. If expanded is
TRUE, the child widget is revealed; if FALSE, the child widget is hidden.

PyGTK 2.0 Reference Manual

Note 318

gtk.Expander.get_expanded

 def get_expanded()

Returns : TRUE if the child is revealed.

Note

This method is available in PyGTK 2.4 and above.

The get_expanded() method returns the value of the "expanded" property. If "expanded" is TRUE the
child widget is revealed.

gtk.Expander.set_spacing

 def set_spacing(spacing)

spacing : the distance between the expander and child in pixels.

Note

This method is available in PyGTK 2.4 and above.

The set_spacing() method sets the "spacing" property to the value of spacing that sets is the number of
pixels to place between expander and the child.

gtk.Expander.get_spacing

 def get_spacing()

Returns : the spacing between the expander and child.

Note

This method is available in PyGTK 2.4 and above.

The get_spacing() method returns the value of the "spacing" property set by the set_spacing()
method.

gtk.Expander.set_label

 def set_label(label)

label : a string to use as the label or None

Note

This method is available in PyGTK 2.4 and above.

The set_label() method sets the "label" property to the value of label and sets the text of the label of the
expander. Any previously set label will be cleared. If label is None the expander will have no label.

gtk.Expander.get_label

 def get_label()

PyGTK 2.0 Reference Manual

gtk.Expander.get_expanded 319

Returns : the text of the label widget.

Note

This method is available in PyGTK 2.4 and above.

The get_label() method returns the value of the "label" property that contains the text of the expander
label, as set by the set_label() method. If the label text has not been set the return value will be None.

gtk.Expander.set_use_underline

 def set_use_underline(use_underline)

use_underline : TRUE if underlines in the text indicate mnemonics

Note

This method is available in PyGTK 2.4 and above.

The set_use_underline() method sets the "use_underline" property to the value of use_underline.
If use_underline is TRUE, an underline in the text of the expander label indicates the next character
should be used for the mnemonic accelerator key.

gtk.Expander.get_use_underline

 def get_use_underline()

Returns : TRUE if an embedded underline in the expander label indicates the mnemonic accelerator keys.

Note

This method is available in PyGTK 2.4 and above.

The get_use_underline() method returns the value of the "use−underline" property. If "use−underline"
is TRUE an embedded underline in the expander label indicates a mnemonic. See the
set_use_underline() method.

gtk.Expander.set_use_markup

 def set_use_markup(use_markup)

use_markup : if TRUE, the label's text should be parsed for markup

Note

This method is available in PyGTK 2.4 and above.

The set_use_markup() method sets the "use−markup" property to the value of use_markup. If
use_markup is TRUE the text of the label contains markup in the Pango text markup language. See the
gtk.Label.set_markup() method for more information.

gtk.Expander.get_use_markup

 def get_use_markup()

Returns : TRUE if the label's text will be parsed for markup

PyGTK 2.0 Reference Manual

gtk.Expander.get_label 320

Note

This method is available in PyGTK 2.4 and above.

The get_use_markup() method returns the value of the "use−markup" property. If "use−markup" is TRUE,
the label's text is interpreted as marked up with the Pango text markup language. See the
set_use_markup() method.

gtk.Expander.set_label_widget

 def set_label_widget(label_widget)

label_widget : the new label widget or None

Note

This method is available in PyGTK 2.4 and above.

The set_label_widget() method sets the expander to use the widget specified by label_widget as
the label instead of a gtk.Label. This widget appears embedded alongside the expander arrow. If
label_widget is None, the expander will have no label.

gtk.Expander.get_label_widget

 def get_label_widget()

Returns : the label widget, or None if there is none.

Note

This method is available in PyGTK 2.4 and above.

The get_label_widget() method retrieves the expander's label widget. See the
set_label_widget() method.

Functions

gtk.expander_new_with_mnemonic

 def gtk.expander_new_with_mnemonic(label=None)

label : the text of the label with an underscore in front of the mnemonic character or None
Returns : a new gtk.Expander widget.

Note

This function is available in PyGTK 2.4 and above.

The gtk.expander_new_with_mnemonic() function creates a new gtk.Expander using label as
the text of the label. If characters in label are preceded by an underscore, they are underlined. If you need a
literal underscore character in a label, use '__' (two underscores). The first underlined character represents a
keyboard accelerator called a mnemonic. Pressing Alt with that key activates the button. If label is None
the expander will have no label.

PyGTK 2.0 Reference Manual

Note 321

Signals

The "activate" gtk.Expander Signal

 def callback(expander, user_param1, ...)

expander : the expander that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "activate" signal is emitted when the expander is activated by the user clicking on the expander toggle.

Prev Up Next
gtk.EventBox Home gtk.FileChooser

gtk.FileChooser
Prev The gtk Class Reference Next

gtk.FileChooser

gtk.FileChooser � an interface for choosing files (new in PyGTK 2.4)

Synopsis

class gtk.FileChooser(gobject.GInterface):
 def set_action(action)
 def get_action()
 def set_local_only(local_only)
 def get_local_only()
 def set_select_multiple(select_multiple)
 def get_select_multiple()
 def set_current_name(name)
 def get_filename()
 def set_filename(filename)
 def select_filename(filename)
 def unselect_filename(filename)
 def select_all()
 def unselect_all()
 def get_filenames()
 def set_current_folder(filename)
 def get_current_folder()
 def get_uri()
 def set_uri(uri)
 def select_uri(uri)
 def unselect_uri(uri)
 def get_uris()
 def set_current_folder_uri(uri)
 def get_current_folder_uri()
 def set_preview_widget(preview_widget)
 def get_preview_widget()
 def set_preview_widget_active(active)
 def get_preview_widget_active()
 def set_use_preview_label(use_label)

PyGTK 2.0 Reference Manual

Signals 322

 def get_use_preview_label()
 def get_preview_filename()
 def get_preview_uri()
 def set_extra_widget(extra_widget)
 def get_extra_widget()
 def add_filter(filter)
 def remove_filter(filter)
 def list_filters()
 def set_filter(filter)
 def get_filter()
 def add_shortcut_folder(folder)
 def remove_shortcut_folder(folder)
 def list_shortcut_folders()
 def add_shortcut_folder_uri(uri)
 def remove_shortcut_folder_uri(uri)
 def list_shortcut_folder_uris()
 def set_show_hidden(show_hidden)
 def get_show_hidden()

Properties

"action" Read−Write The type of operation that the file selector is performing −
one of: gtk.FILE_CHOOSER_ACTION_OPEN,
gtk.FILE_CHOOSER_ACTION_SAVE,
gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER or
gtk.FILE_CHOOSER_ACTION_CREATE_FOLDER.
Default value: gtk.FILE_CHOOSER_ACTION_OPEN

"extra−widget" Read−Write An application supplied widget for extra options.
"file−system−backend" Write−Construct The name of the file system backend to use. Default value:

None

"filter" Read−Write The current gtk.FileFilter for selecting which files
are displayed.

"local−only" Read−Write If TRUE, the selected file(s) should be limited to local file:
URLs. Default value: TRUE

"preview−widget" Read−Write An application supplied widget for custom previews.
"preview−widget−active" Read−Write If TRUE, the application supplied widget for custom

previews should be shown. Default value: TRUE
"select−multiple" Read−Write If TRUE, allow multiple files to be selected except if

gtk.FILE_CHOOSER_ACTION_SAVE is set as the
"action" property. Default value: FALSE

"show−hidden" Read−Write If TRUE, hidden files and folders should be displayed.
Default value: FALSE

"use−preview−label" Read−Write If TRUE, display a stock label with the name of the
previewed file. Default value: TRUE

Signal Prototypes

"current−folder−changed" def callback(filechooser, user_param1, ...)

"file−activated" def callback(filechooser, user_param1, ...)

"selection−changed" def callback(filechooser, user_param1, ...)

"update−preview" def callback(filechooser, user_param1, ...)

PyGTK 2.0 Reference Manual

Synopsis 323

Description

Note

This interface is available in PyGTK 2.4 and above.

gtk.FileChooser is an interface that can be implemented by file selection widgets. In PyGTK, the main
objects that implement this interface are gtk.FileChooserWidget and gtk.FileChooserDialog.
You do not need to write an object that implements the gtk.FileChooser interface unless you are trying
to adapt an existing file selector to expose a standard programming interface.

gtk.FileChooser has several elements to its display:

a list of shortcut folders on the left that is divided into two lists by a horizontal line:

a default list of folders usually including "Home" and "Filesystem" with folders added using
the add_shortcut_folder() or add_shortcut_folder_uri() methods.

•

a list of user specified shortcut folders managed using the "Add" and "Remove" buttons at the
bottom of the file chooser.

•

•

the "Add" and "Remove" buttons that allow a user to add or remove a folder to or from the user's
shortcut folder list.

•

the current folder path as a series of buttons above the file selection window. The buttons can be
clicked to jump to the associated ancestor folder.

•

the file selection window that displays the contents of the current folder in alphabetical order with last
modified time.

•

Adding A Preview Widget

You can add a custom preview widget to a file chooser and get notification when the preview needs to be
updated. To install a preview widget, use the set_preview_widget() method. Then, connect to the
"update−preview" signal to be notified when you need to update the contents of the preview.

Your callback should use the get_preview_filename() method to see what needs previewing. Once you
have generated the preview for the corresponding file, you must call the
set_preview_widget_active() method with a boolean flag that indicates whether your callback could
successfully generate a preview. An example use of a custom preview is:

 ...
 preview = gtk.Image()

 my_file_chooser.set_preview_widget(preview)
 my_file_chooser.connect("update−preview", update_preview_cb, preview)
 ...

 def update_preview_cb(file_chooser, preview):
 filename = file_chooser.get_preview_filename()
 try:
 pixbuf = gtk.gdk.pixbuf_new_from_file_at_size(filename, 128, 128)
 preview.set_from_pixbuf(pixbuf)
 have_preview = True
 except:
 have_preview = False
 file_chooser.set_preview_widget_active(have_preview)
 return
 ...

PyGTK 2.0 Reference Manual

Description 324

Adding Extra Widgets

You can add extra widgets to a file chooser to provide options that are not present in the default design. For
example, you can add a gtk.ToggleButton to give the user the option to open a file in read−only mode.
You can use the set_extra_widget() method to insert additional widgets in a file chooser. For example:

 toggle = gtk.CheckButton("Open file read−only")
 toggle.show ()
 my_file_chooser.set_extra_widget(toggle)

If you want to set more than one extra widget in the file chooser, you can use a container such as a
gtk.VBox or a gtk.Table to hold your widgets; then set the container as the whole extra widget.

Key Bindings

The gtk.FileChooserDialog uses the private GtkFileChooserDefaultClass that has several
key bindings and their associated signals. This section describes the available key binding signals.

The default keys that activate the key−binding signals in GtkFileChooserDefaultClass are as follows:

Signal name Key
location−popup Control−L
up−folder Alt−Up
down−folder Alt−Down
home−folder Alt−Home
To change these defaults to something else, you could include the following fragment in your .gtkrc−2.0
file:

 binding "my−own−gtkfilechooser−bindings" {
 bind "<Alt><Shift>l" {
 "location−popup" ()
 }
 bind "<Alt><Shift>Up" {
 "up−folder" ()
 }
 bind "<Alt><Shift>Down" {
 "down−folder" ()
 }
 bind "<Alt><Shift>Home" {
 "home−folder−folder" ()
 }
 }

 class "GtkFileChooserDefault" binding "my−own−gtkfilechooser−bindings"

The "GtkFileChooserDefault::location−popup" signal is used to make the file chooser show a "Location"
dialog which the user can use to manually type the name of the file he wishes to select. By default this is
bound to Control−L.

 def location_popup_cb(filechooser, user_data):

where filechooser is the gtk.FileChooser that received the signal, user_data is user data set
when the signal handler was connected.

The "GtkFileChooserDefault::up−folder" signal is used to make the file chooser go to the parent of the current
folder in the file hierarchy. By default this is bound to Alt−Up.

PyGTK 2.0 Reference Manual

Adding Extra Widgets 325

 def up_folder_cb(filechooser, user_data):

where filechooser is the object that received the signal and user_data is the user data set when the
signal handler was connected.

The "GtkFileChooserDefault::down−folder" signal is used to make the file chooser go to a child of the current
folder in the file hierarchy. The subfolder that will be used is displayed in the path bar widget of the file
chooser. For example, if the path bar is showing "/foo/bar/baz", then this will cause the file chooser to switch
to the "baz" subfolder. By default this is bound to Alt−Down.

 def down_folder_cb(filechooser, user_data):

where filechooser is the object that received the signal and user_data is the user data set when the
signal handler was connected.

The "GtkFileChooserDefault::home−folder" signal is used to make the file chooser show the user's home
folder in the file list. By default this is bound to Alt−Home.

 def home_folder_cb(filechooser, user_data):

where filechooser is the object that received the signal and user_data is the user data set when the
signal handler was connected.

Methods

gtk.FileChooser.set_action

 def set_action(action)

action :

the file selection action − one of: gtk.FILE_CHOOSER_ACTION_OPEN,
gtk.FILE_CHOOSER_ACTION_SAVE,
gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER or
gtk.FILE_CHOOSER_ACTION_CREATE_FOLDER.

Note

This method is available in PyGTK 2.4 and above.

The set_action() method sets the "action" property to the value of action. The type of operation that
that the chooser is performing is set by action causing the user interface to be changed to suit the selected
action. The value of action must be one of:

gtk.FILE_CHOOSER_ACTION_OPEN
Indicates open mode. The file chooser will only
let the user pick an existing file.

gtk.FILE_CHOOSER_ACTION_SAVE
Indicates save mode. The file chooser will let
the user pick an existing file, or type in a new
filename.

gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER
Indicates an open mode for selecting folders.
The file chooser will let the user pick an
existing folder.

gtk.FILE_CHOOSER_ACTION_CREATE_FOLDER
Indicates a mode for creating a new folder. The
file chooser will let the user name an existing or
new folder

For example, an option to create a new folder might be shown if the action is
gtk.FILE_CHOOSER_ACTION_SAVE but not if the action is gtk.FILE_CHOOSER_ACTION_OPEN.

PyGTK 2.0 Reference Manual

Key Bindings 326

gtk.FileChooser.get_action

 def get_action()

Returns : the action that is set for the file selector

Note

This method is available in PyGTK 2.4 and above.

The get_action() method returns the value of the "action" property that indicates the type of operation that
the file chooser is set to perform. See the set_action() method for more information.

gtk.FileChooser.set_local_only

 def set_local_only(local_only)

local_only : if TRUE, only local files can be selected

Note

This method is available in PyGTK 2.4 and above.

The set_local_only() method sets the "local−only" property to the value of local_only. If
local_only is TRUE (the default), only local files can be selected in the file selector and the selected files
are guaranteed to be accessible through the operating system's native file system. Therefore, the application
only needs to use the filename methods in gtk.FileChooser. For example, the application can use the
get_filename() method instead of the URI method get_uri().

gtk.FileChooser.get_local_only

 def get_local_only()

Returns : TRUE if only local files can be selected.

Note

This method is available in PyGTK 2.4 and above.

The get_local_only() method returns the value of the "local−only" property that indicates whether only
local files can be selected in the file selector. See the set_local_only() method for more information.

gtk.FileChooser.set_select_multiple

 def set_select_multiple(select_multiple)

select_multiple : if TRUE multiple files can be selected.

Note

This method is available in PyGTK 2.4 and above.

The set_select_multiple() method sets the "select_multiple" property to the value of
select_multiple. If select_multiple is TRUE, multiple files can be selected in the file selector.

PyGTK 2.0 Reference Manual

gtk.FileChooser.get_action 327

Note

The "select−multiple" property cannot be set TRUE when the file chooser action is
gtk.FILE_CHOOSER_ACTION_SAVE or gtk.FILE_CHOOSER_ACTION_CREATE_FOLDER.

gtk.FileChooser.get_select_multiple

 def get_select_multiple()

Returns : TRUE if multiple files can be selected.

Note

This method is available in PyGTK 2.4 and above.

The get_select_multiple() method returns the value of the "select_multiple" property that indicates
whether multiple files can be selected in the file selector. See the set_select_multiple() method for
more information.

gtk.FileChooser.set_current_name

 def set_current_name(name)

name : the filename to use, as a UTF−8 string

Note

This method is available in PyGTK 2.4 and above.

The set_current_name() method sets the current name in the file selector to the value of name, as if
entered by the user. Note that the name passed in here is a UTF−8 string rather than a filename. This method
is meant for such uses as a suggested name in a "Save As..." dialog.

If you want to preselect a particular existing file, you should use the set_filename() method instead.

gtk.FileChooser.get_filename

 def get_filename()

Returns : The currently selected filename, or None if no file is selected, or the selected file can't be
represented with a local filename.

Note

This method is available in PyGTK 2.4 and above.

The get_filename() method returns the filename of the currently selected file in the file selector. If
multiple files are selected, one of the filenames will be returned at random. If the file chooser is in folder
mode, this function returns the selected folder.

gtk.FileChooser.set_filename

 def set_filename(filename)

filename : the filename to set as current

PyGTK 2.0 Reference Manual

Note 328

Returns : TRUE if both the folder could be changed and the file was selected successfully, FALSE
otherwise.

Note

This method is available in PyGTK 2.4 and above.

The set_filename() method sets filename as the current filename for the the file chooser. If the file
name isn't in the current folder of the chooser, then the current folder of the chooser will be changed to the
folder containing filename. This is equivalent to a sequence of unselect_all() followed by
select_filename().

Note that the file must exist, or nothing will be done except for the directory change. To pre−enter a filename
for the user, as in a "Save as ..." dialog, use the set_current_name() method.

gtk.FileChooser.select_filename

 def select_filename(filename)

filename : the filename to select

Returns : TRUE if both the folder could be changed and the file was selected successfully, FALSE
otherwise.

Note

This method is available in PyGTK 2.4 and above.

The select_filename() method selects the filename specified by filename. If filename isn't in the
current folder of the chooser, then the current folder of the chooser will be changed to the folder containing
filename.

gtk.FileChooser.unselect_filename

 def unselect_filename(filename)

filename : the filename to unselect

Note

This method is available in PyGTK 2.4 and above.

The unselect_filename() method unselects the currently selected filename specified by filename. If
filename is not in the current directory, does not exist, or is otherwise not currently selected, this method
does nothing.

gtk.FileChooser.select_all

 def select_all()

Note

This method is available in PyGTK 2.4 and above.

The select_all() method selects all the files in the current folder of a file chooser.

PyGTK 2.0 Reference Manual

gtk.FileChooser.set_filename 329

gtk.FileChooser.unselect_all

 def unselect_all()

Note

This method is available in PyGTK 2.4 and above.

The unselect_all() method unselects all the files in the current folder of a file chooser.

gtk.FileChooser.get_filenames

 def get_filenames()

Returns : a list containing the filenames of all selected files and subfolders in the current folder.

Note

This method is available in PyGTK 2.4 and above.

The get_filenames() method returns a list containing all the selected files and subfolders in the current
folder of the chooser. The returned names are full absolute paths. If files in the current folder cannot be
represented as local filenames they will be ignored. (See the get_uris() method for more information)

gtk.FileChooser.set_current_folder

 def set_current_folder(filename)

filename : the full path of the new current folder
Returns : TRUE if the folder could be changed successfully, FALSE otherwise.

Note

This method is available in PyGTK 2.4 and above.

The set_current_folder() method sets the current folder for the chooser to the local filename specified
by filename. The user will be shown the full contents of the current folder, plus user interface elements for
navigating to other folders.

gtk.FileChooser.get_current_folder

 def get_current_folder()

Returns : the full path of the current folder, or None if the current path cannot be represented as a local
filename.

Note

This method is available in PyGTK 2.4 and above.

The get_current_folder() method returns the current folder of the chooser as a local filename. See the
set_current_folder() method for more information.

PyGTK 2.0 Reference Manual

gtk.FileChooser.unselect_all 330

gtk.FileChooser.get_uri

 def get_uri()

Returns : The currently selected URI, or None if no file is selected.

Note

This method is available in PyGTK 2.4 and above.

The get_uri() method returns the URI for the currently selected file in the file selector. If multiple files are
selected, one of the filenames will be returned at random. If the file chooser is in folder mode, this function
returns the selected folder.

gtk.FileChooser.set_uri

 def set_uri(uri)

uri : the URI to set as the current file
Returns : TRUE if both the folder could be changed and the URI was successfully selected.

Note

This method is available in PyGTK 2.4 and above.

The set_uri() method sets the file referred to by uri as the current file for the file chooser; If the file name
isn't in the current folder of the chooser, then the current folder of the chooser will be changed to the folder
containing uri. This is equivalent to the sequence of unselect_all() followed by select_uri().
Note that the file must exist, or nothing will be done except for the directory change. To pre−enter a filename
for the user, as in a "Save As ..." dialog, use the set_current_name() method.

gtk.FileChooser.select_uri

 def select_uri(uri)

uri : the URI of the file to select
Returns : TRUE if both the folder could be changed and the URI was successfully selected.

Note

This method is available in PyGTK 2.4 and above.

The select_uri() method selects the file referred to by uri. If the URI doesn't refer to a file in the current
folder of the chooser, then the current folder of the chooser will be changed to the folder containing the file
referenced by uri.

gtk.FileChooser.unselect_uri

 def unselect_uri(uri)

uri : the URI of the file to unselect

Note

This method is available in PyGTK 2.4 and above.

PyGTK 2.0 Reference Manual

gtk.FileChooser.get_uri 331

The unselect_uri() method unselects the file referred to by uri. If the file is not in the current directory,
does not exist, or is otherwise not currently selected, this method does nothing.

gtk.FileChooser.get_uris

 def get_uris()

Returns : a list containing the URIs of all selected files and subfolders in the current folder.

Note

This method is available in PyGTK 2.4 and above.

The get_uris() method returns a list containing all the selected files and subfolders in the current folder of
the chooser. The returned names are full absolute URIs.

gtk.FileChooser.set_current_folder_uri

 def set_current_folder_uri(uri)

uri : the URI for the new current folder
Returns : TRUE if the folder could be changed successfully, FALSE otherwise.

Note

This method is available in PyGTK 2.4 and above.

The set_current_folder_uri() method sets the current folder for the chooser to the folder referenced
by uri. The user will be shown the full contents of the current folder, plus user interface elements for
navigating to other folders.

gtk.FileChooser.get_current_folder_uri

 def get_current_folder_uri()

Returns : the URI for the current folder.

Note

This method is available in PyGTK 2.4 and above.

The get_current_folder_uri() method returns the URI reference of the current folder of the chooser.
See the set_current_folder_uri() method for more information.

gtk.FileChooser.set_preview_widget

 def set_preview_widget(preview_widget)

preview_widget : a widget for displaying a preview.

Note

This method is available in PyGTK 2.4 and above.

The set_preview_widget() method sets the "preview−widget" property to the value of
preview_widget. The preview_widget is used to preview the currently selected file. To implement a

PyGTK 2.0 Reference Manual

Note 332

custom preview:

set the preview widget•
connect a callback to the "selection−changed" signal of the file chooser•
in the callback, call the get_preview_filename() method or the get_preview_uri()
method to retrieve the selected file name or URI

•

if you can, display a preview of the selected file and set the preview active using the
set_preview_widget_active() method

•

otherwise, set the preview inactive•

When there is no application−supplied preview widget, or the application−supplied preview widget is not
active, the file chooser may display an internally generated preview of the current file or it may display no
preview at all.

gtk.FileChooser.get_preview_widget

 def get_preview_widget()

Returns : the current preview widget, or None

Note

This method is available in PyGTK 2.4 and above.

The get_preview_widget() method returns the value of the "preview_widget" property i.e. the current
preview widget. See the set_preview_widget() method for more information.

gtk.FileChooser.set_preview_widget_active

 def set_preview_widget_active(active)

active : if TRUE, display the user−specified preview widget

Note

This method is available in PyGTK 2.4 and above.

The set_preview_widget_active() method sets the "preview_widget_active" property to the value of
active. If active is TRUE, the preview widget set by the set_preview_widget() method should be
shown for the current filename. When active is FALSE, the file chooser may display an internally
generated preview of the current file or it may display no preview at all. See the set_preview_widget()
for more details.

gtk.FileChooser.get_preview_widget_active

 def get_preview_widget_active()

Returns : TRUE if the preview widget is active for the current filename.

Note

This method is available in PyGTK 2.4 and above.

The get_preview_widget_active() method returns the value of the "preview−widget−active"
property that indicates whether the preview widget set by the set_preview_widget() method should be

PyGTK 2.0 Reference Manual

Note 333

shown for the current filename. See the set_preview_widget_active() method for more details.

gtk.FileChooser.set_use_preview_label

 def set_use_preview_label(use_label)

use_label : if TRUE, display a stock label with the name of the previewed file

Note

This method is available in PyGTK 2.4 and above.

The set_use_preview_label() method sets the "use−preview−label" property to the value of
use_label. If use_label is TRUE (the default), the file chooser should display a stock label with the
name of the file that is being previewed. Applications that want to draw the whole preview area themselves
should set this to FALSE and display the name themselves in their preview widget. See the
set_preview_widget() method for more information.

gtk.FileChooser.get_use_preview_label

 def get_use_preview_label()

Returns : TRUE if the file chooser is set to display a label with the name of the previewed file; FALSE
otherwise.

Note

This method is available in PyGTK 2.4 and above.

The get_use_preview_label() method returns the value of the "use−preview−label" property that
indicates whether a stock label should be drawn with the name of the previewed file. See the
set_use_preview_label() for more information.

gtk.FileChooser.get_preview_filename

 def get_preview_filename()

Returns : the filename to preview, or None.

Note

This method is available in PyGTK 2.4 and above.

The get_preview_filename() method returns the filename that should be previewed in a custom
preview widget or None if no file is selected, or if the selected file cannot be represented as a local filename.
See the set_preview_widget() method for more details.

gtk.FileChooser.get_preview_uri

 def get_preview_uri()

Returns : the URI for the file to preview, or None.

PyGTK 2.0 Reference Manual

Note 334

Note

This method is available in PyGTK 2.4 and above.

The get_preview_uri() method returns the URI of the file that should be previewed in a custom preview
widget or None if no file is selected. See the set_preview_widget() method fr more details.

gtk.FileChooser.set_extra_widget

 def set_extra_widget(extra_widget)

extra_widget : the widget to display extra options

Note

This method is available in PyGTK 2.4 and above.

The set_extra_widget() method sets the "extra−widget" property to the value of extra_widget.
extra_widget is an application−supplied widget used to display extra options to the user.

gtk.FileChooser.get_extra_widget

 def get_extra_widget()

Returns : the current extra widget, or None.

Note

This method is available in PyGTK 2.4 and above.

The get_extra_widget() method returns the value of the "extra−widget" property that contains either a
widget used to display extra options to the user or None if no extra widget is in use. See the
set_extra_widget() for more information.

gtk.FileChooser.add_filter

 def add_filter(filter)

filter : a gtk.FileFilter

Note

This method is available in PyGTK 2.4 and above.

The add_filter() method adds the gtk.FileFilter specified by filter to the list of filters that the
user can select from. When a filter is selected, only files that are passed by that filter are displayed.

gtk.FileChooser.remove_filter

 def remove_filter(filter)

filter : a gtk.FileFilter

PyGTK 2.0 Reference Manual

Note 335

Note

This method is available in PyGTK 2.4 and above.

The remove_filter() method removes the gtk.FileFilter specified by filter from the list of
filters that the user can select from.

gtk.FileChooser.list_filters

 def list_filters()

Returns : a list containing the current set of user selectable filters.

Note

This method is available in PyGTK 2.4 and above.

The list_filters() method returns the current set of user−selectable filters. See the add_filter()
and remove_filter() method for more details.

gtk.FileChooser.set_filter

 def set_filter(filter)

filter : a gtk.FileFilter

Note

This method is available in PyGTK 2.4 and above.

The set_filter() method sets the "filter" property to the value of filter and also sets the current filter
to filter. Only the files that pass filter will be displayed. If the user−selectable list of filters is
non−empty, then filter should be one of the filters in that list. Setting the current filter when the list of
filters is empty is useful if you want to restrict the displayed set of files without letting the user change it.

gtk.FileChooser.get_filter

 def get_filter()

Returns : the current filter, or None.

Note

This method is available in PyGTK 2.4 and above.

The get_filter() method returns the value of the "filter" property which is the current filter. See the
set_filter() method for more information.

gtk.FileChooser.add_shortcut_folder

 def add_shortcut_folder(folder)

folder : the filename of the folder to add
Returns : TRUE if the folder could be added successfully.

PyGTK 2.0 Reference Manual

Note 336

Note

This method is available in PyGTK 2.4 and above.

The add_shortcut_folder() adds the folder specified by folder the list of shortcut folders in a file
chooser. Shortcut folders are displayed at the upper left in the gtk.FileChooser. By double−clicking on a
shortcut the user can open that folder directly. Note that shortcut folders do not get saved, as they are provided
by the application. For example, you can use this to add a "/usr/share/mydrawprogram/Clipart" folder to the
volume list.

The GError exception is raised if an error occurred while adding the folder.

gtk.FileChooser.remove_shortcut_folder

 def remove_shortcut_folder(folder)

folder : the filename of the folder to remove
Returns : TRUE if folder was removed from the list of shortcut folders.

Note

This method is available in PyGTK 2.4 and above.

The remove_shortcut_folder() method removes the folder specified by folder from a file chooser's
list of shortcut folders. remove_shortcut_folder() returns TRUE if successful. See the
add_shortcut_folder() method for more information.

The GError exception is raised if an error occurred while removing the folder.

gtk.FileChooser.list_shortcut_folders

 def list_shortcut_folders()

Returns : A list of shortcut folder filenames, or None if there are no shortcut folders.

Note

This method is available in PyGTK 2.4 and above.

The list_shortcut_folders() method returns the list of shortcut folders in the file chooser, as set by
the add_shortcut_folder() method or None if there are no shortcut folders. It is not possible to get a
list of the user−specified shortcut folders.

gtk.FileChooser.add_shortcut_folder_uri

 def add_shortcut_folder_uri(uri)

uri : the URI of the folder to add
Returns : TRUE if the folder was added

Note

This method is available in PyGTK 2.4 and above.

PyGTK 2.0 Reference Manual

Note 337

The add_shortcut_folder_uri() method adds a folder with the URI specified by uri to the list of
shortcut folders in a file chooser. Note that shortcut folders do not get saved, as they are provided by the
application. For example, you can use this to add a "file:///usr/share/mydrawprogram/Clipart" folder to the
volume list. See the add_shortcut_folder() method for more details.

The GError exception is raised if an error occurred while adding the folder.

gtk.FileChooser.remove_shortcut_folder_uri

 def remove_shortcut_folder_uri(uri)

uri : URI of the folder to remove
Returns : TRUE if the folder was removed.

Note

This method is available in PyGTK 2.4 and above.

The remove_shortcut_folder_uri() method removes the folder with the URI specified by uri from
the file chooser's list of shortcut folders.

The GError exception is raised if an error occurred while removing the folder.

gtk.FileChooser.list_shortcut_folder_uris

 def list_shortcut_folder_uris()

Returns : a list of shortcut folder URIs, or None

Note

This method is available in PyGTK 2.4 and above.

The list_shortcut_folder_uris() method returns a list of the shortcut folders in the file chooser, as
set by the add_shortcut_folder_uri() method. It is not possible to get a list of the user−specified
folder URIs.

gtk.FileChooser.set_show_hidden

 def set_show_hidden(show_hidden)

show_hidden : if TRUE hidden files and folders should be displayed.

Note

This method is available in PyGTK 2.6 and above.

The set_show_hidden() method sets the "show−hidden" property to the value of show_hidden. If
show_hidden is TRUE, hidden files and folders should be displayed in the file selector.

gtk.FileChooser.get_show_hidden

 def get_show_hidden()

Returns : TRUE if hidden files and folders are displayed.

PyGTK 2.0 Reference Manual

Note 338

Note

This method is available in PyGTK 2.6 and above.

The get_show_hidden() method returns the value of the "show−hidden" property that indicates whether
hidden files and folders should be displayed in the file selector. See the set_show_hidden() method for
more information.

Signals

The "current−folder−changed" gtk.FileChooser Signal

 def callback(filechooser, user_param1, ...)

filechooser : the filechooser widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "current−folder−changed" signal is emitted when the current folder displayed in filechooser is
changed. Normally you do not need to connect to this signal, unless you need to keep track of which folder a
file chooser is showing.

The "file−activated" gtk.FileChooser Signal

 def callback(filechooser, user_param1, ...)

filechooser : the filechooser widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "file−activated" signal is emitted when the user double−clicks on a file (not a folder) or presses Enter.
Normally you do not need to connect to this signal. It is used internally by gtk.FileChooserDialog to
know when to activate the default button in the dialog.

The "selection−changed" gtk.FileChooser Signal

 def callback(filechooser, user_param1, ...)

filechooser : the filechooser widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

PyGTK 2.0 Reference Manual

Note 339

Note

This signal is available in PyGTK 2.4 and above.

The "selection−changed" signal is emitted when the file selection in filechooser is changed either by
clicking on a filename or by changing the current folder. Normally you do not need to connect to this signal,
as it is easier to wait for the file chooser to finish running, and then to get the list of selected files using the
functions mentioned below.

The "update−preview" gtk.FileChooser Signal

 def callback(filechooser, user_param1, ...)

filechooser : the filechooser widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "update−preview" signal is emitted when the preview when a file chooser should be regenerated. For
example, this can happen when the currently selected file changes. You should use this signal if you want
your file chooser to have a preview widget.

Once you have installed a preview widget with the set_preview_widget() method, you should update it
when this signal is emitted. You can use the methods get_preview_filename() or
get_preview_uri() to get the name of the file to preview. Your widget may not be able to preview all
kinds of files so your callback must call the set_preview_widget_active() to inform the file chooser
if the preview was generated successfully or not.

Please see the example code in the section called Adding a Preview Widget.

Also see the set_preview_widget(), set_preview_widget_active(),
set_use_preview_label(), get_preview_filename() and get_preview_uri() methods for
more information

Prev Up Next
gtk.Expander Home gtk.FileChooserButton

gtk.FileChooserButton
Prev The gtk Class Reference Next

gtk.FileChooserButton

gtk.FileChooserButton � a button to launch a gtk.FileChooserDialog (new in PyGTK 2.6)

Synopsis

class gtk.FileChooserButton(gtk.HBox):
gtk.FileChooserButton(title, backend=None)
gtk.FileChooserButton(dialog)

 def get_title()

PyGTK 2.0 Reference Manual

Note 340

 def set_title(title)
 def get_width_chars()
 def set_width_chars(n_chars)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.HBox
 +−− gtk.FileChooserButton

Properties

"dialog" Write−Construct
Only

The gtk.FileChooserDialog associated with the button.

"title" Read−Write The string to use as the title on the gtk.FileChooserDialog
associated with the button.

"width−chars" Read−Write The width of the entry and label inside the button, in characters. Allowed
values: >= −1. Default value: −1

Description

Note

This widget is available in PyGTK 2.6 and above.

The gtk.FileChooserButton is a widget that lets the user select a file. It implements the
gtk.FileChooser interface. Visually, it is a file name with a button to bring up a
gtk.FileChooserDialog. The user can then use that dialog to change the file associated with that
button. This widget does not support setting the "select−multiple" property to TRUE. For example to create a
gtk.FileChooserButton and set the current folder to '/etc' use:

 filechooserbutton = gtk.FileChooserButton('Select a File')
 filechooserbutton.set_current_folder('/etc')

The gtk.FileChooserButton supports the gtk.FILE_CHOOSER_ACTION_OPEN and
gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER actions of the GTK FileChooser Action Constants.

Note

The gtk.FileChooserButton will ellipsize the label, and thus will thus request little horizontal space.
To give the button more space, you should call the gtk.Widget.size_request() method, the
set_width_chars() method, or pack the button in such a way that other interface elements give space to
the widget.

Constructor

PyGTK 2.0 Reference Manual

Synopsis 341

gtk.FileChooserButton

gtk.FileChooserButton(title, backend=None)

title : the title of the browse dialog
backend : the name of a file system backend or None
Returns : a new gtk.FileChooserButton

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new button widget that opens a gtk.FileChooserDialog when clicked. The title of the
gtk.FileChooserDialog is specified by title. If backend is specified it is the name of a file system
backend.

gtk.FileChooserButton

gtk.FileChooserButton(dialog)

dialog : a gtk.FileChooserDialog
Returns : a new gtk.FileChooserButton

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new button widget that opens a gtk.FileChooserDialog specified by dialog when clicked.

Methods

gtk.FileChooserButton.get_title

 def get_title()

Returns : the title of the gtk.FileChooserDialog

Note

This method is available in PyGTK 2.6 and above.

The get_title() method returns the value of the "title" property which contains the title of the associated
gtk.FileChooserDialog.

gtk.FileChooserButton.set_title

 def set_title(title)

title : a string to use as the title of the associated gtk.FileChooserDialog.

Note

This method is available in PyGTK 2.6 and above.

PyGTK 2.0 Reference Manual

gtk.FileChooserButton 342

The set_title() method sets the "title" property to the value of title. The "title" property contains the
title string of the associated gtk.FileChooserDialog.

gtk.FileChooserButton.get_width_chars

 def get_width_chars()

Returns :, :, the width in characters of the button

Note

This method is available in PyGTK 2.6 and above.

The get_width_chars() method returns the value of the "width−characters" property which contains the
number of characters the button width should be set to.

gtk.FileChooserButton.set_width_chars

 def set_width_chars(n_chars)

n_chars : the width in characters for the button

Note

This method is available in PyGTK 2.6 and above.

The set_width_chars() method sets the "width−chars" property to the value of n_chars. The
"width−chars" property contains the width in characters that the button should be set to.

Prev Up Next
gtk.FileChooser Home gtk.FileChooserDialog

gtk.FileChooserDialog
Prev The gtk Class Reference Next

gtk.FileChooserDialog

gtk.FileChooserDialog � a file chooser dialog, suitable for "File/Open" or "File/Save" commands(new in
PyGTK 2.4)

Synopsis

class gtk.FileChooserDialog(gtk.Dialog, gtk.FileChooser):
gtk.FileChooserDialog(title=None, parent=None, action=gtk.FILE_CHOOSER_ACTION_OPEN, buttons=None, backend=None)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Dialog

PyGTK 2.0 Reference Manual

Note 343

 +−− gtk.FileChooserDialog (implements gtk.FileChooser)

Description

Note

This widget is available in PyGTK 2.4 and above.

gtk.FileChooserDialog is a dialog box suitable for use with "File/Open" or "File/Save as" commands.
This widget works by putting a gtk.FileChooserWidget inside a gtk.Dialog. It implements the
gtk.FileChooser interface, so you can use all of the gtk.FileChooser methods, signals and
properties on the file chooser dialog as well as those for gtk.Dialog.

Note that gtk.FileChooserDialog does not have any methods of its own. Instead, you should use the
methods and signals that work on a gtk.FileChooser.

Constructor

gtk.FileChooserDialog(title=None, parent=None, action=gtk.FILE_CHOOSER_ACTION_OPEN, buttons=None, backend=None)

title : The title of the dialog
parent : The transient parent of the dialog, or None

action :

The open or save mode for the dialog − one of: gtk.FILE_CHOOSER_ACTION_OPEN,
gtk.FILE_CHOOSER_ACTION_SAVE,
gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER or
gtk.FILE_CHOOSER_ACTION_CREATE_FOLDER.

buttons :a tuple containing button label−response id pairs or None
backend :The name of the specific filesystem backend to use.
Returns : a new gtk.FileChooserDialog

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.FileChooserDialog. The constructor can be invoked with the optional parameters:
title, parent, action, buttons and backend. This constructor is analogous to the gtk.Dialog()
constructor.

Prev Up Next
gtk.FileChooserButton Home gtk.FileChooserWidget

gtk.FileChooserWidget
Prev The gtk Class Reference Next

gtk.FileChooserWidget

gtk.FileChooserWidget � a file chooser widget that can be embedded in other widgets(new in PyGTK 2.4)

PyGTK 2.0 Reference Manual

Ancestry 344

Synopsis

class gtk.FileChooserWidget(gtk.VBox, gtk.FileChooser):
gtk.FileChooserWidget(action=gtk.FILE_CHOOSER_ACTION_OPEN, backend=None)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.VBox
 +−− gtk.FileChooserWidget (implements gtk.FileChooser)

Description

Note

This widget is available in PyGTK 2.4 and above.

The gtk.FileChooserWidget is a widget suitable for selecting files. It is the main building block of a
gtk.FileChooserDialog. Most applications will only need to use the latter; you can use
gtk.FileChooserWidget as part of a larger window if you have special needs.

Note that gtk.FileChooserWidget does not have any methods, signals or properties of its own. Instead,
you should use the methods, signals and properties of the gtk.FileChooser.

Constructor

gtk.FileChooserWidget(action=gtk.FILE_CHOOSER_ACTION_OPEN, backend=None)

action : The open or save mode for the widget or None.
backend : The name of the specific filesystem backend to use or None.
Returns : a new gtk.FileChooserWidget

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.FileChooserWidget. This is a file chooser widget that can be embedded in custom
windows, and it is the same widget that is used by gtk.FileChooserDialog.

Prev Up Next
gtk.FileChooserDialog Home gtk.FileFilter

gtk.FileFilter
Prev The gtk Class Reference Next

gtk.FileFilter

gtk.FileFilter � a filter for selecting a file subset (new in PyGTK 2.4)

PyGTK 2.0 Reference Manual

Synopsis 345

Synopsis

class gtk.FileFilter(gtk.Object):
gtk.FileFilter()

 def set_name(name)
 def get_name()
 def add_mime_type(mime_type)
 def add_pattern(pattern)
 def add_custom(needed, func, data)
 def get_needed()
 def filter(filter_info)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.FileFilter

Description

Note

This widget is available in PyGTK 2.4 and above.

A gtk.FileFilter is an object that filters files based on a set of rules that it contains. The categories of
information that gtk.FileFilter uses to accept or reject the file are:

gtk.FILE_FILTER_FILENAME The full path name of the file.
gtk.FILE_FILTER_URI The URI of the file.
gtk.FILE_FILTER_DISPLAY_NAME The simple name of the file as displayed in a file chooser.
gtk.FILE_FILTER_MIME_TYPE The MIME type of the file.
The add_pattern() method adds a rule that only uses the display name
(gtk.FILE_FILTER_DISPLAY_NAME) for filtering. The add_mime_type() method adds a rule that
only uses the mime type (gtk.FILE_FILTER_MIME_TYPE) for filtering. To use the file URI
(gtk.FILE_FILTER_URI) or filename (gtk.FILE_FILTER_FILENAME) you have to create a custom
filter rule using a callback function that is registered with the add_custom() method.

The pattern rule uses file globbing to match the file display name:

'*' matches any combination of characters e.g.. "a*c" matches "abc", "a bridge tic", "aaabbbc" and so
on.

•

'?' matches any single character e.g. "a?c" matches "abc", aZc" and so on but not "abbc".•
'[' and ']' enclose a set of characters that can be matched; ranges of characters can be included by
separating the start and end with a dash (e.g. "a−z" include all the lowercase letters). e.g. "a[0−9]c"
matches "a3c" and "a9c" but not "a28c" or "abc".

•

'\' escapes the next character to allow "*", "?", "[" and "]" to be matched literally.•

The MIME type requires an exact match (no pattern matching).

Constructor

gtk.FileFilter()

PyGTK 2.0 Reference Manual

Synopsis 346

Returns : a new gtk.FileFilter

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.FileFilter with no rules added to it. Such a filter doesn't pass any files, so it's not
particularly useful until you add rules with the add_mime_type(), add_pattern() or
add_custom() methods. To create a filter that accepts any file, use:

 filter = gtk.FileFilter()
 filter.add_pattern("*")

Methods

gtk.FileFilter.set_name

 def set_name(name)

name : the human−readable−name for the filter.

Note

This method is available in PyGTK 2.4 and above.

The set_name() method sets the human−readable name of the filter to the string in name. The string in
name will be displayed in the file chooser user interface if there is a selectable list of filters.

gtk.FileFilter.get_name

 def get_name()

Returns : The human−readable name of the filter, or None.

Note

This method is available in PyGTK 2.4 and above.

The get_name() method returns the human−readable name for the filter or None if the name has not been
set. See the set_name() method.

gtk.FileFilter.add_mime_type

 def add_mime_type(mime_type)

mime_type : the name of a MIME type

Note

This method is available in PyGTK 2.4 and above.

The add_mime_type() method adds a rule allowing the mime type specified by mime_type to be
matched. Sets the needs value to gtk.FILE_FILTER_MIME_TYPE (see the get_needed() method for
more information).

PyGTK 2.0 Reference Manual

Constructor 347

gtk.FileFilter.add_pattern

 def add_pattern(pattern)

pattern : a shell style glob pattern

Note

This method is available in PyGTK 2.4 and above.

The add_pattern() method adds a rule allowing the shell style glob pattern specified by pattern to filter
file names. Sets the needs value to gtk.FILE_FILTER_DISPLAY_NAME (see the get_needed()
method for more information).

The pattern rule uses file globbing to match the file display name:

'*' matches any combination of characters e.g.. "a*c" matches "abc", "a bridge tic", "aaabbbc" and so
on.

•

'?' matches any single character e.g. "a?c" matches "abc", aZc" and so on but not "abbc".•
'[' and ']' enclose a set of characters that can be matched; ranges of characters can be included by
separating the start and end with a dash (e.g. "a−z" include all the lowercase letters). e.g. "a[0−9]c"
matches "a3c" and "a9c" but not "a28c" or "abc".

•

'\' escapes the next character to allow "*", "?", "[" and "]" to be matched literally.•

gtk.FileFilter.add_custom

 def add_custom(needed, func, data)

needed : a bitfield of flags indicating the information that the custom filter function needs.
func : a callback function; if the function returns TRUE, then the file will be displayed.
data : the data to pass to func

Note

This method is available in PyGTK 2.4 and above.

The add_custom() method adds a rule to a filter that allows files to be filtered based on a custom callback
function specified by func. The bitfield needed provides information about what sorts of information that
the filter function needs; this allows GTK+ to avoid retrieving expensive information when it isn't needed by
the filter. needed is a combination of:

gtk.FILE_FILTER_FILENAME The full path name of the file.
gtk.FILE_FILTER_URI The URI of the file.
gtk.FILE_FILTER_DISPLAY_NAME The simple name of the file as displayed in a file chooser.
gtk.FILE_FILTER_MIME_TYPE The MIME type of the file.
The signature of func is:

 def filefilterfunction(filter_info, data):

where filter_info is a 4−tuple where each item is either a string or None. The strings correspond to: the
full pathname of the file, the URI of the file, the display name of the file and the MIME type of the file. data
is the value passed in as the data parameter in the add_custom() method. Using a custom filter function is
the only way to filter files based on file URIs or full file pathnames.

PyGTK 2.0 Reference Manual

gtk.FileFilter.add_pattern 348

gtk.FileFilter.get_needed

 def get_needed()

Returns : a bitfield of flags indicating the needed fields when calling filter()

Note

This method is available in PyGTK 2.4 and above.

The get_needed() method returns the information that is needed by the gtk.FileFilter to filter the
file info using the filter()

This method is not typically used by applications; it is intended principally for use in the implementation of
gtk.FileChooser.

gtk.FileFilter.filter

 def filter(filter_info)

filter_info : a 4−tuple containing the information about a file.
Returns : TRUE if the file should be displayed

Note

This method is available in PyGTK 2.4 and above.

The filter() method tests whether a file should be displayed according to the file filter rules. The 4−tuple
filter_info should include the fields returned from the get_needed() method:

the full pathname of the file if needs includes gtk.FILE_FILTER_FILENAME•
the URI of the file is needs includes gtk.FILE_FILTER_URI•
the display name (without the path) if the file if needs includes
gtk.FILE_FILTER_DISPLAY_NAME

•

the MIME type of the file if needs includes gtk.FILE_FILTER_MIME_TYPE•

This method will not typically be used by applications; it is intended principally for use in the implementation
of gtk.FileChooser.

Prev Up Next
gtk.FileChooserWidget Home gtk.FileSelection

gtk.FileSelection
Prev The gtk Class Reference Next

gtk.FileSelection

gtk.FileSelection � a dialog used to prompt the user for a file or directory name

Synopsis

class gtk.FileSelection(gtk.Dialog):
gtk.FileSelection(title=None)

 def set_filename(filename)

PyGTK 2.0 Reference Manual

gtk.FileFilter.get_needed 349

 def get_filename()
 def complete(pattern)
 def show_fileop_buttons()
 def hide_fileop_buttons()
 def get_selections()
 def set_select_multiple(select_multiple)
 def get_select_multiple()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Dialog
 +−− gtk.FileSelection

Properties

"show−fileops" Read/Write If TRUE display the buttons for creating and manipulating files.
"filename" Read/Write The currently selected filename.
"select−multiple" Read/Write If TRUE allow multiple files to be selected.

Attributes

"dir_list" Read The gtk.TreeView widget used to display the directories

"file_list" Read The gtk.TreeView widget used to display the files.

"selection_entry" Read The gtk.Entry widget used to display the current file selection

"selection_text" Read The gtk.Label associated with the selection entry.

"main_vbox" Read The gtk.VBox widget that holds all the widgets of the
gtk.FileSelection dialog.

"ok_button" Read The "OK" button.

"cancel_button" Read The "Cancel" button.

"history_pulldown" Read The gtk.OptionMenu widget that provides the pulldown list of directory
paths.

"history_menu" Read The gtk.Menu part of the history_pulldown

"fileop_dialog" Read The dialog box used to display the gtk.FileSelection. It can be
customized by adding or removing widgets from it using the standard
gtk.Dialog methods.

"fileop_entry" Read The gtk.Entry in the fileops dialog that is created when one of the fileops
buttons is clicked.

"fileop_file" Read The name of the file to be operated on by the fileops

"fileop_c_dir" Read The "New Folder" fileops button.

PyGTK 2.0 Reference Manual

Synopsis 350

"fileop_del_file" Read The "Delete File" fileops button

"fileop_ren_file" Read The "Rename File" fileops button

"button_area" Read The fileops gtk.ButtonBox.

"action_area" Read A gtk.HBox that can be used by the application to add buttons, etc.

Description

The gtk.FileSelection should be used to retrieve file or directory names from the user. It will create a
new dialog window containing a directory list, and a file list corresponding to the current working directory.
The filesystem can be navigated using the directory list or the drop−down history menu. Alternatively, the
TAB key can be used to navigate using filename completion − common in text based editors such as emacs
and jed.

File selection dialogs are created with a call to the gtk.FileSelection() constructor.

The default filename can be set using the set_filename() method and the selected filename retrieved
using the get_filename() method.

Use the complete() method to display files and directories that match a given pattern. This can be used for
example, to show only *.txt files, or only files beginning with gtk*.

Simple file operations; create directory, delete file, and rename file, are available from buttons at the top of
the dialog. These can be hidden using the hide_fileop_buttons() method and shown again using the
show_fileop_buttons() method.

Constructor

gtk.FileSelection(title=None)

title : the text to be used as the title of the fileselection dialog.
Returns : a new fileselection dialog
Creates a new file selection dialog. By default it will contain gtk.TreeViews displaying the application's
current working directory, and its file listing. File operation buttons that allow the user to create a directory,
delete files and rename files, are also present.

Methods

gtk.FileSelection.set_filename

 def set_filename(filename)

filename : a string to set as the default file name.
The set_filename() method sets a default path for the file requester. If filename includes a directory
path, then the fileselection will open with that path as its current working directory.

Note the encoding of filename is the on−disk encoding, which may not be UTF−8.

PyGTK 2.0 Reference Manual

Attributes 351

gtk.FileSelection.get_filename

 def get_filename()

Returns : currently−selected filename in the on−disk encoding
The get_filename() method returns the selected filename in the on−disk encoding, which may or may not
be the same as that used by GTK (UTF−8). If no file is selected then the selected directory path is returned.

gtk.FileSelection.complete

 def complete(pattern)

pattern : a string containing a pattern which may or may not match any filenames in the current directory.
The complete() method will attempt to match pattern to valid filenames or subdirectories in the current
directory. If a match can be made, the matched filename will appear in the text entry field of the file selection
dialog. If a partial match can be made, the "Files" list will contain those file names which have been partially
matched, and the "Directories" list those directories which have been partially matched.

gtk.FileSelection.show_fileop_buttons

 def show_fileop_buttons()

The show_fileop_buttons() method shows the fileops buttons: "New Folder", "Delete File" and
"Rename File".

gtk.FileSelection.hide_fileop_buttons

 def hide_fileop_buttons()

The hide_fileop_buttons() method hides the fileops buttons: "New Folder", "Delete File" and
"Rename File".

gtk.FileSelection.get_selections

 def get_selections()

Returns : a tuple containing the selected files.
The get_selections() method retrieves a tuple containing the file selections the user has made in the file
selection dialog. The first file in the list is equivalent to what the get_filename() method would return.

gtk.FileSelection.set_select_multiple

 def set_select_multiple(select_multiple)

select_multiple : If TRUE the user is allowed to select multiple files in the file list.
The set_select_multiple() method sets the file list selection mode according to the value of
select_multiple. If select_multiple is TRUE the user is allowed to select multiple files in the file
list. Use the get_selections() method to retrieve the list of selected files.

PyGTK 2.0 Reference Manual

gtk.FileSelection.get_filename 352

gtk.FileSelection.get_select_multiple

 def get_select_multiple()

Returns : TRUE if the user is allowed to select multiple files in the file list
The get_select_multiple() method determines whether the user is allowed to make multiple file
selection in the file list. If the get_select_multiple() method returns TRUE the user is allowed to select
multiple files in the file list. See the set_select_multiple() method.

Prev Up Next
gtk.FileFilter Home gtk.Fixed

gtk.Fixed
Prev The gtk Class Reference Next

gtk.Fixed

gtk.Fixed � a container which allows you to position widgets at fixed coordinates

Synopsis

class gtk.Fixed(gtk.Container):
gtk.Fixed()

 def put(widget, x, y)
 def move(widget, x, y)
 def set_has_window(has_window)
 def get_has_window()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Fixed

Child Properties

"x" Read/Write The x position of the child widget.
"y" Read/Write The y position of the child widget.

Description

The gtk.Fixed widget is a container that can place child widgets at fixed positions and with fixed sizes,
given in pixels. gtk.Fixed performs no automatic layout management. For most applications, you should
not use this container! It keeps you from having to learn about the other PyGTK containers, but it results in
broken applications. With gtk.Fixed, the following things will result in truncated text, overlapping
widgets, and other display bugs:

Themes, which may change widget sizes.•
Fonts other than the one you used to write the app will of course change the size of widgets
containing text; keep in mind that users may use a larger font because of difficulty reading the default,

•

PyGTK 2.0 Reference Manual

gtk.FileSelection.get_select_multiple 353

or they may be using Windows or the framebuffer port of PyGTK, where different fonts are available.
Translation of text into other languages changes its size. Also, display of non−English text will use a
different font in many cases.

•

In addition, the fixed widget can't properly be mirrored in right−to−left languages such as Hebrew and Arabic.
i.e. normally PyGTK will flip the interface to put labels to the right of the thing they label, but it can't do that
with gtk.Fixed. So your application will not be usable in right−to−left languages. Finally, fixed
positioning makes it kind of annoying to add and remove GUI elements, since you have to reposition all the
other elements. This is a long−term maintenance problem for your application. If you know none of these
things are an issue for your application, and prefer the simplicity of gtk.Fixed, by all means use the
widget. But you should be aware of the tradeoffs.

Constructor

gtk.Fixed()

Returns : a new fixed widget
Creates a new gtk.Fixed widget

Methods

gtk.Fixed.put

 def put(widget, x, y)

widget : the child widget being added*
x : the x position of the widget location
y : the y position of the widget location
The put() method adds the child widget specified by widget to the gtk.Fixed widget at the location
specified by x and y.

gtk.Fixed.move

 def move(widget, x, y)

widget : the child widget
x : the new x position
y : the new y position
The move() method moves the child widget specified by widget to the location specified specified by x and
y.

gtk.Fixed.set_has_window

 def set_has_window(has_window)

has_window : if TRUE a separate window should be created
The set_has_window() method specifies whether a gtk.Fixed widget is created with a separate
gtk.gdk.Window according to the value of has_window. If has_window is TRUE the fixed widget
will be created with its own separate window. By default, the setting is FALSE and the fixed will be created
with no separate gtk.gdk.Window. This method must be called while the gtk.Fixed is not realized, for

PyGTK 2.0 Reference Manual

Description 354

instance, immediately after the window is created.

gtk.Fixed.get_has_window

 def get_has_window()

Returns : TRUE if the fixed widget has its own window.
The get_has_window() method returns TRUE if the gtk.Fixed widget has it's own
gtk.gdk.Window. See the set_has_window() method.

Prev Up Next
gtk.FileSelection Home gtk.FontButton

gtk.FontButton
Prev The gtk Class Reference Next

gtk.FontButton

gtk.FontButton � a button to launch a font selection dialog (new in PyGTK 2.4)

Synopsis

class gtk.FontButton(gtk.Button):
gtk.FontButton(fontname=None)

 def get_title()
 def set_title(title)
 def get_use_font()
 def set_use_font(use_font)
 def get_use_size()
 def set_use_size(use_size)
 def get_font_name()
 def set_font_name(fontname)
 def get_show_style()
 def set_show_style(show_style)
 def get_show_size()
 def set_show_size(show_size)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Button
 +−− gtk.FontButton

Properties

PyGTK 2.0 Reference Manual

gtk.Fixed.set_has_window 355

"font−name" Read−Write The name of the currently selected font.
"show−size" Read−Write If TRUE, the selected font size will be shown in the label. For a more WYSIWIG

way to show the selected size, see the "use−size" property.
"show−style" Read−Write If TRUE, the name of the selected font style will be shown in the label. For a

more WYSIWIG way to show the selected style, see the "use−font" property.
"title" Read−Write The title of the font selection dialog.
"use−font" Read−Write If TRUE, the label will be drawn in the selected font
"use−size" Read−Write If TRUE, the label will be drawn with the selected font size.

Signal Prototypes

"font−set" def callback(fontbutton, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.4 and above.

The gtk.FontButton is a button that displays the currently selected font and, when clicked, opens a
gtk.FontSelectionDialog to change the font. A gtk.FontButton can be used in a preference
dialog for selecting a font.

Constructor

gtk.FontButton(fontname=None)

fontname : the name of the font to display in the font selection dialog
Returns : a new font button widget

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.FontButton that displays the font specified by fontname or the currently selected
font if fontname is None or not specified.

Methods

gtk.FontButton.get_title

 def get_title()

Returns : the title string

Note

This method is available in PyGTK 2.4 and above.

The get_title() method returns the value of the "title" property that contains the title of the font selection

PyGTK 2.0 Reference Manual

Properties 356

dialog.

gtk.FontButton.set_title

 def set_title(title)

title : a string containing the font selection dialog title

Note

This method is available in PyGTK 2.4 and above.

The set_title() method sets the "title" property to the string specified by title and sets the title of the
gtk.FontSelectionDialog if it exists. The "title" property contains the title of the font selection
dialog.

gtk.FontButton.get_use_font

 def get_use_font()

Returns : TRUE, if the font button label is written using the selected font.

Note

This method is available in PyGTK 2.4 and above.

The get_use_font() method returns the value of the "use−font" property. If "use−font" is TRUE the
selected font is used in the label.

gtk.FontButton.set_use_font

 def set_use_font(use_font)

use_font : If TRUE, the font button label will be written using the font selected.

Note

This method is available in PyGTK 2.4 and above.

The set_use_font() method sets the "use−font" property to the value specified by use_font. If
use_font is TRUE, the font button label will be written using the selected font.

gtk.FontButton.get_use_size

 def get_use_size()

Returns : TRUE if the font button label is written using the selected size.

Note

This method is available in PyGTK 2.4 and above.

The get_use_size() method returns the value of the "use−size" property. If the value of "use−size" is
TRUE, the font button label is written using the selected font size.

PyGTK 2.0 Reference Manual

Note 357

gtk.FontButton.set_use_size

 def set_use_size(use_size)

use_size : If TRUE, the font button label will be written using the selected size.

Note

This method is available in PyGTK 2.4 and above.

The set_use_size() method sets the "use−size" property to the value of use_size. If use_size is
TRUE, the font button label will be written using the selected size.

gtk.FontButton.get_font_name

 def get_font_name()

Returns : the font name.

Note

This method is available in PyGTK 2.4 and above.

The get_font_name() method returns the value of the "font−name" property that contains the name of the
currently selected font.

gtk.FontButton.set_font_name

 def set_font_name(fontname)

fontname : the name of the font to display in the font selection dialog
Returns : TRUE if the font selection dialog exists and the font name could be set

Note

This method is available in PyGTK 2.4 and above.

The set_font_name() method sets the "font−name" property to the value of fontname and updates the
currently−displayed font in the font selection dialog. Returns TRUE if the font selection dialog exists and
fontname could be set as its font.

gtk.FontButton.get_show_style

 def get_show_style()

Returns : TRUE if the font style will be shown in the label.

Note

This method is available in PyGTK 2.4 and above.

The get_show_style() method returns the value of the "show−style" property. If "show−style" is TRUE,
the name of the font style will be shown in the font button label.

PyGTK 2.0 Reference Manual

gtk.FontButton.set_use_size 358

gtk.FontButton.set_show_style

 def set_show_style(show_style)

show_style : if TRUE, the font style should be displayed in the font button label.

Note

This method is available in PyGTK 2.4 and above.

The set_show_style() method sets the "show−style" property tot he value of show_style. If
show_style is TRUE, the font style will be displayed along with name of the selected font in the font
button label.

gtk.FontButton.get_show_size

 def get_show_size()

Returns : TRUE if the font size will be shown in the font button label.

Note

This method is available in PyGTK 2.4 and above.

The get_show_size() method returns the value of the "show−size" property. If "show−size" is TRUE, the
font size will be shown in the font button label.

gtk.FontButton.set_show_size

 def set_show_size(show_size)

show_size : if TRUE, the font size should be displayed in the font button label.

Note

This method is available in PyGTK 2.4 and above.

The set_show_size() method sets the "show−size" property to to the value of show_size. If
show_size is TRUE, the font size will be displayed along with the name of the selected font in the font
button label.

Signals

The "font−set" gtk.FontButton Signal

 def callback(fontbutton, user_param1, ...)

fontbutton : the fontbutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "font−set" signal is emitted when the user selects a font. When handling this signal, use the
get_font_name() method to find out what font was just selected.

Prev Up Next

PyGTK 2.0 Reference Manual

gtk.FontButton.set_show_style 359

gtk.Fixed Home gtk.FontSelection
gtk.FontSelection

Prev The gtk Class Reference Next

gtk.FontSelection

gtk.FontSelection � a widget for selecting fonts.

Synopsis

class gtk.FontSelection(gtk.VBox):
gtk.FontSelection()

 def get_font_name()
 def set_font_name(fontname)
 def get_preview_text()
 def set_preview_text(text)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.VBox
 +−− gtk.FontSelection

Properties

"font−name" Read/Write The string that names the font
"font" Read The gtk.gdk.Font that is currently selected. This property is deprecated.
"preview−text" Read/Write The text to display in order to demonstrate the selected font.

Description

The gtk.FontSelection widget lists the available fonts, styles and sizes, allowing the user to select a
font. It is used in the gtk.FontSelectionDialog widget to provide a dialog box for selecting fonts.
The set_font_name() method sets the initial font selection. The current font selection is retrieved using
the get_font_name() method.

The fontselection has a preview area that contains a gtk.Entry that displays text using the currently
selected font. The preview text can be retrieved with the get_preview_text() method and set with the
set_preview_text() method.

Filters can be used to limit the font selections. There are 2 filters in the gtk.FontSelection − a base
filter and a user filter. The base filter cannot be changed by the user, so this can be used when the user must
choose from the restricted set of fonts (e.g. for a terminal−type application you may want to force the user to
select a fixed−width font). The user filter can be changed or reset by the user, by using the Reset Filter button
or changing the options on the Filter page of the widget.

PyGTK 2.0 Reference Manual

The "font−set" gtk.FontButton Signal 360

Constructor

gtk.FontSelection()

Returns : a new fontselection widget
Creates a new gtk.FontSelection widget.

Methods

gtk.FontSelection.get_font_name

 def get_font_name()

Returns : a string containing the selected font name
The get_font_name() method returns the name of the currently selected font.

gtk.FontSelection.set_font_name

 def set_font_name(fontname)

fontname : a string containing the name of a font
Returns : TRUE if the font could be set
The set_font_name() method sets the currently selected font in the fontselection using the value of
fontname. The method returns TRUE if the font is found and can be selected in the fontselection.

gtk.FontSelection.get_preview_text

 def get_preview_text()

Returns : a string containing the preview text
The get_preview_text() method returns a string that contains the text displayed in the preview area
entry.

gtk.FontSelection.set_preview_text

 def set_preview_text(text)

text : the new preview text string
The set_preview_text() method sets the text to be displayed in the preview area entry using the string in
text.

Prev Up Next
gtk.FontButton Home gtk.FontSelectionDialog

gtk.FontSelectionDialog
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

Constructor 361

gtk.FontSelectionDialog

gtk.FontSelectionDialog � a dialog for selecting fonts.

Synopsis

class gtk.FontSelectionDialog(gtk.Dialog):
gtk.FontSelectionDialog(title)

 def get_font_name()
 def set_font_name(fontname)
 def get_preview_text()
 def set_preview_text(text)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Dialog
 +−− gtk.FontSelectionDialog

Attributes

"fontsel" Read The gtk.FontSelection widget in the dialog.

"main_vbox" Read The gtk.VBox that contains all the dialog widgets

"action_area" Read The gtk.HBox containing the action buttons

"ok_button" Read The OK button

"apply_button" Read The Apply button

"cancel_button" Read The Cancel button

Description

The gtk.FontSelectionDialog is a dialog box containing a gtk.FontSelection widget that the
user can use to select a font according to the desired family, style and size.

The set_font_name() method sets the initial font selection. The current font selection is retrieved using
the get_font_name() method. The font selection dialog has a preview area that contains a gtk.Entry
that displays text using the currently selected font. The preview text can be retrieved with the
get_preview_text() method and set with the set_preview_text() method.

Filters can be used to limit the font selections. There are 2 filters in the gtk.FontSelectionDialog − a
base filter and a user filter. The base filter cannot be changed by the user, so this can be used when the user
must choose from the restricted set of fonts (e.g. for a terminal−type application you may want to force the
user to select a fixed−width font). The user filter can be changed or reset by the user, by using the Reset Filter
button or changing the options on the Filter page of the widget.

PyGTK 2.0 Reference Manual

gtk.FontSelectionDialog 362

Note

In GTK+ 2.2 and above the gtk.FontSelectionDialog does not have filters, a Reset Filter button or a
Filter page.

Constructor

gtk.FontSelectionDialog(title)

title : a string to be used as the dialog title
Returns : a new font selection dialog
Creates a new gtk.FontSelectionDialog with the title specified by title.

Methods

gtk.FontSelectionDialog.get_font_name

 def get_font_name()

Returns : the currently selected font name or None if no font is selected.
The get_font_name() method returns a string containing the currently selected font name or None if no
font name is selected.

gtk.FontSelectionDialog.set_font_name

 def set_font_name(fontname)

fontname : a string containing the font name to be set
Returns : TRUE if the font is found and can be selected
The set_font_name() method sets the current font using the value of fontname. The method returns
TRUE if the font exists and could be selected.

gtk.FontSelectionDialog.get_preview_text

 def get_preview_text()

Returns : a string containing the text in the preview area entry
The get_preview_text() method returns a string containing the text in the preview area entry.

gtk.FontSelectionDialog.set_preview_text

 def set_preview_text(text)

text : a string used to set the text in the preview area entry
The set_preview_text() method sets the text in the preview area entry using the string specified by
text.

Prev Up Next
gtk.FontSelection Home gtk.Frame

PyGTK 2.0 Reference Manual

Note 363

gtk.Frame
Prev The gtk Class Reference Next

gtk.Frame

gtk.Frame � a bin with a decorative frame and optional label.

Synopsis

class gtk.Frame(gtk.Bin):
gtk.Frame(label=None)

 def set_label(label)
 def get_label()
 def set_label_widget(label_widget)
 def get_label_widget()
 def set_label_align(xalign, yalign)
 def get_label_align()
 def set_shadow_type(type)
 def get_shadow_type()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Frame

Properties

"label" Read−Write The text of the frame's label
"label−xalign" Read−Write The horizontal alignment of the label widget in the range

of 0.0 to 1.0
"label−yalign" Read−Write The vertical alignment of the decoration within the label

widget height in the range of 0.0 to 1.0
"shadow−type" Read−Write The style of the frame's border; one of:

gtk.SHADOW_NONE, gtk.SHADOW_IN,
gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN,
gtk.SHADOW_ETCHED_OUT

"label−widget" Read−Write The widget to display in place of the usual frame label.

Description

The gtk.Frame widget is a gtk.Bin that surrounds its child with a decorative frame and an optional label.
If present, the label is drawn in a gap in the top side of the frame. The position of the label can be controlled
with set_label_align().

PyGTK 2.0 Reference Manual

gtk.FontSelectionDialog.set_preview_text 364

Constructor

gtk.Frame(label=None)

label : a string to use as the label text or None if no label is required.
Returns : a new frame widget
Creates a new gtk.Frame widget with the label text specified by label. If label is None no label is
created.

Methods

gtk.Frame.set_label

 def set_label(label)

label : a string to be used as the label text
The set_label() method sets the text of the label as specified by label. If label is None the current
label is removed.

gtk.Frame.get_label

 def get_label()

Returns : the text in the label, or None if there is no label widget or the label widget is not a gtk.Label.
The get_label() method returns the text in the label widget. If there is no label widget or the label widget
is not a gtk.Label the method returns None.

gtk.Frame.set_label_widget

 def set_label_widget(label_widget)

label_widget : the new label widget
The set_label_widget() method set the label widget (usually to something other than a gtk.Label
widget) for the frame. This widget will appear embedded in the top edge of the frame as a title.

gtk.Frame.get_label_widget

 def get_label_widget()

Returns : the label widget, or None if there is no label widget.
The get_label_widget() method retrieves the label widget for the frame. See set_label_widget().

gtk.Frame.set_label_align

 def set_label_align(xalign, yalign)

xalign : the horizontal alignment of the label widget along the top edge of the frame (in the range of
0.0 to 1.0)

yalign : the vertical alignment of the decoration with respect to the label widget (in the range 0.0 to
1.0)

PyGTK 2.0 Reference Manual

Constructor 365

The set_label_align() method sets the alignment of the frame's label widget and decoration (defaults
are 0.0 and 0.5) as specified by xalign and yalign. The xalign value specifies the fraction of free
horizontal space that is allocated to the left of the label widget. The yalign value specifies the fraction of
label widget height above the decoration.

gtk.Frame.get_label_align

 def get_label_align()

Returns : a tuple containing the x and y alignments of the frame's label widget
The get_label_align() method returns a tuple containing the X and Y alignment of the frame's label
widget and decoration. See the set_label_align() method.

gtk.Frame.set_shadow_type

 def set_shadow_type(type)

type : a shadow type: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

The set_shadow_type() method sets the frame's shadow type to the value of type. The type must be one
of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN,
gtk.SHADOW_ETCHED_OUT

gtk.Frame.get_shadow_type

 def get_shadow_type()

Returns : the current shadow type of the frame.
The get_shadow_type() method retrieves the shadow type of the frame; one of: gtk.SHADOW_NONE,
gtk.SHADOW_IN, gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT. See
set_shadow_type().

Prev Up Next
gtk.FontSelectionDialog Home gtk.GammaCurve

gtk.GammaCurve
Prev The gtk Class Reference Next

gtk.GammaCurve

gtk.GammaCurve � subclass of gtk.Curve for editing gamma curves.

Synopsis

class gtk.GammaCurve(gtk.VBox):
gtk.GammaCurve()

Ancestry

+−− gobject.GObject
 +−− gtk.Object

PyGTK 2.0 Reference Manual

gtk.Frame.set_label_align 366

 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.VBox
 +−− gtk.GammaCurve

Attributes

"table" Read The gtk.Table containing the gtk.GammaCurve widgets.

"curve" Read The gtk.Curve widget.

"gamma" Read The gamma value (float)

"gamma_dialog" Read The gtk.Dialog that prompts for the gamma value.

"gamma_text" Read The gtk.Entry containing the gamma value in the gamma dialog

Description

Note

This widget is considered too specialized or little−used for PyGTK, and will in the future be moved to some
other package. If your application needs this widget, feel free to use it, as the widget does work and is useful
in some applications; it's just not of general interest. However, it will eventually move out of the PyGTK
distribution.

The gtk.GammaCurve widget is a variant of gtk.Curve specifically for editing gamma curves, which
are used in graphics applications such as the Gimp. The gtk.GammaCurve widget shows a curve which the
user can edit with the mouse just like a gtk.Curve widget. On the right of the curve it also displays 5
buttons, 3 of which change between the 3 curve modes (spline, linear and free), and the other 2 set the curve
to a particular gamma value, or reset it to a straight line.

Constructor

gtk.GammaCurve()

Returns : a new gammacurve widget
Creates a new gtk.GammaCurve widget.

Prev Up Next
gtk.Frame Home gtk.GenericCellRenderer

gtk.HandleBox
Prev The gtk Class Reference Next

gtk.HandleBox

gtk.HandleBox � a widget for detachable window portions.

PyGTK 2.0 Reference Manual

Ancestry 367

Synopsis

class gtk.HandleBox(gtk.Bin):
gtk.HandleBox()

 def set_shadow_type(type)
 def get_shadow_type()
 def set_handle_position(position)
 def get_handle_position()
 def set_snap_edge(edge)
 def get_snap_edge()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.HandleBox

Properties

"shadow−type" Read−Write The type of shadow; one of: gtk.SHADOW_NONE, gtk.SHADOW_IN,
gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN,
gtk.SHADOW_ETCHED_OUT

"handle−position" Read−Write The position of the handle relative to the child widget; one of:
gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP,
gtk.POS_BOTTOM

"snap−edge" Read−Write The side of the handlebox that's lined up with the docking point to dock the
handlebox; one of: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP,
gtk.POS_BOTTOM

"snap−edge−set" Read−Write If TRUE, use the value from "snap−edge"; otherwise, use a value derived
from "handle−position". Available in GTK+ 2.2 and above.

Signal Prototypes

"child−attached" def callback(handlebox, widget, user_param1, ...)

"child−detached" def callback(handlebox, widget, user_param1, ...)

Description

The gtk.HandleBox widget allows a portion of a window to be "torn off". It is a bin widget which
displays its child and a handle that the user can drag to tear off into a separate floating window containing the
child widget. A thin ghost is drawn in the original location of the handlebox. The separate window can be
dragged back to its original location to be reattached. When reattaching, the ghost and float window, must be
aligned along one of the edges called the snap edge that can be specified by the application, or specified
automatically using a reasonable default based on the handle position. The snap edge is automatically set as
gtk.POS_TOP if the handle position is gtk.POS_RIGHT or gtk.POS_LEFT; otherwise, the snap edge
will be set as gtk.POS_LEFT.

To make detaching and reattaching the handlebox as minimally confusing as possible to the user, it is
important to set the snap edge so that the snap edge does not move when the handlebox is detached. For
example, if the handlebox is packed at the bottom of a gtk.VBox, then when the handlebox is detached, the

PyGTK 2.0 Reference Manual

Synopsis 368

bottom edge of the handlebox's allocation will remain fixed as the height of the handlebox shrinks, so the snap
edge should be set to gtk.POS_BOTTOM.

Constructor

gtk.HandleBox()

Returns : a new handlebox widget
Creates a new gtk.HandleBox widget.

Methods

gtk.HandleBox.set_shadow_type

 def set_shadow_type(type)

type : the shadow type: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

The set_shadow_type() method sets the type of shadow to be drawn around the border of the handle box
as specified by type. The value of type must be one of: gtk.SHADOW_NONE, gtk.SHADOW_IN,
gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT.

gtk.HandleBox.get_shadow_type

 def get_shadow_type()

Returns : the type of shadow currently drawn around the handle box.
The get_shadow_type() method gets the type of shadow drawn around the handle box. The shadow type
is one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN,
gtk.SHADOW_ETCHED_OUT. See set_shadow_type().

gtk.HandleBox.set_handle_position

 def set_handle_position(position)

position : the side of the handlebox where the handle should be drawn.
The set_handle_position() method sets the side of the handlebox where the handle is drawn using the
value of position. The value of position must be one of: gtk.POS_LEFT, gtk.POS_RIGHT,
gtk.POS_TOP, gtk.POS_BOTTOM

gtk.HandleBox.get_handle_position

 def get_handle_position()

Returns : the current handle position.
The get_handle_position() method gets the handle position of the handle box; one of:
gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP, gtk.POS_BOTTOM. See
set_handle_position().

PyGTK 2.0 Reference Manual

Description 369

gtk.HandleBox.set_snap_edge

 def set_snap_edge(edge)

edge : the edge to use as the snap edge or −1 to have PyGTK automatically pick the snap edge
The set_snap_edge() method sets the snap edge of the handlebox to the value specified by edge. The
value of edge can be one of: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP, gtk.POS_BOTTOM
or −1 to have the snap edge automatically specified.

The snap edge is the edge of the detached child that must be aligned with the corresponding edge of the
"ghost" left behind when the child was detached to reattach the torn−off window. Usually, the snap edge
should be chosen so that it stays in the same place on the screen when the handlebox is torn off. If the snap
edge is not set, then an appropriate value will be guessed from the handle position. If the handle position is
gtk.POS_RIGHT or gtk.POS_LEFT, then the snap edge will be gtk.POS_TOP, otherwise it will be
gtk.POS_LEFT.

gtk.HandleBox.get_snap_edge

 def get_snap_edge()

Returns : the edge used for determining reattachment, or −1 if the snap edge is determined (as per default)
from the handle position.

The get_snap_edge() method gets the edge used for determining reattachment of the handle box. The
return value will be one of: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP, gtk.POS_BOTTOM or
−1 to indicate the snap edge is automatically selected. See set_snap_edge().

Signals

The "child−attached" gtk.HandleBox Signal

 def callback(handlebox, widget, user_param1, ...)

handlebox : the widget that received the signal
widget : the child widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "child−attached" signal is emitted when the contents of the handlebox are reattached to the main window.

The "child−detached" gtk.HandleBox Signal

 def callback(handlebox, widget, user_param1, ...)

handlebox : the widget that received the signal
widget : the child widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "child−detached" signal is emitted when the contents of the handlebox are detached from the main
window.

Prev Up Next

PyGTK 2.0 Reference Manual

gtk.HandleBox.set_snap_edge 370

gtk.GenericTreeModel Home gtk.HBox
gtk.HBox

Prev The gtk Class Reference Next

gtk.HBox

gtk.HBox � a horizontal container box

Synopsis

class gtk.HBox(gtk.Box):
gtk.HBox(homogeneous=FALSE, spacing=0)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.HBox

Description

The gtk.HBox is a container subclassed from gtk.Box that organizes its child widgets into a single
horizontal row. The gtk.Box methods are used to manage the order, spacing, width and alignment of the
child widgets though all widgets are allocated the same height.

Constructor

gtk.HBox(homogeneous=FALSE, spacing=0)

homogeneous : If TRUE all children are given equal space allocations.
spacing : The additional horizontal space between children in pixels
Returns : a new hbox widget
Creates a new gtk.HBox widget.

Prev Up Next
gtk.HandleBox Home gtk.HButtonBox

gtk.HButtonBox
Prev The gtk Class Reference Next

gtk.HButtonBox

gtk.HButtonBox � a container for arranging buttons horizontally.

PyGTK 2.0 Reference Manual

The "child−detached" gtk.HandleBox Signal 371

Synopsis

class gtk.HButtonBox(gtk.ButtonBox):
gtk.HButtonBox()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.ButtonBox
 +−− gtk.HButtonBox

Description

The gtk.HButtonBox is a container subclassed from gtk.ButtonBox that is optimized for the
horizontal layout of buttons. The gtk.HButtonBox helps provide a consistent layout of buttons in an
application by providing default values of spacing, padding and layout style as described in the
gtk.ButtonBox reference. Buttons are packed into a gtk.HButtonBox using the
gtk.Container.add() method or the gtk.Box.pack_start() and gtk.Box.pack_end()
methods. The spacing between buttons can be set with the gtk.Box.set_spacing() method.

Constructor

gtk.HButtonBox()

Returns : a new hbuttonbox widget
Creates a new gtk.HButtonBox widget.

Prev Up Next
gtk.HBox Home gtk.HPaned

gtk.HPaned
Prev The gtk Class Reference Next

gtk.HPaned

gtk.HPaned � a container with two panes arranged horizontally.

Synopsis

class gtk.HPaned(gtk.Paned):
gtk.HPaned()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container

PyGTK 2.0 Reference Manual

Synopsis 372

 +−− gtk.Paned
 +−− gtk.HPaned

Description

The gtk.HPaned is a container widget subclassed from gtk.Paned with two children arranged
horizontally. The division between the children can be adjusted by the user by dragging a handle. See the
gtk.Paned description for more information.

Constructor

gtk.HPaned()

Returns : a new hpaned widget
Creates a new gtk.HPaned widget.

Prev Up Next
gtk.HButtonBox Home gtk.HRuler

gtk.HRuler
Prev The gtk Class Reference Next

gtk.HRuler

gtk.HRuler � a horizontal ruler.

Synopsis

class gtk.HRuler(gtk.Ruler):
gtk.HRuler()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Ruler
 +−− gtk.HRuler

Description

Note

This widget is considered too specialized or little−used for PyGTK, and will in the future be moved to some
other package. If your application needs this widget, feel free to use it, as the widget does work and is useful
in some applications; it's just not of general interest. However, it will eventually move out of the PyGTK
distribution.

The gtk.HRuler widget is arranged horizontally creating a ruler that is used in conjunction with other
widgets such as a text widget. The ruler is used to show the location of the mouse on the window and to show
the size of the window in specified units. The available units of measurement are gtk.PIXELS (the default),

PyGTK 2.0 Reference Manual

Ancestry 373

gtk.INCHES and gtk.CENTIMETERS. See the gtk.Ruler description for more information on the
methods that are used to manage a gtk.HRuler.

Constructor

gtk.HRuler()

Returns : a new hruler widget
Creates a new gtk.HRuler widget.

Prev Up Next
gtk.HPaned Home gtk.HScale

gtk.HScale
Prev The gtk Class Reference Next

gtk.HScale

gtk.HScale � a horizontal slider widget for selecting a value from a range.

Synopsis

class gtk.HScale(gtk.Scale):
gtk.HScale(adjustment=None)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Range
 +−− gtk.Scale
 +−− gtk.HScale

Description

The gtk.HScale is subclassed from gtk.Scale to provide a widget that allows a user to select a value
using a horizontal slider. See the gtk.Scale description for more information on the methods available to
manage a gtk.HScale.

Constructor

gtk.HScale(adjustment=None)

adjustment : a gtk.Adjustment object
Returns : a new hscale widget
Creates a new gtk.HScale widget and associates a gtk.Adjustment specified by adjustment. The
default value of adjustment is None which creates the hscale with no gtk.Adjustment.

Prev Up Next

PyGTK 2.0 Reference Manual

Note 374

gtk.HRuler Home gtk.HScrollbar
gtk.HScrollbar

Prev The gtk Class Reference Next

gtk.HScrollbar

gtk.HScrollbar � a horizontal scrollbar widget

Synopsis

class gtk.HScrollbar(gtk.Scrollbar):
gtk.HScrollbar(adjustment=None)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Range
 +−− gtk.Scrollbar
 +−− gtk.HScrollbar

Description

The gtk.HScrollbar widget is subclassed from gtk.Scrollbar to provide a horizontal scrollbar. See
gtk.Scrollbar for details on the methods available for managing scrollbars. A gtk.Adjustment may
be specified with the scrollbar at creation (or is created automatically if none is specified) to handle the
adjustment of the scrollbar. See gtk.Adjustment for details.

Constructor

gtk.HScrollbar(adjustment=None)

adjustment : a gtk.Adjustment or None to automatically create an adjustment
Returns : a new hscrollbar widget
Creates a new gtk.HScrollbar with an associated gtk.Adjustment specified by adjustment. If
adjustment is None or missing a new gtk.Adjustment will be created and associated with the
scrollbar.

Prev Up Next
gtk.HScale Home gtk.HSeparator

gtk.HSeparator
Prev The gtk Class Reference Next

gtk.HSeparator

gtk.HSeparator � a horizontal separator.

PyGTK 2.0 Reference Manual

Constructor 375

Synopsis

class gtk.HSeparator(gtk.Separator):
gtk.HSeparator()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Separator
 +−− gtk.HSeparator

Description

The gtk.HSeparator widget is a horizontal separator, used to visibly separate the widgets within a
window. It displays a horizontal line with a shadow to make it appear sunken into the interface.

Note

The gtk.HSeparator widget is not used as a separator within menus. To create a separator in a menu
create an empty gtk.SeparatorMenuItem widget and add it to the menu with
gtk.MenuShell.append().

Constructor

gtk.HSeparator()

Returns : a new horizontal separator widget
Creates a new gtk.HSeparator widget.

Prev Up Next
gtk.HScrollbar Home gtk.IconFactory

gtk.IconFactory
Prev The gtk Class Reference Next

gtk.IconFactory

gtk.IconFactory � an object that manages a group of icon sets.

Synopsis

class gtk.IconFactory(gobject.GObject):
gtk.IconFactory()

 def add(stock_id, icon_set)
 def lookup(stock_id)
 def add_default()
 def remove_default()

Functions

 def gtk.icon_factory_lookup_default(stock_id)

PyGTK 2.0 Reference Manual

Synopsis 376

Ancestry

+−− gobject.GObject
 +−− gtk.IconFactory

Description

A gtk.IconFactory manages a group of gtk.IconSets that manage a set of variants (for different
sizes and states) of a specific icon. Icons in an icon factory are named by a stock ID, which is a simple string
identifying the icon e.g "gtk−ok". Each gtk.Style has a list of gtk.IconFactorys derived from the
current theme; those icon factories are consulted first when searching for an icon. If the theme doesn't set a
particular icon, the search continues for the icon in a list of default icon factories, maintained by the
add_default()() and remove_default()() methods. Applications with icons should add a default icon
factory with their icons, which will allow themes to override the icons for the application.

To display an icon, always use gtk.Style.lookup_icon_set() on the widget that will display the
icon, or the convenience function gtk.Widget.render_icon(). These functions take the theme into
account when looking up the icon to use for a given stock ID.

Constructor

gtk.IconFactory()

Returns : a new gtk.IconFactory object
Creates a new gtk.IconFactory.

Methods

gtk.IconFactory.add

 def add(stock_id, icon_set)

stock_id : an icon name
icon_set : an icon set
The add() method adds the specified icon_set to the icon factory, under the name stock_id. the
stock_id string should include the name of your application, e.g. "myapp−whatever−icon". Normally
applications create a gtk.IconFactory, then add it to the list of default factories with the
add_default(). Then they pass the stock_id to widgets such as gtk.Image to display the icon.
Themes can provide an icon with the same name (such as "myapp−whatever−icon") to override your
application's default icons. If an icon already existed in the icon factory for stock_id, it is unreferenced and
replaced with the new icon_set.

gtk.IconFactory.lookup

 def lookup(stock_id)

stock_id : an icon name
Returns : the icon set named stock_id.
The lookup() method looks up stock_id in the icon factory, returning an icon set if found, otherwise
None. For display to the user, you should use gtk.Style.lookup_icon_set() on the gtk.Style for

PyGTK 2.0 Reference Manual

Ancestry 377

the widget that will display the icon, instead of using this function directly, so that themes are taken into
account.

gtk.IconFactory.add_default

 def add_default()

The add_default() method adds the icon factory to the list of icon factories searched by
gtk.Style.lookup_icon_set(). This means that, for example, gtk.Image.set_from_stock()
will be able to find icons in the icon factory. There will normally be an icon factory added for each library or
application that comes with icons. The default icon factories can be overridden by themes.

gtk.IconFactory.remove_default

 def remove_default()

The remove_default() method removes an icon factory from the list of default icon factories. Not
normally used though you might use it for a library that can be unloaded or shut down.

Functions

gtk.icon_factory_lookup_default

 def gtk.icon_factory_lookup_default(stock_id)

stock_id : the stock ID to lookup
Returns : the icon set matching stock_id or None if no icon set matches
The gtk.icon_factory_lookup_default() function returns the gtk.IconSet that has the name
specified by stock_id. If the icon set cannot be found the function returns None.

Prev Up Next
gtk.HSeparator Home gtk.IconInfo

gtk.IconInfo
Prev The gtk Class Reference Next

gtk.IconInfo

gtk.IconInfo � object containing information about and icon in an icon theme (new in PyGTK 2.4)

Synopsis

class gtk.IconInfo(gobject.GBoxed):
 def copy()
 def free()
 def get_base_size()
 def get_filename()
 def get_builtin_pixbuf()
 def load_icon()
 def set_raw_coordinates(raw_coordinates)
 def get_embedded_rect()

PyGTK 2.0 Reference Manual

gtk.IconFactory.lookup 378

 def get_attach_points()
 def get_display_name()

Description

Note

This object is available in PyGTK 2.4 and above.

A gtk.IconInfo object contains information about an icon in a gtk.IconTheme. A gtk.IconInfo
object is created using the gtk.IconTheme.lookup_icon() method.

A gtk.gdk.Pixbuf can be rendered with the icon using the load_icon() method. If you just want to
load the pixbuf of an icon you can use the gtk.IconTheme.load_icon() method that combines the
gtk.IconTheme.lookup_icon() method and the load_icon() method.

Methods

gtk.IconInfo.copy

 def copy()

Returns : the new gtk.IconInfo

Note

This method is available in PyGTK 2.4 and above.

The copy() method returns a copy of the icon info object.

gtk.IconInfo.free

 def free()

Note

This method is available in PyGTK 2.4 and above.

The free() method frees the icon info and its associated information

gtk.IconInfo.get_base_size

 def get_base_size()

Returns : the base size, or 0, if no base size is known for the icon.

Note

This method is available in PyGTK 2.4 and above.

The get_base_size() method returns the base size for the icon. The base size is a size for the icon that
was specified by the icon theme creator. This may be different than the actual size of image; an example of
this is small emblem icons that can be attached to a larger icon. These icons will be given the same base size

PyGTK 2.0 Reference Manual

Synopsis 379

as the larger icons to which they are attached.

gtk.IconInfo.get_filename

 def get_filename()

Returns : the filename for the icon, or None if the get_builtin_pixbuf() should be used instead.

Note

This method is available in PyGTK 2.4 and above.

The get_filename() method returns the filename for the icon. If the
gtk.ICON_LOOKUP_USE_BUILTIN flag was passed to the gtk.IconTheme.lookup_icon()
method, there may be no filename if a builtin icon is returned. In this case, you should use the
get_builtin_pixbuf() method.

gtk.IconInfo.get_builtin_pixbuf

 def get_builtin_pixbuf()

Returns : the built−in image pixbuf, or None.

Note

This method is available in PyGTK 2.4 and above.

The get_builtin_pixbuf() method returns the built−in image for this icon, if any. To allow GTK+ to
use built in icon images, you must pass the gtk.ICON_LOOKUP_USE_BUILTIN to the
gtk.IconTheme.lookup_icon() method.

gtk.IconInfo.load_icon

 def load_icon()

Returns : the icon rendered into a gtk.gdk.Pixbuf. This may be a newly created icon or a new reference
to an internal icon, so you must not modify the icon.

Note

This method is available in PyGTK 2.4 and above.

The load_icon() method renders the icon previously looked up in an icon theme using the
gtk.IconTheme.lookup_icon() method. The icon size will be based on the size passed to the
gtk.IconTheme.lookup_icon() method. Note that the resulting gtk.gdk.Pixbuf may not be
exactly this size. An icon theme may have icons that differ slightly from their nominal sizes, and in addition
GTK+ will avoid scaling icons that it considers sufficiently close to the requested size to maintain sharpness.

This method raise the GError exception if an error occurs during rendering of the icon.

gtk.IconInfo.set_raw_coordinates

 def set_raw_coordinates(raw_coordinates)

raw_coordinates :

PyGTK 2.0 Reference Manual

Note 380

if TRUE, the coordinates of embedded rectangles and attached points should be
returned in their original (unscaled) form.

Note

This method is available in PyGTK 2.4 and above.

The set_raw_coordinates() method sets the internal raw_coordinates flag to the value of
raw_coordinates. If raw_coordinates is TRUE, the coordinates returned by the
get_embedded_rect() and get_attach_points() methods will be returned in their original form
as specified in the icon theme, instead of scaled appropriately for the pixbuf returned by the load_icon()
method.

Raw coordinates are somewhat strange; they are specified to be with respect to the unscaled pixmap for PNG
and XPM icons, but for SVG icons, they are in a 1000x1000 coordinate space that is scaled to the final size of
the icon. You can determine if the icon is an SVG icon by using the get_filename() method, and seeing
if it is not None and ends in '.svg'.

This method is provided primarily to allow compatibility wrappers for older API's, and is not expected to be
useful for applications.

gtk.IconInfo.get_embedded_rect

 def get_embedded_rect()

Returns : a gtk.gdk.Rectangle or None

Note

This method is available in PyGTK 2.4 and above.

The get_embedded_rect() method returns a gtk.gdk.Rectangle containing the coordinates of a
rectangle within the icon that can be used for display of information such as a preview of the contents of a text
file. See the set_raw_coordinates() method for further information about the coordinate system.

gtk.IconInfo.get_attach_points

 def get_attach_points()

Returns : a tuple containing a set of 2−tuples for the attach points

Note

This method is available in PyGTK 2.4 and above.

The get_attach_points() method returns a tuple containing the attach points for an icon as a set of
2−tuples. An attach point is a location in the icon that can be used as anchor points for attaching emblems or
overlays to the icon.

gtk.IconInfo.get_display_name

 def get_display_name()

Returns : the display name for the icon or None, if the icon doesn't have a specified display name.

PyGTK 2.0 Reference Manual

gtk.IconInfo.set_raw_coordinates 381

Note

This method is available in PyGTK 2.4 and above.

The get_display_name() method returns the display name for an icon. A display name is a string to be
used in place of the icon name in a user visible context like a list of icons.

Prev Up Next
gtk.IconFactory Home gtk.IconSet

gtk.IconSet
Prev The gtk Class Reference Next

gtk.IconSet

gtk.IconSet � contains a set of variants for an icon

Synopsis

class gtk.IconSet(gobject.GBoxed):
gtk.IconSet(pixbuf=None)

 def copy()
 def render_icon(style, direction, state, size, widget, detail)
 def add_source(source)
 def get_sizes()

Description

A gtk.IconSet contains a set of variants for a single icon. The variants provide icons of different sizes and
for different widget states. The variants can be added with the add_source() method.

Constructor

gtk.IconSet(pixbuf=None)

pixbuf : a gtk.gdk.Pixbuf
Returns : a new gtk.IconSet
Creates a new gtk.IconSet with pixbuf as the default fallback source image. If pixbuf is None there
is no default fallback source image. If you don't add any additional gtk.IconSources to the icon set, all
variants of the icon will be created from pixbuf, using scaling, pixelation, etc. as required to adjust the icon
size or make the icon look insensitive/prelighted.

Methods

gtk.IconSet.copy

 def copy()

Returns : a new gtk.IconSet identical to the first.
The copy() method returns a copy of the icon set.

PyGTK 2.0 Reference Manual

Note 382

gtk.IconSet.render_icon

 def render_icon(style, direction, state, size, widget, detail)

style : a gtk.Style associated with widget, or None

direction :the text direction; one of: gtk.TEXT_DIR_NONE, gtk.TEXT_DIR_LTR,
gtk.TEXT_DIR_RTL

state : the widget state; one of: gtk.STATE_NORMAL, gtk.STATE_ACTIVE,
gtk.STATE_PRELIGHT, gtk.STATE_SELECTED, gtk.STATE_INSENSITIVE

size :
the icon size; one of: gtk.ICON_SIZE_INVALID, gtk.ICON_SIZE_MENU,
gtk.ICON_SIZE_SMALL_TOOLBAR, gtk.ICON_SIZE_LARGE_TOOLBAR,
gtk.ICON_SIZE_BUTTON, gtk.ICON_SIZE_DND, gtk.ICON_SIZE_DIALOG

widget : the widget that will display the icon, or None
detail : the detail to pass to the theme engine, or None
Returns : a gtk.gdk.Pixbuf to be displayed
The render_icon() method renders an icon using gtk.Style.render_icon(). In most cases,
gtk.Widget.render_icon() is better, since it automatically provides most of the arguments from the
current widget settings. This method never returns None; if the icon can't be rendered (perhaps because an
image file fails to load), a default "missing image" icon will be returned instead.

gtk.IconSet.add_source

 def add_source(source)

source : a gtk.IconSource
The add_source() method adds the gtk.IconSource specified by source to the icon set. Icon sets
have a list of gtk.IconSource, which they use as base icons for rendering icons in different states and
sizes. Icons are scaled, made to look insensitive, etc. in the render_icon() method, but gtk.IconSet
needs base images to work with. The base images and when to use them are described by a
gtk.IconSource.

An example of when you'd use this method: a web browser's "Back to Previous Page" icon might point in a
different direction in Hebrew and in English; it might look different when insensitive; and it might change
size depending on toolbar mode (small or large icons). So a single icon set would contain all those variants of
the icon, and you might add a separate source for each one.

You should nearly always add a "default" icon source with all fields wildcarded, which will be used as a
fallback if no more specific source matches. gtk.IconSet always prefers more specific icon sources to
more generic icon sources. The order in which you add the sources to the icon set does not matter.

The gtk.IconSet() constructor creates a new icon set with a default icon source based on the given pixbuf.

gtk.IconSet.get_sizes

 def get_sizes()

Returns : a tuple containing all the icon sizes supported by the icon set
The get_sizes() method returns a tuple containing all the icon sizes this icon set can render.

Prev Up Next
gtk.IconInfo Home gtk.IconSource

gtk.IconSource

PyGTK 2.0 Reference Manual

gtk.IconSet.render_icon 383

Prev The gtk Class Reference Next

gtk.IconSource

gtk.IconSource � a source for icon variants

Synopsis

class gtk.IconSource(gobject.GBoxed):
gtk.IconSource()

 def copy()
 def free()
 def set_filename(filename)
 def set_pixbuf(pixbuf)
 def get_filename()
 def get_pixbuf()
 def set_direction_wildcarded(setting)
 def set_state_wildcarded(setting)
 def set_size_wildcarded(setting)
 def get_size_wildcarded()
 def get_state_wildcarded()
 def get_direction_wildcarded()
 def set_direction(direction)
 def set_state(state)
 def set_size(size)
 def get_direction()
 def get_state()
 def get_size()

Functions

 def gtk.icon_size_lookup(icon_size)
 def gtk.icon_size_lookup_for_settings(settings, icon_size)
 def gtk.icon_size_register(name, width, height)
 def gtk.icon_size_register_alias(alias, target)
 def gtk.icon_size_from_name(name)
 def gtk.icon_size_get_name(size)

Description

A gtk.IconSource contains a gtk.gdk.Pixbuf (or an image filename) that serves as the base image
for one or more of the icons in a gtk.IconSet, along with a specification for which icons in the icon set
will be based on that pixbuf or image file. By default, the icon source has all parameters wildcarded. That is,
the icon source can be used as the base icon for any desired text direction, widget state, or icon size.

Constructor

gtk.IconSource()

Returns : a new gtk.IconSource
Creates a new gtk.IconSource. A gtk.IconSource contains a gtk.gdk.Pixbuf (or image
filename) that serves as the base image for one or more of the icons in a gtk.IconSet, along with a
specification for which icons in the icon set will be based on that pixbuf or image file. By default, the icon
source has all parameters wildcarded. That is, the icon source will be used as the base icon for any desired text
direction, widget state, or icon size.

PyGTK 2.0 Reference Manual

gtk.IconSet.get_sizes 384

Methods

gtk.IconSource.copy

 def copy()

Returns : a new gtk.IconSource
The copy() method creates a copy of the icon source.

gtk.IconSource.free

 def free()

The free() method frees a dynamically−allocated icon source, along with its filename, size, and pixbuf fields
if those are not None.

gtk.IconSource.set_filename

 def set_filename(filename)

filename : the image file to use
The set_filename() method sets the name of the image file (specified by filename) to use as the base
image when creating icon variants for a gtk.IconSet. The filename must be absolute.

gtk.IconSource.set_pixbuf

 def set_pixbuf(pixbuf)

pixbuf : the pixbuf to use as a source
The set_pixbuf() method sets a pixbuf (specified by pixbuf) to use as a base image when creating icon
variants for a gtk.IconSet. If an icon source has both a filename and a pixbuf set, the pixbuf will take
priority.

gtk.IconSource.get_filename

 def get_filename()

Returns : the image filename
The get_filename() method retrieves the source filename, or None if none is set.

gtk.IconSource.get_pixbuf

 def get_pixbuf()

Returns : the source pixbuf
The get_pixbuf() method retrieves the source pixbuf, or None if none is set.

PyGTK 2.0 Reference Manual

Methods 385

gtk.IconSource.set_direction_wildcarded

 def set_direction_wildcarded(setting)

setting : if TRUE wildcard the text direction
The set_direction_wildcarded() method determines whether the icon source direction is wildcarded
according to the value specified by setting. If setting is TRUE the text direction is wildcarded and the
icon source can be used as the base image for an icon in any text direction (gtk.TEXT_DIR_NONE,
gtk.TEXT_DIR_LTR or gtk.TEXT_DIR_RTL). If the text direction is not wildcarded, then the text
direction the icon source applies to should be set with the set_direction() method and the icon source
will only be used with that text direction. Non−wildcarded icon sources (exact matches) are preferred over
wildcarded icon sources. An exact match will be used when possible.

gtk.IconSource.set_state_wildcarded

 def set_state_wildcarded(setting)

setting : if TRUE wildcard the widget state
The set_state_wildcarded() method determines whether the icon source state is wildcarded according
to the value of setting. If setting is TRUE the widget state is wildcarded and the icon source can be
used as the base image for an icon in any widget state (gtk.STATE_NORMAL, gtk.STATE_ACTIVE,
gtk.STATE_PRELIGHT, gtk.STATE_SELECTED or gtk.STATE_INSENSITIVE). If the widget state
is not wildcarded, then the widget state the icon source applies to should be set with the set_state()
method and the icon source will only be used with that specific state. Non−wildcarded icon sources (exact
matches) are preferred over wildcarded icon sources. An exact match will be used when possible.

A gtk.IconSet will normally transform wildcarded icon source images to produce an appropriate icon for
a given state, for example lightening an image on prelight, but will not modify source images that match
exactly.

gtk.IconSource.set_size_wildcarded

 def set_size_wildcarded(setting)

setting : if TRUE wildcard the widget state
The set_size_wildcarded() determines whether the icon source can be used as the basis for an icon of
any size according to the value of setting. If setting is TRUE the icon size is wildcarded and the icon
source can be used as the base image for an icon of any size. If the size is not wildcarded, then the size the
icon source applies to should be set with gtk.IconSource.set_size() and the icon source will only
be used with that specific size. Non−wildcarded icon sources (exact matches) are preferred over wildcarded
icon sources. An exact match will be used when possible.

gtk.IconSet will normally scale wildcarded source images to produce an appropriate icon at a given size,
but will not change the size of source images that match exactly.

gtk.IconSource.get_size_wildcarded

 def get_size_wildcarded()

Returns : TRUE if this icon source is a base for any icon size variant
The get_size_wildcarded() method gets the value set by the set_size_wildcarded() method.

PyGTK 2.0 Reference Manual

gtk.IconSource.set_direction_wildcarded 386

gtk.IconSource.get_state_wildcarded

 def get_state_wildcarded()

Returns : TRUE if this icon source is a base for any widget state variant
The get_state_wildcarded() method gets the value set by the set_state_wildcarded() method.

gtk.IconSource.get_direction_wildcarded

 def get_direction_wildcarded()

Returns : TRUE if this icon source is a base for any text direction variant
The get_direction_wildcarded() method gets the value set by the
set_direction_wildcarded() method.

gtk.IconSource.set_direction

 def set_direction(direction)

direction : the text direction this icon source applies to
The set_direction() method sets the text direction according to the value of direction that the icon
source is intended to be used with. The value of direction must be one of: gtk.TEXT_DIR_NONE,
gtk.TEXT_DIR_LTR or gtk.TEXT_DIR_RTL.

Setting the text direction on an icon source makes no difference if the text direction is wildcarded. Therefore,
you should usually call the set_direction_wildcarded() method with a setting of FALSE to
un−wildcard it in addition to calling this function.

gtk.IconSource.set_state

 def set_state(state)

state : the widget state this source applies to
The set_state() method sets the widget state specified by state that the icon source is intended to be
used with. The value of state must be one of: gtk.STATE_NORMAL, gtk.STATE_ACTIVE,
gtk.STATE_PRELIGHT, gtk.STATE_SELECTED or gtk.STATE_INSENSITIVE. Setting the widget
state on an icon source makes no difference if the state is wildcarded. Therefore, you should usually call the
set_state_wildcarded() method with a setting of FALSE to un−wildcard it in addition to calling this
function.

gtk.IconSource.set_size

 def set_size(size)

size : the icon size this source applies to
The set_size() method sets the icon size specified by size that the icon source is intended to be used
with. Setting the icon size for an icon source makes no difference if the size is wildcarded. Therefore, you
should usually call the gtk.IconSource.set_size_wildcarded() method with a setting of FALSE
to un−wildcard it in addition to calling this function.

PyGTK 2.0 Reference Manual

gtk.IconSource.get_state_wildcarded 387

gtk.IconSource.get_direction

 def get_direction()

Returns : the text direction the icon source matches
The get_direction() method obtains the text direction this icon source applies to. The return value is
only useful and meaningful if the text direction is not wildcarded.

gtk.IconSource.get_state

 def get_state()

Returns : the widget state the icon source matches
The get_state() method obtains the widget state this icon source applies to. The return value is only useful
and meaningful if the widget state is not wildcarded.

gtk.IconSource.get_size

 def get_size()

Returns : the icon size this source matches.
The get_size() method obtains the icon size this source applies to. The return value is only useful and
meaningful if the icon size is not wildcarded.

Functions

gtk.icon_size_lookup

 def gtk.icon_size_lookup(icon_size)

icon_size : an icon size
Returns : a 2−tuple containing the width and height of the specified icon_size
The gtk.icon_size_lookup() function returns a 2−tuple containing the width and height of the icon
size specified by icon_size. The value of icon_size must be one of:

gtk.ICON_SIZE_MENU•
gtk.ICON_SIZE_SMALL_TOOLBAR•
gtk.ICON_SIZE_LARGE_TOOLBAR•
gtk.ICON_SIZE_BUTTON•
gtk.ICON_SIZE_DND•
gtk.ICON_SIZE_DIALOG•

or an integer value returned from the gtk.icon_size_register() function.

gtk.icon_size_lookup_for_settings

 def gtk.icon_size_lookup_for_settings(settings, icon_size)

settings : a gtk.Settings object used to determine which user preferences to use.
icon_size : an icon size
Returns :

PyGTK 2.0 Reference Manual

gtk.IconSource.get_direction 388

a 2−tuple containing the width and height of the specified icon_size or None if
icon_size was invalid.

Note

This function is available in PyGTK 2.4 and above.

The gtk.icon_size_lookup_for_settings() function returns a 2−tuple containing the width and
height of the icon size specified by icon_size of None if icon_size was not valid. The value of
icon_size must be one of:

gtk.ICON_SIZE_MENU•
gtk.ICON_SIZE_SMALL_TOOLBAR•
gtk.ICON_SIZE_LARGE_TOOLBAR•
gtk.ICON_SIZE_BUTTON•
gtk.ICON_SIZE_DND•
gtk.ICON_SIZE_DIALOG•

or an integer value returned from the gtk.icon_size_register() function.

gtk.icon_size_register

 def gtk.icon_size_register(name, width, height)

name : the name of the icon size
width : the width of the icon size
height : the height of the icon size
Returns : an integer representing the icon size
The gtk.icon_size_register() function registers a new icon size for the specified width and
height with the specified name and returns the integer used to represent the icon size.

gtk.icon_size_register_alias

 def gtk.icon_size_register_alias(alias, target)

alias : an alias for target
target : an integer representing an existing icon size
The gtk.icon_size_register_alias() function registers the specified alias as another name for
the icon size specified by target.

gtk.icon_size_from_name

 def gtk.icon_size_from_name(name)

name : a name of an existing icon size
Returns : the icon size associated with name
The gtk.icon_size_from_name() function returns the integer representing the icon size associated with
the specified name.

PyGTK 2.0 Reference Manual

gtk.icon_size_lookup_for_settings 389

gtk.icon_size_get_name

 def gtk.icon_size_get_name(size)

size : an integer representing an existing icon size
Returns : the name associated with the icon size represented by size
The gtk.icon_size_get_name() function returns the name of the icon size represented by size.

Prev Up Next
gtk.IconSet Home gtk.IconTheme

gtk.IconTheme
Prev The gtk Class Reference Next

gtk.IconTheme

gtk.IconTheme � look up icons by name and size (new in PyGTK 2.4)

Synopsis

class gtk.IconTheme(gobject.GObject):
gtk.IconTheme()

 def set_screen(screen)
 def set_search_path(path)
 def get_search_path()
 def append_search_path(path)
 def prepend_search_path(path)
 def set_custom_theme(theme_name)
 def has_icon(icon_name)
 def lookup_icon(icon_name, size, flags)
 def load_icon(icon_name, size, flags)
 def list_icons(context=None)
 def get_example_icon_name()
 def rescan_if_needed()
 def get_icon_sizes(icon_name)

Functions

 def gtk.icon_theme_get_default()
 def gtk.icon_theme_get_for_screen(screen)
 def gtk.icon_theme_add_builtin_icon(icon_name, size, pixbuf)

Ancestry

+−− gobject.GObject
 +−− gtk.IconTheme

Signal Prototypes

"changed" def callback(icontheme, user_param1, ...)

Description

PyGTK 2.0 Reference Manual

gtk.icon_size_get_name 390

Note

This object is available in PyGTK 2.4 and above.

gtk.IconTheme provides a facility for looking up icons by name and size. The main reason for using a
name rather than simply providing a filename is to allow different icons to be used depending on what icon
theme is selected by the user. The operation of icon themes on Linux and Unix follows the Icon Theme
Specification). There is a default icon theme, named "hicolor" where applications should install their icons,
but more additional application themes can be installed as operating system vendors and users choose.

Named icons are similar to the Themeable Stock Images facility (see gtk.IconFactory, gtk.IconSet
and gtk.IconSource for more detail), and the distinction between the two may be a bit confusing. A few
things to keep in mind:

Stock images usually are used in conjunction with Stock Items, such as gtk.STOCK_OK or
gtk.STOCK_OPEN. Named icons are easier to set up and therefore are more useful for new icons
that an application wants to add, such as application icons or window icons.

•

Stock images can only be loaded at the symbolic sizes defined by the standard icon sizes (see the
gtk.icon_size_lookup() function), or by custom sizes defined by the
gtk.icon_size_register() function, while named icons are more flexible and any pixel size
can be specified.

•

Because stock images are closely tied to stock items, and thus to actions in the user interface, stock
images may come in multiple variants for different widget states or writing directions.

•

A good rule of thumb is that if there is a stock image for what you want to use, use it, otherwise use a named
icon. It turns out that internally stock images are generally defined in terms of one or more named icons. (An
example is icons that depend on writing direction; gtk.STOCK_GO_FORWARD uses the two themed icons
"gtk−stock−go−forward−ltr" and "gtk−stock−go−forward−rtl".)

In many cases, named themes are used indirectly, via gtk.Image or stock items, rather than directly, but
looking up icons directly is also simple. The gtk.IconTheme object acts as a database of all the icons in
the current theme. You can create new gtk.IconTheme objects, but its much more efficient to use the
standard icon theme for the gtk.gdk.Screen so that the icon information is shared with other people
looking up icons. In the case where the default screen is being used, looking up an icon can be as simple as:

 icon_theme = gtk.icon_theme_get_default()
 try:
 pixbuf = icon_theme.load_icon("my−icon−name", 48, 0)
 except gobject.GError, exc:
 print "can't load icon", exc

Constructor

gtk.IconTheme()

Returns : the newly created gtk.IconTheme object.

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new icon theme object. Icon theme objects are used to lookup up an icon by name in a particular
icon theme. Usually, you'll want to use the gtk.icon_theme_get_default() or
gtk.icon_theme_get_for_screen() functions rather than creating a new icon theme object from
scratch.

PyGTK 2.0 Reference Manual

Note 391

http://www.freedesktop.org/Standards/icon-theme-spec
http://www.freedesktop.org/Standards/icon-theme-spec

Methods

gtk.IconTheme.set_screen

 def set_screen(screen)

screen : a gtk.gdk.Screen

Note

This method is available in PyGTK 2.4 and above.

The set_screen() method sets the gtk.gdk.Screen for an icon theme to screen. The screen is used
to track the user's currently configured icon theme, which might be different for different screens.

gtk.IconTheme.set_search_path

 def set_search_path(path)

path : a list or tuple of directories that are searched for icon themes

Note

This method is available in PyGTK 2.4 and above.

The set_search_path() method sets the search path for the icon theme object to the list of directory
names contained in path. When looking for an icon theme, GTK+ will search for a subdirectory of one or
more of the directories in path with the same name as the icon theme. (Themes from multiple of the path
elements are combined to allow themes to be extended by adding icons in the user's home directory.)

In addition if an icon found isn't found either in the current icon theme or the default icon theme, and an
image file with the right name is found directly in one of the elements of path, then that image will be used
for the icon name. (This is a legacy feature, and new icons should be put into the default icon theme, which is
called "hicolor", rather than directly on the icon path.)

gtk.IconTheme.get_search_path

 def get_search_path()

Returns : a tuple containing the list of directory names that are searched for icon themes

Note

This method is available in PyGTK 2.4 and above.

The get_search_path() method returns a tuple containing the current search path. See the
set_search_path() method for more details.

gtk.IconTheme.append_search_path

 def append_search_path(path)

path : a directory name to append to the icon path

PyGTK 2.0 Reference Manual

Methods 392

Note

This method is available in PyGTK 2.4 and above.

The append_search_path() method appends the directory name specified by path to the search path.
See the set_search_path() method for more information.

gtk.IconTheme.prepend_search_path

 def prepend_search_path(path)

path : a directory name to prepend to the icon path

Note

This method is available in PyGTK 2.4 and above.

The prepend_search_path() method prepends the directory name specified by path to the search path.
See the set_search_path() method for more information.

gtk.IconTheme.set_custom_theme

 def set_custom_theme(theme_name)

theme_name : the name of icon theme to use instead of the configured theme

Note

This method is available in PyGTK 2.4 and above.

The set_custom_theme() method sets the theme used by the icon theme object to the theme named by
theme_name usually replacing system configured theme. This method cannot be called on the icon theme
objects returned from the gtk.icon_theme_get_default() and
gtk.icon_theme_get_default() functions.

gtk.IconTheme.has_icon

 def has_icon(icon_name)

icon_name : the name of an icon
Returns : TRUE if the icon theme includes an icon for icon_name.

Note

This method is available in PyGTK 2.4 and above.

The has_icon() method checks whether the icon theme includes an icon for the icon name specified by
icon_name.

gtk.IconTheme.lookup_icon

 def lookup_icon(icon_name, size, flags)

icon_name : the name of the icon to lookup

PyGTK 2.0 Reference Manual

Note 393

size : the desired icon size
flags : the flags modifying the behavior of the icon lookup

Returns : a gtk.IconInfo object containing information about the icon, or None if the icon wasn't
found. Free with the gtk.IconInfo.free() method

Note

This method is available in PyGTK 2.4 and above.

The lookup_icon() method looks up the icon specified by icon_name, size and flags and returns a
gtk.IconInfo object containing information such as the filename of the icon. The icon can then be
rendered into a pixbuf using the gtk.IconInfo.load_icon() method. (the load_icon() method
combines these two steps if all you need is the pixbuf.)

The value of flags must be a combination of:

gtk.ICON_LOOKUP_NO_SVG
Never return Scalable Vector Graphics (SVG) icons, even if
gdk−pixbuf supports them. Cannot be used together with
gtk.ICON_LOOKUP_FORCE_SVG.

gtk.ICON_LOOKUP_FORCE_SVG
Return SVG icons, even if gdk−pixbuf doesn't support them. Cannot
be used together with gtk.ICON_LOOKUP_NO_SVG.

gtk.ICON_LOOKUP_USE_BUILTIN

When passed to the lookup_icon() method includes builtin icons
as well as files. For a builtin icon, the
gtk.IconInfo.get_filename() method returns None and
you need to call the get_builtin_pixbuf() method.

gtk.IconTheme.load_icon

 def load_icon(icon_name, size, flags)

icon_name :the name of the icon to lookup

size : the desired icon size. The resulting icon may not be exactly this size; see the
gtk.IconInfo.load_icon() method.

flags : the flags modifying the behavior of the icon lookup

Returns : a gtk.gdk.Pixbuf containing the rendered icon; this may be a newly created icon or a
new reference to an internal icon, so you must not modify the icon.

Note

This method is available in PyGTK 2.4 and above.

The load_icon() method looks up the icon specified by icon_name in an icon theme, scales it to the size
specified by size and renders it into a gtk.gdk.Pixbuf. flags is a combination of:
gtk.ICON_LOOKUP_FORCE_SVG, gtk.ICON_LOOKUP_NO_SVG and
gtk.ICON_LOOKUP_USE_BUILTIN (see the lookup_icon() method for more details). Since this is a
convenience function, if more details about the icon are needed, use the lookup_icon() method followed
by the GtkIconInfo.load_icon() method.

This method raise the GError exception if an error occurs during rendering of the icon.

PyGTK 2.0 Reference Manual

gtk.IconTheme.lookup_icon 394

gtk.IconTheme.list_icons

 def list_icons(context=None)

context : a string identifying a particular type of icon, or None to list all icons.
Returns : a tuple containing the names of all the icons in the theme.

Note

This method is available in PyGTK 2.4 and above.

The list_icons() method lists the icons in the current icon theme. Only a subset of the icons can be listed
by providing a string specified by context. The set of values for the context string is system dependent, but
will typically include such values as 'apps' and 'mimetypes'.

gtk.IconTheme.get_example_icon_name

 def get_example_icon_name()

Returns : the name of an example icon or None.

Note

This method is available in PyGTK 2.4 and above.

The get_example_icon_name() method returns the name of an icon that is representative of the current
theme (for instance, to use when presenting a list of themes to the user.)

gtk.IconTheme.rescan_if_needed

 def rescan_if_needed()

Returns : TRUE if the icon theme has changed and needed to be reloaded.

Note

This method is available in PyGTK 2.4 and above.

The rescan_if_needed() method checks to see if the icon theme has changed; if it has, any currently
cached information is discarded and will be reloaded next time the icon theme is accessed.

gtk.IconTheme.get_icon_sizes

 def get_icon_sizes(icon_name)

icon_name : the name of an icon
Returns : a tuple containing the sizes that the icon is available in.

Note

This method is available in PyGTK 2.6 and above.

The get_icon_sizes() method returns a tuple containing the sizes available for the icon named by
icon_name. A size of −1 means the icon is scalable. If the icon is not found an emty tuple is returned.

PyGTK 2.0 Reference Manual

gtk.IconTheme.list_icons 395

Functions

gtk.icon_theme_get_default

 def gtk.icon_theme_get_default()

Returns : A unique gtk.IconTheme associated with the default gtk.gdk.Screen. This icon
theme is associated with the screen and can be used as long as the screen is open.

Note

This function is available in PyGTK 2.4 and above.

The gtk.icon_them_get_default() function returns the icon theme for the default screen. See the
gtk.icon_theme_get_for_screen() function.

gtk.icon_theme_get_for_screen

 def gtk.icon_theme_get_for_screen(screen)

screen :a gtk.gdk.Screen object

Returns : A unique gtk.IconTheme associated with the default gtk.gdk.Screen. This icon theme is
associated with the screen and can be used as long as the screen is open.

Note

This function is available in PyGTK 2.4 and above.

The gtk.icon_theme_get_for_screen() function returns the icon theme object associated with the
gtk.gdk.Screen specified by screen. If this function has not previously been called for the given
screen, a new icon theme object will be created and associated with the screen. Icon theme objects are fairly
expensive to create, so using this function is usually a better choice than calling the gtk.IconTheme()
constructor and setting the screen yourself; by using this function a single icon theme object will be shared
between users.

gtk.icon_theme_add_builtin_icon

 def gtk.icon_theme_add_builtin_icon(icon_name, size, pixbuf)

icon_name : the name of the icon to register

size : the size at which to register the icon (different images can be registered for the same icon
name at different sizes.)

pixbuf : a gtk.gdk.Pixbuf that contains the image to use for icon_name.
Returns :

Note

This function is available in PyGTK 2.4 and above.

The gtk.icon_theme_add_builtin_icon() function registers a built−in icon for icon theme lookups
using icon_name as the icon name, size as the icon size and pixbuf as the icon image. The idea of
built−in icons is to allow an application or library that uses themed icons to function without requiring
specific icon files to be present in the file system. For instance, the default images for all of GTK+'s stock
icons are registered as built−icons.

PyGTK 2.0 Reference Manual

Functions 396

In general, if you use gtk.icon_theme_add_builtin_icon() you should also install the icon in the
icon theme, so that the icon is generally available. This function will generally be used with pixbufs loaded
via the gtk.gdk.pixbuf_new_from_inline() function.

Signals

The "changed" gtk.IconTheme Signal

 def callback(icontheme, user_param1, ...)

icontheme : the icontheme that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in PyGTK 2.4 and above.

The "changed" signal is emitted when the current icon theme is switched or GTK+ detects that a change has
occurred in the contents of the current icon theme.

Prev Up Next
gtk.IconSource Home gtk.IconView

gtk.IconView
Prev The gtk Class Reference Next

gtk.IconView

gtk.IconView � a widget which displays a list of icons in a grid (new in PyGTK 2.6)

Synopsis

class gtk.IconView(gtk.Container):
gtk.IconView(model=None)

 def set_model(model=None)
 def get_model()
 def set_text_column(column)
 def get_text_column()
 def set_markup_column(column)
 def get_markup_column()
 def set_pixbuf_column(column)
 def get_pixbuf_column()
 def get_path_at_pos(x, y)
 def selected_foreach(func, data)
 def set_selection_mode(mode)
 def get_selection_mode()
 def set_orientation(orientation)
 def get_orientation()
 def select_path(path)
 def unselect_path(path)
 def path_is_selected(path)
 def get_selected_items()
 def select_all()

PyGTK 2.0 Reference Manual

Note 397

 def unselect_all()
 def item_activated(path)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.IconView

Properties

"markup−column" Read−Write The number of the model column containing markup
information to be displayed. If this property and the
"text−column" property are both set to column
numbers, this overrides the text column. If both are
set to −1, no text is displayed. Allowed values: >=
−1. Default value: −1. Available in GTK+ 2.6 and
above.

"model" Read−Write The gtk.TreeModel for the icon view. Available
in GTK+ 2.6 and above.

"orientation" Read−Write How the text and icon of each item are positioned
relative to each other. Default value:
gtk.ORIENTATION_VERTICAL. Available in
GTK+ 2.6 and above.

"pixbuf−column" Read−Write The number of the model column containing the
pixbufs that are displayed. Setting this property to
−1 turns off the display of pixbufs. Allowed values:
>= −1. Default value: −1. Available in GTK+ 2.6
and above.

"selection−mode" Read−Write The selection mode of the icon view. If the mode is
gtk.SELECTION_MULTIPLE, rubberband
selection is enabled, for the other modes, only
keyboard selection is possible. Default value:
gtk.SELECTION_SINGLE. Available in GTK+
2.6 and above.

"text−column" Read−Write The number of the model column containing the text
that is displayed. If this property and the
"markup−column" property are both set to −1, no
text is displayed. Allowed values: >= −1. Default
value: −1. Available in GTK+ 2.6 and above.

Style Properties

"selection−box−alpha" Read The opacity of the selection box. Default value: 64. Available in GTK+ 2.6 and
above.

"selection−box−color" Read The color of the selection box. Available in GTK+ 2.6 and above.

PyGTK 2.0 Reference Manual

Synopsis 398

Signal Prototypes

"activate−cursor−item" def callback(iconview, user_param1, ...)

"item−activated" def callback(iconview, path, user_param1, ...)

"move−cursor" def callback(iconview, step, number, user_param1, ...)

"select−all" def callback(iconview, user_param1, ...)

"select−cursor−item" def callback(iconview, user_param1, ...)

"selection−changed" def callback(iconview, user_param1, ...)

"set−scroll−adjustments" def callback(iconview, hadj, vadj, user_param1, ...)

"toggle−cursor−item" def callback(iconview, user_param1, ...)

"unselect−all" def callback(iconview, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.6 and above.

The gtk.IconView widget provides an alternative view of a gtk.ListStore model. It displays the
model as a grid of icons with labels. Like gtk.TreeView, you can select one or multiple items (depending
on the selection mode, see the set_selection_mode() method for more information). In addition to
selection with the arrow keys, gtk.IconView supports rubberband selection, which is controlled by
dragging the pointer.

Constructor

gtk.IconView(model=None)

model : A gtk.TreeModel, or None
Returns : a new gtk.IconView widget.

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new gtk.IconView widget. If model is specified and not None it should specify a
gtk.TreeModel to be used as the model.

Methods

gtk.IconView.set_model

 def set_model(model=None)

model : a gtk.TreeModel or None

PyGTK 2.0 Reference Manual

Signal Prototypes 399

Note

This method is available in PyGTK 2.6 and above.

The set_model() method sets the "model" property to the gtk.TreeModel specified by model. If
model is None the old model will be unset.

gtk.IconView.get_model

 def get_model()

Returns : The gtk.TreeModel used by the cell view or None.

Note

This method is available in PyGTK 2.6 and above.

The get_model() method returns the value of the "model" property which contains the gtk.TreeModel
used by the cell view. If no model is being used this method returns None.

gtk.IconView.set_text_column

 def set_text_column(column)

column : The index of a column in the model or −1 to unset the column

Note

This method is available in PyGTK 2.6 and above.

The set_text_column() method sets the "text−column" property to the value of column which should
be the index of a column in the model containing strings to be used for text. If column is −1 the text column
is unset.

gtk.IconView.get_text_column

 def get_text_column()

Returns : The index of a model's column or −1 if unset.

Note

This method is available in PyGTK 2.6 and above.

The get_text_column() method returns the value of the "text−column" property which contains the index
of the column in the model that provides strings to be used for text. If the "text−column" property contains −1
then no column is used for text.

gtk.IconView.set_markup_column

 def set_markup_column(column)

column : The index of a column in the model or −1.

PyGTK 2.0 Reference Manual

Note 400

Note

This method is available in PyGTK 2.6 and above.

The set_markup_column() method sets the "markup−column" property to the value specified by
column. The "markup−column" property indicates the index of a column in the model to be used for markup
information. If column is −1 the markup column will be unset. If the markup column is set, it overrides the
text column set by the set_text_column() method.

gtk.IconView.get_markup_column

 def get_markup_column()

Returns : the index of the model column containing markup or −1.

Note

This method is available in PyGTK 2.6 and above.

The get_markup_column method returns the value of the "markup−column" property which contains the
index of the column in the model that contains the Pango markup for text. if the "markup−column" property is
−1, the markup column is unset.

gtk.IconView.set_pixbuf_column

 def set_pixbuf_column(column)

column : the index of a model column or −1

Note

This method is available in PyGTK 2.6 and above.

The set_pixbuf_column() method sets the "pixbuf−column" property to the value of column. If
column >= 0 the icon view gtk.gdk.Pixbuf objects will be retrieved from the specified column. If
column is −1 then no pixbufs will be used,

gtk.IconView.get_pixbuf_column

 def get_pixbuf_column()

Returns : The index of a column in the model or −1

Note

This method is available in PyGTK 2.6 and above.

The get_pixbuf_column() returns the value of the "pixbuf−column" property which contains the index
of the model column use to to retrieve gtk.gdk.Pixbuf objects to display. If the "pixbuf−column"
property is −1 no pixbufs will be retrieved.

PyGTK 2.0 Reference Manual

Note 401

gtk.IconView.get_path_at_pos

 def get_path_at_pos(x, y)

x : the x coordinate
y : the y coordinate
Returns : the path at the specified point or None.

Note

This method is available in PyGTK 2.6 and above.

The get_path_at_pos() method returns the model path of the icon located at the coordinates specified by
(x, y). This method return None if there is no icon at the specified location.

gtk.IconView.selected_foreach

 def selected_foreach(func, data)

func : a callback function or method.
data : User data to pass to func.

Note

This method is available in PyGTK 2.6 and above.

The selected_foreach() method calls the callback function or method specified by func for each
selected icon. The signature of func is:

 def func(iconview, path, user_data):

where iconview is the gtk.IconView, path is the tree path of the icon row and user_data is data.

gtk.IconView.set_selection_mode

 def set_selection_mode(mode)

mode : The selection mode.

Note

This method is available in PyGTK 2.6 and above.

The set_selection_mode() method sets the "selection−mode" property to the value of mode. mode
should be one of the GTK Selection Mode Constants.

gtk.IconView.get_selection_mode

 def get_selection_mode()

Returns : the selection mode.

Note

This method is available in PyGTK 2.6 and above.

PyGTK 2.0 Reference Manual

gtk.IconView.get_path_at_pos 402

The get_selection_mode() method returns the value of the "selection−mode" property which contains
one of the GTK Selection Mode Constants.

gtk.IconView.set_orientation

 def set_orientation(orientation)

orientation : the relative position of the icon and text.

Note

This method is available in PyGTK 2.6 and above.

The set_orientation() method sets the "orientation" property to the value of orientation.
orientation should contain one of the GTK Orientation Constants. The "orientation" property indicates
the relative positioning of the icon and text.

gtk.IconView.get_orientation

 def get_orientation(,)

Returns : the relative position of the icon and text.

Note

This method is available in PyGTK 2.6 and above.

The get_orientation() method returns the value of the "orientation" property that indicates the relative
position between the icon and text. See the set_orientation() method for more information.

gtk.IconView.select_path

 def select_path(path)

path : a path indicating the icon to be selected

Note

This method is available in PyGTK 2.6 and above.

The select_path method selects the icon with the tree path specified by path.

gtk.IconView.unselect_path

 def unselect_path(path)

path : a path indicating the icon to be unselected

Note

This method is available in PyGTK 2.6 and above.

The unselect_path method unselects the icon with the tree path specified by path.

PyGTK 2.0 Reference Manual

Note 403

gtk.IconView.path_is_selected

 def path_is_selected(path)

path : a path of an icon.
Returns : TRUE if path is selected.

Note

This method is available in PyGTK 2.6 and above.

The path_is_selected() method returns TRUE if the icon with the tree path specified by path is
selected.

gtk.IconView.get_selected_items

 def get_selected_items()

Returns : a list of the paths of the selected icons.

Note

This method is available in PyGTK 2.6 and above.

The get_selected_items() method returns a list of the paths of the selected icons.

gtk.IconView.select_all

 def select_all()

Note

This method is available in PyGTK 2.6 and above.

The select_all() method selects all the icons if the selection mode is set to
gtk.SELECTION_MULTIPLE.

gtk.IconView.unselect_all

 def unselect_all()

Note

This method is available in PyGTK 2.6 and above.

The unselect_all() method unselects all the icons.

gtk.IconView.item_activated

 def item_activated(path)

path : a tree path pointing to an icon row.

PyGTK 2.0 Reference Manual

gtk.IconView.path_is_selected 404

Note

This method is available in PyGTK 2.6 and above.

The item_activated() method activates the icon pointed to by the path specified by path.

Signals

The "activate−cursor−item" gtk.IconView Signal

 def callback(iconview, user_param1, ...)

iconview : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "activate−cursor−item" signal is emitted when an icon is selected and the Enter key is pressed.

The "item−activated" gtk.IconView Signal

 def callback(iconview, path, user_param1, ...)

iconview : the widget that received the signal
path : the path to the activated icon item.
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "item−activated" signal is emitted when an icon item is activated by the user double clicking an icon
item, pressing the Enter key when an icon item is selected or via a call to the item_activated() method.

The "move−cursor" gtk.IconView Signal

 def callback(iconview, step, number, user_param1, ...)

iconview : the widget that received the signal
step : the step size to move the cursor
number : the number of steps to move
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "move−cursor" signal is emitted when the cursor is moved using the keyboard keys: Up, Down,
Control−p, Control−n, Home, End, Page_Up, Page_Down, Right, Left with various Shift and Control
combinations. step will be one of the GTK Movement Step Constants.

The "select−all" gtk.IconView Signal

 def callback(iconview, user_param1, ...)

iconview : the widget that received the signal

PyGTK 2.0 Reference Manual

Note 405

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "select−all" signal is emitted when all icon items are selected by pressing Control−a.

The "select−cursor−item" gtk.IconView Signal

 def callback(iconview, user_param1, ...)

iconview : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "select−cursor−item" signal is emitted when the icon item at the cursor is selected by the user pressing the
Space key.

The "selection−changed" gtk.IconView Signal

 def callback(iconview, user_param1, ...)

iconview : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "selection−changed" signal is emitted when the selection is changed either by user action or program
method calls.

The "set−scroll−adjustments" gtk.IconView Signal

 def callback(iconview, hadj, vadj, user_param1, ...)

iconview : the widget that received the signal
hadj : the new horizontal gtk.Adjustment
vadj : the new vertical gtk.Adjustment
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "set−scroll−adjustments" signal is emitted when the new horizontal and veritcal scroll
gtk.Adjustment objects are set.

The "toggle−cursor−item" gtk.IconView Signal

 def callback(iconview, user_param1, ...)

iconview : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "toggle−cursor−item" signal is emitted when the user presses Control−Space.

The "unselect−all" gtk.IconView Signal

 def callback(iconview, user_param1, ...)

iconview : the widget that received the signal

PyGTK 2.0 Reference Manual

The "select−all" gtk.IconView Signal 406

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "unselect−all" signal is emitted when the user presses Control−Shift−a.

Prev Up Next
gtk.IconTheme Home gtk.Image

gtk.Image
Prev The gtk Class Reference Next

gtk.Image

gtk.Image � A widget displaying an image

Synopsis

class gtk.Image(gtk.Misc):
gtk.Image()

 def set_from_pixmap(pixmap, mask)
 def set_from_image(gdk_image, mask)
 def set_from_file(filename)
 def set_from_pixbuf(pixbuf)
 def set_from_stock(stock_id, size)
 def set_from_icon_set(icon_set, size)
 def set_from_animation(animation)
 def get_storage_type()
 def get_pixmap(pixmap, mask)
 def get_image(gdk_image, mask)
 def get_pixbuf()
 def get_stock(stock_id, size)
 def get_icon_set(icon_set, size)
 def get_animation()
 def get_icon_name()
 def set_from_icon_name(icon_name, size)
 def set_pixel_size(pixel_size)
 def get_pixel_size()

Functions

 def gtk.image_new_from_stock(stock_id, size)
 def gtk.image_new_from_icon_set(icon_set, size)
 def gtk.image_new_from_animation(animation)
 def gtk.image_new_from_icon_name(icon_name, size)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Misc
 +−− gtk.Image

Properties

PyGTK 2.0 Reference Manual

The "unselect−all" gtk.IconView Signal 407

"file" Write A filename containing the image data. Default value: None
"icon−name" Read−Write The name of the icon in the icon theme. If the icon theme is changed, the

image will be updated automatically. Default value: None. Available in
GTK 2.6 and above.

"icon−set" Read−Write the gtk.IconSet to display
"icon−size" Read−Write the size to use for a stock icon, named icon or icon set. Allowed values: >=

0. Default value: 4
"image" Read−Write a gtk.gdk.Image to display
"mask" Read−Write a bitmap gtk.gdk.Pixmap to use with a gtk.gdk.Image or a

gtk.gdk.Pixmap

"pixbuf" Read−Write the gtk.gdk.Pixbuf to display
"pixbuf−animation" Read−Write the gtk.gdk.PixbufAnimation to display
"pixel−size" Read−Write a fixed size overriding the "icon−size" property for images of type

gtk.IMAGE_ICON_NAME. Allowed values: >= −1. Default value: −1.
Available in GTK+ 2.6 and above.

"pixmap" Read−Write a gtk.gdk.Pixmap to display
"stock" Read−Write the stock ID for a stock image to display. Default value: None
"storage−type" Read the type of the image data; one of the GTK Image Type Constants:

gtk.IMAGE_EMPTY, gtk.IMAGE_PIXMAP, gtk.IMAGE_IMAGE,
gtk.IMAGE_PIXBUF, gtk.IMAGE_STOCK,
gtk.IMAGE_ICON_SET or gtk.IMAGE_ANIMATION

Description

The gtk.Image widget displays an image. Various kinds of objects can be displayed as an image; usually,
you would load a gtk.gdk.Pixbuf ("pixel buffer") from a file, and then display it. The convenience
method set_from_file() will read the file and automatically create a pixbuf that is added to the
gtk.Image widget. If the file isn't loaded successfully, the image will contain a "broken image" icon similar
to that used in many web browsers. If you want to handle errors in loading the file yourself, for example by
displaying an error message, then load the image with gtk.gdk.pixbuf_new_from_file(), then add it
to the gtk.Image with the set_from_pixbuf() method. The image file may contain an animation; if so,
the gtk.Image will display an animation (gtk.gdk.PixbufAnimation) instead of a static image.

gtk.Image is a subclass of gtk.Misc, which implies that you can align it (center, left, right) and add
padding to it, using the gtk.Misc methods. gtk.Image is a "no window" widget (has no
gtk.gdk.Window of its own), so by default does not receive events. If you want to receive events on the
image, such as button clicks, place the image inside a gtk.EventBox, then connect to the event signals on
the event box.

When handling events on the event box, keep in mind that coordinates in the image may be different from
event box coordinates due to the alignment and padding settings on the image (see gtk.Misc). The simplest
way to solve this is to set the alignment to 0.0 (left/top), and set the padding to zero. Then the origin of the
image will be the same as the origin of the event box.

Sometimes an application will want to avoid depending on external data files, such as image files. GTK+
comes with a program to avoid this, called gdk−pixbuf−csource. This program allows you to convert an
image into a C variable declaration, which can then be loaded into a gtk.gdk.Pixbuf using the
gtk.gdk.pixbuf_new_from_inline() function. This can also be used in PyGTK by modifying the
output using an editor or the sed command as follows:

 gdk−pixbuf−csource imagefile | \

PyGTK 2.0 Reference Manual

Properties 408

 sed −n −e 's/{/[/' −e 's/};/]/' −e '/".*"/p' >outfile

You can edit outfile into a Python file where it will be evaluated to a list containing a string. The string
can be used directly with the gtk.gdk.pixbuf_new_from_inline() function to create a pixbuf that
can be used in a gtk.Image.

Constructor

gtk.Image()

Returns : a newly created gtk.Image widget.
Creates a new empty gtk.Image widget.

Methods

gtk.Image.set_from_pixmap

 def set_from_pixmap(pixmap, mask)

pixmap : a gtk.gdk.Pixmap
mask : a bitmap gtk.gdk.Pixmap or None
The set_from_pixmap() method sets the image data from pixmap using mask.

gtk.Image.set_from_image

 def set_from_image(gdk_image, mask)

gdk_image : a gtk.gdk.Image or None
mask : a bitmap gtk.gdk.Pixmap or None
The set_from_image() method sets the image data from image using mask. A gtk.gdk.Image is a
client−side image buffer in the pixel format of the current display. If image is None the current image data
will be removed.

gtk.Image.set_from_file

 def set_from_file(filename)

filename : a filename or None
The set_from_file() method sets the image data from the contents of the file named filename. If the
file isn't found or can't be loaded, the resulting gtk.Image will display a "broken image" icon. This function
never returns None, it always returns a valid gtk.Image widget. If the file contains an animation, the image
will contain an animation. If filename is None the current image data will be removed.

If you need to detect failures to load the file, use gtk.gdk.pixbuf_new_from_file() to load the file
yourself, then create the gtk.Image from the pixbuf. (Or for animations, use the gtk.gdk.PixbufAnimation()
constructor.

PyGTK 2.0 Reference Manual

Description 409

gtk.Image.set_from_pixbuf

 def set_from_pixbuf(pixbuf)

pixbuf : a gtk.gdk.Pixbuf or None
The set_from_pixbuf() method sets the image data using pixbuf. Note that this function just creates an
gtk.Image from pixbuf. The gtk.Image created will not react to state changes. Should you want that,
you should use the set_from_icon_set() method If pixbuf is None the current image data will be
removed.

gtk.Image.set_from_stock

 def set_from_stock(stock_id, size)

stock_id : a stock icon name
size : a stock icon size
The set_from_stock() method sets the image data from the stock item identified by stock_id. Sample
stock icon names are gtk.STOCK_OPEN and gtk.STOCK_OK. Stock icon sizes are
gtk.ICON_SIZE_MENU, gtk.ICON_SIZE_SMALL_TOOLBAR,
gtk.ICON_SIZE_LARGE_TOOLBAR, gtk.ICON_SIZE_BUTTON, gtk.ICON_SIZE_DND and
gtk.ICON_SIZE_DIALOG. If the stock icon name isn't known, a "broken image" icon will be displayed
instead. You can register your own stock icon names, see the gtk.IconFactory.add_default() and
gtk.IconFactory.add() methods.

The stock icons are described in the Stock Items reference.

gtk.Image.set_from_icon_set

 def set_from_icon_set(icon_set, size)

icon_set : a gtk.IconSet
size : a stock icon size
The set_from_icon_set() method sets the image data from icon_set with the size specified by size.
Stock icon sizes are gtk.ICON_SIZE_MENU, gtk.ICON_SIZE_SMALL_TOOLBAR,
gtk.ICON_SIZE_LARGE_TOOLBAR, gtk.ICON_SIZE_BUTTON, gtk.ICON_SIZE_DND and
gtk.ICON_SIZE_DIALOG.

gtk.Image.set_from_animation

 def set_from_animation(animation)

animation : the gtk.gdk.PixbufAnimation
The set_from_animation() method sets the image data from animation.

gtk.Image.get_storage_type

 def get_storage_type()

Returns : the type of the image representation being used
The get_storage_type() method gets the type of representation being used by the gtk.Image to store
image data. If the gtk.Image has no image data, the return value will be gtk.IMAGE_EMPTY. The image
type is one of: gtk.IMAGE_EMPTY, gtk.IMAGE_PIXMAP, gtk.IMAGE_IMAGE,
gtk.IMAGE_PIXBUF, gtk.IMAGE_STOCK, gtk.IMAGE_ICON_SET or gtk.IMAGE_ANIMATION.

PyGTK 2.0 Reference Manual

gtk.Image.set_from_pixbuf 410

gtk.Image.get_pixmap

 def get_pixmap()

Returns : a tuple containing the pixmap (or None) and the mask (or None)
The get_pixmap() method returns a tuple containing the pixmap and mask being displayed by the
gtk.Image. Either or both the pixmap and mask may be None. If the storage type of the image is not either
gtk.IMAGE_EMPTY or gtk.IMAGE_PIXMAP the ValueError exception will be raised.

gtk.Image.get_image

 def get_image()

Returns : a tuple containing a gtk.gdk.Image and a mask bitmap
The get_image() method returns a tuple containing the gtk.gdk.Image and mask being displayed by
the gtk.Image. One or both of the gtk.gdk.Image and mask may be None. If the storage type of the
image is not either of gtk.IMAGE_EMPTY or gtk.IMAGE_IMAGE the ValueError exception will be
raised.

gtk.Image.get_pixbuf

 def get_pixbuf()

Returns : the displayed pixbuf, or None if the image is empty
The get_pixbuf() method gets the gtk.gdk.Pixbuf being displayed by the gtk.Image. The return
value may be None if no image data is set. If the storage type of the image is not either gtk.IMAGE_EMPTY
or gtk.IMAGE_PIXBUF the ValueError exception will be raised.

gtk.Image.get_stock

 def get_stock()

Returns : a tuple containing the stock icon name and the stock icon size of the image data
The get_stock() method returns a tuple containing the stock icon identifier (may be None) and size being
displayed by the gtk.Image. The size will be one of: gtk.ICON_SIZE_MENU,
gtk.ICON_SIZE_SMALL_TOOLBAR, gtk.ICON_SIZE_LARGE_TOOLBAR,
gtk.ICON_SIZE_BUTTON, gtk.ICON_SIZE_DND or gtk.ICON_SIZE_DIALOG. If the storage type
of the image is not either gtk.IMAGE_EMPTY or gtk.IMAGE_STOCK the ValueError exception will be
raised.

gtk.Image.get_icon_set

 def get_icon_set()

Returns : a tuple containing a gtk.IconSet and a stock icon size
The get_icon_set() method returns a tuple containing the icon set (may be None) and size being
displayed by the gtk.Image. The size will be one of: gtk.ICON_SIZE_MENU,
gtk.ICON_SIZE_SMALL_TOOLBAR, gtk.ICON_SIZE_LARGE_TOOLBAR,
gtk.ICON_SIZE_BUTTON, gtk.ICON_SIZE_DND or gtk.ICON_SIZE_DIALOG. If the storage type
of the image is not either gtk.IMAGE_EMPTY or gtk.IMAGE_ICON_SET the ValueError exception will
be raised.

PyGTK 2.0 Reference Manual

gtk.Image.get_pixmap 411

gtk.Image.get_animation

 def get_animation()

Returns : the displayed animation, or None if the image is empty
The get_animation() method gets the gtk.gdk.PixbufAnimation (may be None if there is no
image data) being displayed by the gtk.Image. If the storage type of the image is not either
gtk.IMAGE_EMPTY or gtk.IMAGE_ANIMATION the ValueError exception will be raised.

gtk.Image.get_icon_name

 def get_icon_name()

Returns : a 2−tuple containing the name and size of the displayed icon.

Note

This method is available in PyGTK 2.6 and above.

The get_icon_name() method returns a 2−tuple containing the values of the "icon−name" and "icon−size"
properties respectively if the "icon−name" property is not None. If the "icon−name" property is None the
2−tuple returned will be:

 (None, <enum GTK_ICON_SIZE_INVALID of type GtkIconSize>)

gtk.Image.set_from_icon_name

 def set_from_icon_name(icon_name, size)

icon_name : an icon name
size : a stock icon size

Note

This method is available in PyGTK 2.6 and above.

The set_from_icon_name() method sets the "icon−name" and "icon−size" properties to the values of
icon_name and size respectively. icon_name should be the name of an icon in the current icon theme.
If icon_name isn't known, a "broken image" icon will be displayed instead. If the current icon theme is
changed, the icon will be updated appropriately.

gtk.Image.set_pixel_size

 def set_pixel_size(pixel_size)

pixel_size : the new pixel size to be used for named icons

Note

This method is available in PyGTK 2.6 and above.

The set_pixel_size() method sets the "pixel−size" property to the value specified by pixel_size. If
the pixel size is set to a value != −1 the "pixel−size" property is used instead of the icon size set by the
set_from_icon_name() method.

PyGTK 2.0 Reference Manual

gtk.Image.get_animation 412

gtk.Image.get_pixel_size

 def get_pixel_size()

Returns : the pixel size used for named icons.

Note

This method is available in PyGTK 2.6 and above.

The get_pixel_size() method returns the value of the "pixel−size" property which specifies the pixel
size to be used for named icons.

Functions

gtk.image_new_from_stock

 def gtk.image_new_from_stock(stock_id, size)

stock_id : a stock icon name
size : an integer representing an icon size
Returns : a new gtk.Image displaying the stock icon
The gtk.image_new_from_stock() function returns a new gtk.Image displaying the stock icon
specified by stock_id with the specified size. Sample stock icon names are gtk.STOCK_OPEN,
gtk.STOCK_OK − see the set_from_stock() method for detailed information on the PyGTK stock
icons. . Sample stock sizes are gtk.ICON_SIZE_MENU, gtk.ICON_SIZE_SMALL_TOOLBAR − see the
gtk.icon_size_lookup() function for more detail. If the stock icon name isn't known, a "broken image"
icon will be displayed instead. You can register your own stock icon names, see the
gtk.IconFactory.add_default() and gtk.IconFactory.add() methods.

gtk.image_new_from_icon_set

 def gtk.image_new_from_icon_set(icon_set, size)

icon_set : a gtk.IconSet object
size : an integer representing an icon size
Returns : a new gtk.Image object
The gtk.image_new_from_icon_set() function returns a new gtk.Image created from the
gtk.IconSet specified by icon_set with the specified size. Sample stock sizes are
gtk.ICON_SIZE_MENU, gtk.ICON_SIZE_SMALL_TOOLBAR − see the gtk.icon_size_lookup()
function for more detail. Instead of using this function, usually it's better to create a gtk.IconFactory,
put your icon sets in the icon factory, add the icon factory to the list of default factories with the
add_default() method, and then use the gtk.image_new_from_stock() function. This will allow
themes to override the icon you ship with your application.

gtk.image_new_from_animation

 def gtk.image_new_from_animation(animation)

animation : a gtk.gdk.PixbufAnimation object
Returns : a new gtk.Image object

PyGTK 2.0 Reference Manual

gtk.Image.get_pixel_size 413

The gtk.image_new_from_animation() function returns a new gtk.Image object containing the
gtk.gdk.PixbufAnimation specified by animation.

gtk.image_new_from_icon_name

 def gtk.image_new_from_icon_name(icon_name, size)

icon_name : an icon name
size : a stock icon size
Returns : a new gtk.Image widget.

Note

This function is available in PyGTK 2.6 and above.

The gtk.image_new_from_icon_name() function returns a new gtk.Image object displaying the
named theme icon specified by icon_name with the icon size specified by size. If the icon name isn't
known, a "broken image" icon will be displayed instead. If the current icon theme is changed, the icon will be
updated appropriately. The "icon−name" and "icon−size" properties are also set by this function.

Prev Up Next
gtk.IconView Home gtk.ImageMenuItem

gtk.ImageMenuItem
Prev The gtk Class Reference Next

gtk.ImageMenuItem

gtk.ImageMenuItem � a menuitem that displays an image with an accel label

Synopsis

class gtk.ImageMenuItem(gtk.MenuItem):
gtk.ImageMenuItem(stock_id=None, accel_group=None)

 def set_image(image)
 def get_image()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Item
 +−− gtk.MenuItem
 +−− gtk.ImageMenuItem

Properties

"image" Read−Write the child widget that is next to the text in the menu item

PyGTK 2.0 Reference Manual

gtk.image_new_from_animation 414

Description

The gtk.ImageMenuItem widget is a subclass of gtk.MenuItem that contains an image widget and a
gtk.AccelLabel though a gtk.ImageMenuItem can be created that has no image and an empty label.

Constructor

gtk.ImageMenuItem(stock_id=None, accel_group=None)

stock_id : the stock icon ID or None if no image is needed
accel_group : the accel group to add the accel label mnemonic to
Returns : a new gtk.ImageMenuItem widget
Creates a new gtk.ImageMenuItem with a stock label and image specified by stock_id. If stock_id
is not a stock item then the image will be the "broken image" and the label text will be the string in
stock_id. The label text will be parsed for underscore characters to indicate the mnemonic character for the
accelerator.

If stock_id specifies a stock item and accel_group specifies a gtk.AccelGroup the accelerator is
added to accel_group.

Methods

gtk.ImageMenuItem.set_image

 def set_image(image)

image : a widget to set as the image for the menu item.
The set_image() method sets the image of the image menu item to the widget specified in image.

gtk.ImageMenuItem.get_image

 def get_image()

Returns : the image in the image menu item
The get_image() method gets the widget that is currently set as the image of image menu item. See
set_image().

Prev Up Next
gtk.Image Home gtk.IMContext

gtk.IMContext
Prev The gtk Class Reference Next

gtk.IMContext

gtk.IMContext � an abstract base class defining a generic input method interface

PyGTK 2.0 Reference Manual

Description 415

Synopsis

class gtk.IMContext(gtk.Object):
 def set_client_window(window)
 def get_preedit_string()
 def filter_keypress(key)
 def focus_in()
 def focus_out()
 def reset()
 def set_cursor_location(area)
 def set_use_preedit(use_preedit)
 def set_surrounding(text, len, cursor_index)
 def get_surrounding()
 def delete_surrounding(offset, n_chars)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.IMContext

Signal Prototypes

"commit" def callback(imcontext, string, user_param1, ...)

"delete−surrounding" def callback(imcontext, offset, n_chars, user_param1,
...)

"preedit−changed" def callback(imcontext, user_param1, ...)

"preedit−end" def callback(imcontext, user_param1, ...)

"preedit−start" def callback(imcontext, user_param1, ...)

"retrieve−surrounding" def callback(imcontext, user_param1, ...)

Description

The gtk.IMContext is an abstract base class used to provide objects to manage the context for input
methods used to support text input in various natural languages. The character input for some languages (e.g.
Chinese, Japanese and Korean) cannot be easily input using standard keyboards so multiple keystrokes are
used to input a single character. Input methods are used to help this process by providing feedback of the
characters input and managing the context and valid combinations. Thegtk.IMContext subclasses manage
the required context information for applications and widgets such as the gtk.Entry and gtk.TextView
widgets.

The gtk.IMContext manages the context of the text surrounding the cursor and the preedit text that
provides feedback about the in−process multiple character composition.

Methods

gtk.IMContext.set_client_window

 def set_client_window(window)

window : the client window. This may be None to indicate that the previous client window no longer exists.

PyGTK 2.0 Reference Manual

Synopsis 416

The set_client_window() method set the client window for the input context; this is the
gtk.gdk.Window in which the input appears. This window is used in order to correctly position status
windows, and may also be used for purposes internal to the input method.

gtk.IMContext.get_preedit_string

 def get_preedit_string()

Returns : a tuple containing the preedit string, the attribute list and the position of cursor (in bytes)
within the preedit string.

The get_preedit_string() method returns a tuple containing: the current preedit string for the input
context, a list of attributes to apply to the string and the cursor position within the string. This string should be
displayed inserted at the insertion point.

gtk.IMContext.filter_keypress

 def filter_keypress(event)

key : the key event
Returns : TRUE if the input method handled the keystroke.
The filter_keypress() method allows an input method to internally handle a key press event. If this
function returns TRUE, then no further processing should be done for this keystroke.

gtk.IMContext.focus_in

 def focus_in()

The focus_in() method notifies the input method that the widget to which this input context corresponds
has gained focus. The input method may, for example, change the displayed feedback to reflect this change.

gtk.IMContext.focus_out

 def focus_out()

The focus_out() method notifies the input method that the widget to which this input context corresponds
has lost focus. The input method may, for example, change the displayed feedback or reset the context state to
reflect this change.

gtk.IMContext.reset

 def reset()

The reset() method notifies the input method that a significant change in context (such as a change in cursor
position) has been made. This will typically cause the input method to clear the preedit state.

gtk.IMContext.set_cursor_location

 def set_cursor_location(area)

area : new location
The set_cursor_location() method notifies the input method that a change in cursor position has been
made.

PyGTK 2.0 Reference Manual

gtk.IMContext.set_client_window 417

gtk.IMContext.set_use_preedit

 def set_use_preedit(use_preedit)

use_preedit : if TRUE the IM context should use the preedit string.
The set_use_preedit() method sets the use preedit setting to the value of use_preedit. If
use_preedit is TRUE (the default) the IM context should use the preedit string to display feedback. If
use_preedit is FALSE the IM context may use some other method to display feedback, such as displaying
it in a child of the root window.

gtk.IMContext.set_surrounding

 def set_surrounding(text, len, cursor_index)

text : the text surrounding the insertion point, as UTF−8. the preedit string should not be
included within it.

len : the length of text, or −1 to calculate the length of text.
cursor_index : the byte index of the insertion cursor within text.
The set_surrounding() method sets surrounding context around the insertion point and preedit string.
This function is expected to be called in response to the "retrieve_surrounding" signal, and will likely have no
effect if called at other times.

gtk.IMContext.get_surrounding

 def get_surrounding()

Returns :
a tuple containing the UTF−8 encoded string of text holding context around the insertion point and
the byte index of the insertion cursor within the string, or None if no surrounding context was
retrieved.

The get_surrounding() method returns a tuple containing the text surrounding the cursor and the byte
index of the cursor within the text. Input methods typically want context in order to constrain input text based
on existing text; this is important for languages such as Thai where only some sequences of characters are
allowed.

This function is implemented by emitting the "retrieve_surrounding" signal on the input method; in response
to this signal, a widget should provide as much context as is available, up to an entire paragraph, by calling
set_surrounding(). Note that there is no obligation for a widget to respond to the "retrieve_surrounding"
signal, so input methods must be prepared to function without context.

gtk.IMContext.delete_surrounding

 def delete_surrounding(offset, n_chars)

offset : the offset from cursor position in chars; a negative value means start before the cursor.
n_chars : the number of characters to delete.
Returns : TRUE if the signal was handled.
The delete_surrounding() method asks the widget that the input context is attached to to delete characters
around the cursor position by emitting the "delete_surrounding" signal. Note that offset and n_chars are
in characters not in bytes, which differs from the usage other places in the gtk.IMContext class.

In order to use this function, you should first call get_surrounding() to get the current context, and call
this function immediately afterward to make sure that you know what you are deleting. You should also
account for the fact that even if the signal was handled, the input context might not have deleted all the

PyGTK 2.0 Reference Manual

gtk.IMContext.set_use_preedit 418

characters that were requested to be deleted.

This function is used by an input method that wants to make substitutions in the existing text in response to
new input. It is not useful for applications.

Signals

The "commit" gtk.IMContext Signal

 def callback(imcontext, string, user_param1, ...)

imcontext : the imcontext that received the signal
string : the text to be committed
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "commit" signal is emitted when the text is ready to be displayed.

The "delete−surrounding" gtk.IMContext Signal

 def callback(imcontext, user_param1, ...)

imcontext : the imcontext that received the signal
offset : the offset from the cursor position of the text to be deleted
n_chars : the number of characters to be deleted
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "delete−surrounding" signal is emitted when the input method needs to delete the context text.

The "preedit−changed" gtk.IMContext Signal

 def callback(imcontext, user_param1, ...)

imcontext : the imcontext that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "preedit−changed" signal is emitted when the preedit text has changed.

The "preedit−end" gtk.IMContext Signal

 def callback(imcontext, user_param1, ...)

imcontext : the imcontext that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "preedit−end" signal is emitted when preediting is completed.

PyGTK 2.0 Reference Manual

gtk.IMContext.delete_surrounding 419

The "preedit−start" gtk.IMContext Signal

 def callback(imcontext, user_param1, ...)

imcontext : the imcontext that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "preedit−start" signal is emitted when preediting is started.

The "retrieve−surrounding" gtk.IMContext Signal

 def callback(imcontext, user_param1, ...)

imcontext : the imcontext that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "retrieve−surrounding" signal is emitted when the input method requires the context surrounding the
cursor. The callback should set the input method surrounding context by calling the set_surrounding()
method. The method returns TRUE if the signal was handled by the callback.

Prev Up Next
gtk.ImageMenuItem Home gtk.IMContextSimple

gtk.IMContextSimple
Prev The gtk Class Reference Next

gtk.IMContextSimple

gtk.IMContextSimple � an input method context object that supports "simple" input methods

Synopsis

class gtk.IMContextSimple(gtk.IMContext):
gtk.IMContextSimple()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.IMContext
 +−− gtk.IMContextSimple

Description

The gtk.IMContextSimple class is a subclass of gtk.IMContext that provides context support for
"simple" input methods. gtk.IMContextSimple does direct keysym to unicode translation and
table−driven composition.

PyGTK 2.0 Reference Manual

The "preedit−start" gtk.IMContext Signal 420

Constructor

gtk.IMContextSimple()

Returns : a new gtk.IMContextSimple.
Creates a new gtk.IMContextSimple object.

Methods

Prev Up Next
gtk.IMContext Home gtk.IMMulticontext

gtk.IMMulticontext
Prev The gtk Class Reference Next

gtk.IMMulticontext

gtk.IMMulticontext � an input method context object that manages the use of multiple input method contexts
for a widget

Synopsis

class gtk.IMMulticontext(gtk.IMContext):
gtk.IMMulticontext()

 def append_menuitems(menushell)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.IMContext
 +−− gtk.IMMulticontext

Description

The gtk.IMMulticontext class is a subclass of gtk.IMContext that manages the use of multiple
input method contexts for a widget including the ability to switch between contexts on the fly. A
gtk.IMMulticontext object will proxy the method calls and signals to and from the object
implementing the input method.

Constructor

gtk.IMMulticontext()

Returns : a new gtk.IMMulticontext object.
Creates a new gtk.IMMulticontext object.

PyGTK 2.0 Reference Manual

Constructor 421

Methods

gtk.IMMulticontext.append_menuitems

 def append_menuitems(menushell)

menushell : a gtk.MenuShell widget
The append_menuitems() method adds menuitems for various available input methods to a menu; the
menuitems, when selected, will switch the input method for the context and the global default input method.

Prev Up Next
gtk.IMContextSimple Home gtk.InputDialog

gtk.InputDialog
Prev The gtk Class Reference Next

gtk.InputDialog

gtk.InputDialog � a dialog for configuring devices for the XInput extension.

Synopsis

class gtk.InputDialog(gtk.Dialog):
gtk.InputDialog()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Dialog
 +−− gtk.InputDialog

Signal Prototypes

"disable−device" def callback(inputdialog, deviceid, user_param1, ...)

"enable−device" def callback(inputdialog, deviceid, user_param1, ...)

Description

Note

This widget is considered too specialized or little−used for PyGTK, and will in the future be moved to some
other package. If your application needs this widget, feel free to use it, as the widget does work and is useful
in some applications; it's just not of general interest. However, it will eventually move out of the PyGTK
distribution.

PyGTK 2.0 Reference Manual

Methods 422

gtk.InputDialog displays a dialog which allows the user to configure XInput extension devices. For
each device, they can control the mode of the device (disabled, screen−relative, or window−relative), the
mapping of axes to coordinates, and the mapping of the devices macro keys to key press events.
gtk.InputDialog contains two buttons to which the application can connect; one for closing the dialog,
and one for saving the changes. No actions are bound to these by default. The changes that the user makes
take effect immediately.

Constructor

gtk.InputDialog()

Returns : a new gtk.InputDialog widget
Creates a new gtk.InputDialog.

Signals

The "disable−device" gtk.InputDialog Signal

 def callback(inputdialog, deviceid, user_param1, ...)

inputdialog : the inputdialog that received the signal
deviceid : the ID of the newly disabled device.
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "disable−device" signal is emitted when the user changes the mode of a device from a
gtk.gdk.MODE_SCREEN or gtk.gdk.MODE_WINDOW to gtk.gdk.MODE_ENABLED.

The "enable−device" gtk.InputDialog Signal

 def callback(inputdialog, deviceid, user_param1, ...)

inputdialog : the inputdialog that received the signal
deviceid : the ID of the newly disabled device.
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "enable−device" signal is emitted when the user changes the mode of a device from
gtk.gdk.MODE_DISABLED to a gtk.gdk.MODE_SCREEN or gtk.gdk.MODE_WINDOW.

Prev Up Next
gtk.IMMulticontext Home gtk.Invisible

gtk.Invisible
Prev The gtk Class Reference Next

gtk.Invisible

gtk.Invisible � internally−used widget which is not displayed.

PyGTK 2.0 Reference Manual

Note 423

Synopsis

class gtk.Invisible(gtk.Widget):
gtk.Invisible()

 def set_screen(screen)
 def get_screen()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Invisible

Properties

"screen" Read−Write The screen where this window will be displayed.

Description

The gtk.Invisible widget is used internally in GTK, and is probably not useful for application
developers. It is used for reliable pointer grabs and selection handling in the code for drag−and−drop.

Constructor

gtk.Invisible()

Returns : a new gtk.Invisible widget
Creates a new gtk.Invisible widget.

Methods

gtk.Invisible.set_screen

 def set_screen(screen)

screen : a gtk.gdk.Screen object

Note

This method is available in PyGTK 2.2 and above.

The set_screen() method sets the gtk.gdk.Screen (specified by screen) where the
gtk.Invisible object will be displayed.

gtk.Invisible.get_screen

 def get_screen()

Returns :, :, the associated gtk.gdk.Screen

PyGTK 2.0 Reference Manual

Synopsis 424

Note

This method is available in PyGTK 2.2 and above.

The get_screen() method returns the associated gtk.gdk.Screen object.

Prev Up Next
gtk.InputDialog Home gtk.Item

gtk.Item
Prev The gtk Class Reference Next

gtk.Item

gtk.Item � abstract base class for gtk.MenuItem

Synopsis

class gtk.Item(gtk.Bin):
 def select()
 def deselect()
 def toggle()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Item

Signal Prototypes

"deselect" def callback(item, user_param1, ...)

"select" def callback(item, user_param1, ...)

"toggle" def callback(item, user_param1, ...)

Description

The gtk.Item widget is an abstract base class for gtk.MenuItem.

Methods

gtk.Item.select

 def select()

The select() method emits the "select" signal on the item.

PyGTK 2.0 Reference Manual

Note 425

gtk.Item.deselect

 def deselect()

The deselect() method emits the "deselect" signal on the item.

gtk.Item.toggle

 def toggle()

The toggle() method emits the "toggle" signal on the item.

Signals

The "deselect" gtk.Item Signal

 def callback(item, user_param1, ...)

item : the item that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "deselect" signal is emitted when the item is deselected.

The "select" gtk.Item Signal

 def callback(item, user_param1, ...)

item : the item that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "select" signal is emitted when the item is selected.

The "toggle" gtk.Item Signal

 def callback(item, user_param1, ...)

item : the item that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "toggle" signal is emitted when the item is toggled.

Prev Up Next
gtk.Invisible Home gtk.ItemFactory

gtk.ItemFactory
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

gtk.Item.deselect 426

gtk.ItemFactory

gtk.ItemFactory � creates menus, menubars and option menus from a data description.

Synopsis

class gtk.ItemFactory(gtk.Object):
gtk.ItemFactory(container_type, path, accel_group=None)

 def construct(container_type, path, accel_group)
 def get_item(path)
 def get_widget(path)
 def get_widget_by_action(action)
 def get_item_by_action(action)
 def create_items(entries, callback_data=None)
 def delete_item(path)
 def popup(x, y, mouse_button, time=GDK_CURRENT_TIME)

Functions

 def gtk.item_factory_from_widget(widget)
 def gtk.item_factory_path_from_widget(widget)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.ItemFactory

Description

Warning

gtk.ItemFactory is deprecated in PyGTK 2.4 and above. The gtk.UIManager should be used
instead.

The gtk.ItemFactory provides a convenient way to create and manage menus, menubars and option
menus from a data description. The data description is a tuple or list containing a list of entry tuples that each
describe an individual menu, menuitem, etc. Each entry tuple may contain the following entry fields though
only the path must be specified; the other fields are optional:

A path that defines the logical position of the menu or menuitem in the menu hierarchy. a path is
similar to a file path in that it starts with a slash (/) character and all components are joined by a slash
(/) character. The last component may have an underscore that indicates that the following character is
to be used as the accelerator mnemonic.

•

An accelerator that defines a key sequence that will activate the menuitem. The key sequence is a set
of zero or more modifiers followed by a single key. The modifier keys are:

"<alt>" Alt−Lor Alt−R
"<ctl>", "<ctrl>", "<control>", Ctrl−Lor Ctrl−R
"<shift>", "<shft>", Shift−Lor Shift−R

•

A callback function or method that will be invoked when the menu item is activated or the accelerator
key sequence is pressed. The callback function is defined as either:

 def callback(callback_data, callback_action, widget)

•

PyGTK 2.0 Reference Manual

gtk.ItemFactory 427

 def callback(callback_action, widget)

where callback_action is the callback action defined below, callback_data is the data
passed with the create_items() method and widget is the menuitem widget. The second
definition must be used if no callback_data argument is specified by the call to
create_items().
A callback action that is an arbitrary integer value.•
An item type is a string describing the type of the item:

"None", "", "Item", a simple menu item
"<Title>" a title item
"<ImageItem>" an image item
"<StockItem>" an item holding a stock image
"<CheckItem>" a check item
"<ToggleItem>" a toggle item
"<RadioItem>" a radio item
<path> the path of a radio item group to add item to
"<Separator>" a separator
"<Tearoff>" a tearoff separator
"<Branch>" an item to hold sub items
"<LastBranch>" a right justified item to hold sub items

•

extra data that is either a gtk.gdk.Pixbuf or a stock ID•

Constructor

gtk.ItemFactory(container_type, path, accel_group=None)

container_type : the kind of menu to create; one of: gtk.MenuBar, gtk.Menu or
gtk.OptionMenu.

path : the path of the new item factory, a string of the form "<name>"

accel_group : a gtk.AccelGroup to which the accelerators for the menu items will be
added, or None to create a new one

Returns : a new gtk.ItemFactory
Creates a new gtk.ItemFactory object.

Methods

gtk.ItemFactory.construct

 def construct(container_type, path, accel_group)

container_type : the kind of menu to create; one of: gtk.MenuBar, gtk.Menu or
gtk.OptionMenu.

path : the path of the item factory, a string of the form "<name>"

accel_group : a gtk.AccelGroup to which the accelerators for the menu items will be added, or
None to create a new one

The construct() method initializes an item factory.

PyGTK 2.0 Reference Manual

Warning 428

gtk.ItemFactory.get_item

 def get_item(path)

path : the path to the menu item
Returns : the menu item with the specified path, or None if path doesn't lead to a menu item
The get_item() method returns the menu item that corresponds to path. If the widget corresponding to
path is a menu item that opens a submenu, then the item is returned. If you are interested in the submenu,
use the get_widget() method instead.

gtk.ItemFactory.get_widget

 def get_widget(path)

path : the path to the widget
Returns : the widget associated with the specified path, or None if path doesn't lead to a widget
The get_widget() method returns the widget that corresponds to path. If the widget corresponding to
path is a menu item that opens a submenu, then the submenu is returned. If you are interested in the menu
item, use get_item() instead.

gtk.ItemFactory.get_widget_by_action

 def get_widget_by_action(action)

action : a callback action value
Returns : the widget that corresponds to the given action, or None if no widget was found
The get_widget_by_action() method returns the widget that is associated with the specified action.
If there are multiple items with the same action, the result is undefined.

gtk.ItemFactory.get_item_by_action

 def get_item_by_action(action)

action : a callback action value
Returns : the menu item that corresponds to the specified action, or None if no menu item was found
The get_item_by_action() returns the menu item that is associated with the specified action.

gtk.ItemFactory.create_items

 def create_items(entries, callback_data=None)

entries : a tuple or list of item factory entries
callback_data : optional data passed to the callback functions of all entries
The create_items() method creates the menu items from the specified item factory entries. If no
callback_data is specified it will not be passed to the callback functions i.e the callback functions will be
passed one less argument.

gtk.ItemFactory.delete_item

 def delete_item(path)

path : a path

PyGTK 2.0 Reference Manual

gtk.ItemFactory.get_item 429

The delete_item() method deletes the menu item that was created with the specified path.

gtk.ItemFactory.popup

 def popup(x, y, mouse_button, time=0L)

x : the x position
y : the y position
mouse_button : the mouse button that was pressed to initiate this action
time : an optional timestamp for this action; default is 0L which means use the current time
The popup() method pops up the menu constructed from the item factory at the specified location (x, y).
This method is generally invoked in response to a "button_press_event" so the arguments are retrieved from
the event information.

Functions

gtk.item_factory_from_widget

 def gtk.item_factory_from_widget(widget)

widget : a gtk.Widget object
Returns : the gtk.ItemFactory that created widget
The gtk.item_factory_from_widget() function returns the gtk.ItemFactory object that created
the gtk.Widget specified by widget.

gtk.item_factory_path_from_widget

 def gtk.item_factory_path_from_widget(widget)

widget : a gtk.Widget object
Returns : the full path to the gtk.ItemFactory that created widget
The gtk.item_factory_path_from_widget() function returns the full path to the
gtk.ItemFactory that created the gtk.Widget specified by widget.

Prev Up Next
gtk.Item Home gtk.Label

gtk.Label
Prev The gtk Class Reference Next

gtk.Label

gtk.Label � a widget that displays a limited amount of read−only text

Synopsis

class gtk.Label(gtk.Misc):
gtk.Label(str=None)

 def set_text(str)

PyGTK 2.0 Reference Manual

gtk.ItemFactory.delete_item 430

 def get_text()
 def set_attributes(attrs)
 def get_attributes()
 def set_label(str)
 def get_label()
 def set_markup(str)
 def set_use_markup(setting)
 def get_use_markup()
 def set_use_underline(setting)
 def get_use_underline()
 def set_markup_with_mnemonic(str)
 def get_mnemonic_keyval()
 def set_mnemonic_widget(widget)
 def get_mnemonic_widget()
 def set_text_with_mnemonic(str)
 def set_justify(jtype)
 def get_justify()
 def set_pattern(pattern)
 def set_line_wrap(wrap)
 def get_line_wrap()
 def set_selectable(setting)
 def get_selectable()
 def select_region(start_offset, end_offset)
 def get_selection_bounds()
 def get_layout()
 def get_layout_offsets()
 def set_ellipsize(mode)
 def get_ellipsize()
 def set_width_chars(n_chars)
 def get_width_chars()
 def set_single_line_mode(single_line_mode)
 def get_single_line_mode()
 def get_max_width_chars()
 def set_max_width_chars(n_chars)
 def get_angle()
 def set_angle(angle)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Misc
 +−− gtk.Label

Properties

"angle" Read−Write The angle that the baseline of the label makes with
the horizontal, in degrees, measured
counterclockwise. An angle of 90 reads from from
bottom to top, an angle of 270, from top to bottom.
Ignored if the label is selectable, wrapped, or
ellipsized. Allowed values: [0,360] Default value:
0. Available in GTK+ 2.6 and above.

"attributes" Read−Write A list of Pango style attributes to apply to the text
of the label.

"cursor−position" Read The current position of the insertion cursor in
chars. Allowed values: >= 0. Default value: 0

"ellipsize" Read−Write

PyGTK 2.0 Reference Manual

Synopsis 431

The preferred place to ellipsize the string, if the
label does not have enough room to display the
entire string, specified as one of the Pango Ellipsize
Mode Constants. Note that setting this property to a
value other than pango.ELLIPSIZE_NONE has
the side−effect that the label requests only enough
space to display the ellipsis "...". In particular, this
means that ellipsizing labels don't work well in
notebook tabs, unless the tab's "tab−expand"
property is set to TRUE. Other means to set a label's
width are with the
gtk.Widget.set_size_request() and
set_width_chars() methods. Default value:
pango.ELLIPSIZE_NONE. Available in GTK+
2.6 and above.

"justify" Read−Write The alignment of the lines in the text of the label
relative to each other. The possible values are:
gtk.JUSTIFY_LEFT, gtk.JUSTIFY_RIGHT,
gtk.JUSTIFY_CENTER,
gtk.JUSTIFY_FILL. This does NOT affect the
alignment of the label within its allocation. Default
value: gtk.JUSTIFY_LEFT

"label" Read−Write The text of the label. Default value: None
"max−width−chars" Read−Write The desired maximum width of the label, in

characters. If this property is set to −1, the width
will be calculated automatically, otherwise the
label will request space for no more than the
requested number of characters. If the
"width−chars" property is set to a positive value,
then the "max−width−chars" property is ignored.
Allowed values: >= −1. Default value: −1.
Available in GTK+ 2.6 and above.

"mnemonic−keyval" Read The mnemonic accelerator key for this label.
Default value: 16777215

"mnemonic−widget" Read−Write The widget to be activated when the label's
mnemonic key is pressed.

"pattern" Write A string with _ characters in positions used to
identify to characters in the text to underline.
Default value: None

"selectable" Read−Write If TRUE, the label text can be selected with the
mouse. Default value: FALSE

"selection−bound" Read The position of the opposite end of the selection
from the cursor in chars. Allowed values: >= 0.
Default value: 0.

"single−line−mode" Read−Write If TRUE the label is in single line mode. In single
line mode, the height of the label does not depend
on the actual text, it is always set to ascent +
descent of the font. This can be an advantage in
situations where resizing the label because of text
changes would be distracting, e.g. in a statusbar.
Default value: FALSE. Available in GTK+ 2.6 and
above.

PyGTK 2.0 Reference Manual

Properties 432

"use−markup" Read−Write If TRUE, the text of the label includes XML
markup. Default value: FALSE

"use−underline" Read−Write If TRUE, an underscore in the text indicates the
next character should be used for the mnemonic
accelerator key. Default value: FALSE

"width−chars" Read−Write The desired width of the label, in characters. If this
property is set to −1, the width will be calculated
automatically, otherwise the label will request
either 3 characters or the property value, whichever
is greater. Allowed values: >= −1. Default value:
−1. Available in GTK+ 2.6 and above.

"wrap" Read−Write If TRUE, wrap lines if the text becomes too wide.
Default value: FALSE

Signal Prototypes

"copy−clipboard" def callback(label, user_param1, ...)

"move−cursor" def callback(label, step, count, extend_selection,
user_param1, ...)

"populate−popup" def callback(label, menu, user_param1, ...)

Description

The gtk.Label is a widget class that displays a limited amount of read−only text. Labels are used by
several widgets (e.g. gtk.Button, and its subclasses, gtk.MenuItem, etc.) to provide text display as well
as by applications to display messages, etc, to the user. Most of the functionality of a gtk.Label is directed
at modifying the style and layout of the text within the widget allocation. A gtk.Label is a "windowless"
object which means that it cannot receive events directly. A gtk.EventBox can be used to provide event
handling capabilities to a gtk.Label widget if needed.

Mnemonics

Label text may be specified with embedded underscore characters that are used to indicate that the following
character should be underlined and used as the mnemonic accelerator (if it's the first underlined character).
The set_text_with_mnemonic() method is used to parse the label text for a mnemonic characters.
Mnemonics automatically activate any activatable widget the label is inside, such as a gtk.Button; if the
label is not inside an activatable widget, you have to tell the label about the target using the
set_mnemonic_widget() method. Here's a simple example where the label is inside a button:

 # Pressing Alt+H will activate this button
 button = gtk.Button()
 label = gtk.Label("_Hello")
 label.set_use_underline(True)
 button.add(label)

As a convenience you can create a button with a mnemonic label as follows:

 # Pressing Alt+H will activate this button
 button = gtk.Button(label="_Hello", use_underline=True)

To create a mnemonic for a widget alongside the label, such as a gtk.Entry, you have to point the label at
the entry with the set_mnemonic_widget() method:

PyGTK 2.0 Reference Manual

Signal Prototypes 433

 # Pressing Alt+H will focus the entry
 entry = gtk.Entry()
 label = gtk.Label("_Hello")
 label.set_use_underline(True)
 label.set_mnemonic_widget(entry)

Markup (styled text)

To make it easy to format text in a label (changing colors, fonts, etc.), the label text can be provided in the
Pango markup format which is a simple XML markup format. The gtk.Label.set_markup() method
sets the label using text in valid markup format (e.g. '<', '>' and '&' characters must be replaced by <, >
and & respectively. For example:

 label = gtk.Label()
 label.set_markup("<small>Small text</small>");

The markup passed to the set_markup() method must be valid. For example, the literal <>& characters
must be escaped as <, >, and &. If you pass text obtained from the user, file, or a network to the
set_markup() method, you'll want to escape it with the Python Library xml.sax.saxutils.escape()
function.

Markup strings are just a convenient way to set the pango.AttrList on a label. Using the
set_attributes() method may be a simpler way to set attributes in some cases. Be careful though;
pango.AttrList tends to cause internationalization problems, unless you're applying attributes to the
entire string because specifying the start_index and end_index for a pango.Attribute requires
knowledge of the exact string being displayed, so translations will cause problems.

Selectable labels

Labels can be made selectable with the set_selectable() method. Selectable labels allow the user to
copy the label contents to the clipboard. Only labels that contain useful−to−copy information such as error
messages should be made selectable.

Text layout

A label can contain any number of paragraphs, but will have performance problems if it contains more than a
small number. Paragraphs are separated by newlines or other paragraph separators understood by Pango.

Labels can automatically wrap text if you call the set_line_wrap() method.

The set_justify() method sets how the lines in a label align with one another. If you want to set how the
label as a whole aligns in its available space, see the gtk.Misc.set_alignment() method.

Constructor

gtk.Label(str=None)

str : The text of the label or None for a blank label
Returns : the new gtk.Label widget
Creates a new gtk.Label with the text specified by str inside it. You can pass None to get a blank label.

PyGTK 2.0 Reference Manual

Mnemonics 434

Methods

gtk.Label.set_text

 def set_text(str)

str : The new text for the label.
The set_text() method sets the text within the gtk.Label widget. It replaces any text that was there
before and will clear any previously set mnemonic accelerators.

gtk.Label.get_text

 def get_text()

Returns : the text in the label widget.
The get_text() method fetches the text from a label widget, as displayed on the screen. This does not
include any Pango markup or embedded underscore characters indicating mnemonics. (See get_label()).

gtk.Label.set_attributes

 def set_attributes(attrs)

attrs : a pango.AttrList
The set_attributes() method applies a pango.AttrList list of attributes to the label text. The
attributes set with this function will be ignored if either the "use−underline" or "use−markup" attributes is
TRUE.

gtk.Label.get_attributes

 def get_attributes()

Returns : the attribute list, or None if no attributes were set.
The get_attributes() method returns the attribute list that was set on the label using
set_attributes(), if any. This function does not reflect attributes that come from the labels markup (see
set_markup()).

gtk.Label.set_label

 def set_label(str)

str : the new text (including mnemonics or markup) to set for the label
The set_label() method sets the text of the label. The label is parsed for embedded underscores and Pango
markup depending on the values of the "use−underline" and "use−markup" properties.

gtk.Label.get_label

 def get_label()

Returns : the text of the label widget.
The get_label() method returns the text from a label widget including any Pango markup and embedded
underscores indicating mnemonics. (See get_text() that just returns the text).

PyGTK 2.0 Reference Manual

Methods 435

gtk.Label.set_markup

 def set_markup(str)

str : a markup string
The set_markup() method parses str, which is marked up with the Pango text markup language, and sets
the label's text and attribute list.

gtk.Label.set_use_markup

 def set_use_markup(setting)

setting : if TRUE the label's text should be parsed for markup.
The set_use_markup() method sets the "use−markup" property to the value of setting. If TRUE the
text of the label should be parsed as markup.

gtk.Label.get_use_markup

 def get_use_markup()

Returns : TRUE if the label's text will be parsed for markup.
The get_user_markup() method returns the value of the "use−markup" property. If TRUE the label's text
is parsed as markup. See set_use_markup().

gtk.Label.set_use_underline

 def set_use_underline(setting)

setting : if TRUE underscores in the text indicate mnemonics
The set_use_underline() method sets the "use−underline" property to the value of setting. If
setting is TRUE, an underscore in the text indicates the next character should be used for the mnemonic
accelerator key.

gtk.Label.get_use_underline

 def get_use_underline()

Returns : TRUE if an embedded underscore in the label indicates the mnemonic accelerator.
The get_use_underline() method returns the value of the "use−underline" property. If TRUE an
embedded underscore in the label indicates the next character is a mnemonic. See set_use_underline().

gtk.Label.set_markup_with_mnemonic

 def set_markup_with_mnemonic(str)

str : a markup string including embedded underscores
The set_markup_with_mnemonic() method parses str as markup, setting the label's text and attribute
list based on the parse results. If characters in str are preceded by an underscore, they are underlined
indicating that they represent a mnemonic accelerator. The mnemonic key can be used to activate another
widget, chosen automatically, or explicitly using the set_mnemonic_widget() method.

PyGTK 2.0 Reference Manual

gtk.Label.set_markup 436

gtk.Label.get_mnemonic_keyval

 def get_mnemonic_keyval()

Returns : a keyval, or the void symbol keyval
The get_mnemonic_keyval() method returns the value of the "mnemonic−keyval" property that contains
the keyval used for the mnemonic accelerator if one has been set on the label. If there is no mnemonic set up it
returns the void symbol keyval.

gtk.Label.set_mnemonic_widget

 def set_mnemonic_widget(widget)

widget : the widget to be activated when the mnemonic is pressed
The set_mnemonic_widget() method sets the "mnemonic−widget" property using the value of widget.
This method associates the label mnemonic with a widget that will be activated when the mnemonic
accelerator is pressed. When the label is inside a widget (like a gtk.Button or a gtk.Notebook tab) it is
automatically associated with the correct widget, but sometimes (i.e. when the target is a gtk.Entry next to
the label) you need to set it explicitly using this function. The target widget will be activated by emitting
"mnemonic_activate" on it.

gtk.Label.get_mnemonic_widget

 def get_mnemonic_widget()

Returns : the target of the label's mnemonic, or None if none has been set and the default algorithm will be
used.

The get_mnemonic_widget() method retrieves the value of the "mnemonic−widget" property which is
the target of the mnemonic accelerator of this label. See set_mnemonic_widget().

gtk.Label.set_text_with_mnemonic

 def set_text_with_mnemonic(str)

str : the label text with embedded underscore characters indicating the mnemonic characters
The set_text_with_mnemonic() method sets the label's text from the string str. If characters in str
are preceded by an underscore, they are underlined indicating that they represent a mnemonic accelerator. The
mnemonic key can be used to activate another widget, chosen automatically, or explicitly using the
set_mnemonic_widget() method.

gtk.Label.set_justify

 def set_justify(jtype)

jtype : justification type
The set_justify() method sets the alignment of the lines in the text of the label relative to each other
using the value of jtype. The possible values of jtype are: gtk.JUSTIFY_LEFT,
gtk.JUSTIFY_RIGHT, gtk.JUSTIFY_CENTER and gtk.JUSTIFY_FILL. gtk.JUSTIFY_LEFT is
the default value when the widget is first created. If you want to set the alignment of the label as a whole, use
the gtk.Misc.set_alignment() method instead. The set_justify() has no effect on labels
containing only a single line.

PyGTK 2.0 Reference Manual

gtk.Label.get_mnemonic_keyval 437

gtk.Label.get_justify

 def get_justify()

Returns : the label justification
The get_justify() method returns the justification of the label; one of: gtk.JUSTIFY_LEFT,
gtk.JUSTIFY_RIGHT, gtk.JUSTIFY_CENTER or gtk.JUSTIFY_FILL. See set_justify().

gtk.Label.set_pattern

 def set_pattern(pattern)

pattern : the pattern of underlines
The set_pattern() method sets the "pattern" property with the value of pattern. The pattern contains
an underscore or space for each character in the label text. Any characters omitted are assumed to be spaces.
For example, if the label text is "XXX Label" and the pattern is "___" then only the "XXX" will be
underlined.

gtk.Label.set_line_wrap

 def set_line_wrap(wrap)

wrap : if TRUE the label lines will wrap if too big for the widget size.
The set_wrap() method sets the "wrap" property tot he value of wrap. If wrap is TRUE the label text will
wrap if it is wider than the widget size; otherwise, the text gets cut off at the edge of the widget.

gtk.Label.get_line_wrap

 def get_line_wrap()

Returns : TRUE if the lines of the label are automatically wrapped.
The get_line_wrap() method returns the value of the "wrap" property. If "wrap" is TRUE the lines in the
label are automatically wrapped. See set_line_wrap().

gtk.Label.set_selectable

 def set_selectable(setting)

setting : if TRUE allow the text in the label to be selected
The set_selectable() method sets the "selectable" property with the value of setting. If setting is
TRUE the user is allowed to select text from the label, for copy−and−paste.

gtk.Label.get_selectable

 def get_selectable()

Returns : TRUE if the user can select the label text
The get_selectable() method gets the value of the "selectable" property set by the
set_selectable() method.

PyGTK 2.0 Reference Manual

gtk.Label.get_justify 438

gtk.Label.select_region

 def select_region(start_offset, end_offset)

start_offset : start offset in characters
end_offset : end offset in characters
The select_region() method selects a range of characters in the label, if the label is selectable. The
selected region is the range of characters between start_offset and end_offset. See
set_selectable(). If the label is not selectable, this method has no effect. If start_offset or
end_offset are −1, then the end of the label will be substituted.

gtk.Label.get_selection_bounds

 def get_selection_bounds()

Returns : a tuple containing the start and end character offsets of the selection
The get_selection_bounds() method returns a tuple that contains the start and end character offsets of
the selected text in the label if the selection exists. If there is no selection or the label is not selectable, an
empty tuple is returned.

gtk.Label.get_layout

 def get_layout()

Returns : the pango.Layout for this label
The get_layout() method returns the pango.Layout used to display the label. The layout is useful to
e.g. convert text positions to pixel positions, in combination with get_layout_offsets().

gtk.Label.get_layout_offsets

 def get_layout_offsets()

Returns : a tuple containing the X offset of the layout, or None and the Y offset of layout, or None
The get_layout_offsets() method returns a tuple containing the coordinates where the label will draw
the pango.Layout representing the text in the label. This method is useful for converting mouse events
into coordinates inside the pango.Layout, e.g. to take some action if some part of the label is clicked. Of
course you will need to create a gtk.EventBox to receive the events, and pack the label inside it, since
labels are a "windowless" (gtk.NO_WINDOW) widget. Remember when using the pango.Layout
functions you need to convert to and from pixels using pango.PIXELS() or pango.SCALE.

gtk.Label.set_ellipsize

 def set_ellipsize(mode)

mode : one of the Pango Ellipsize Mode Constants to use

Note

This method is available in PyGTK 2.6 and above.

The set_ellipsize() method sets the "ellipsize" property to the value of mode. mode should be one of
the Pango Ellipsize Mode Constants. The "ellipsize" property specifies if and where an ellipse should be used
if there is not enough room for the label text.

PyGTK 2.0 Reference Manual

gtk.Label.select_region 439

gtk.Label.get_ellipsize

 def get_ellipsize()

Returns : the current ellipsize mode

Note

This method is available in PyGTK 2.6 and above.

The get_ellipsize() method returns the value of the "ellipsize" property which contains one of the
Pango Ellipsize Mode Constants. The "ellipsize" property specifies if and where an ellipse should be used if
there is not enough room for the label text.

gtk.Label.set_width_chars

 def set_width_chars(n_chars)

n_chars : the new desired width, in characters.

Note

This method is available in PyGTK 2.6 and above.

The set_width_chars() method sets the "width−chars" property to the value of n_chars. The
"width−chars" property specifies the desired width of the label in characters.

gtk.Label.get_width_chars

 def get_width_chars()

Returns : the desired width of the label in characters.

Note

This method is available in PyGTK 2.6 and above.

The get_width_chars() method returns the value of the "width−chars" property that specifies the desired
width of the label in characters.

gtk.Label.set_single_line_mode

 def set_single_line_mode(single_line_mode)

single_line_mode : if TRUE the label is in single line mode.

Note

This method is available in PyGTK 2.6 and above.

The set_single_line_mode() method sets the "single−line−mode" property to the value of
single_line_mode. If single_line_mode is TRUE the label is in single line mode where the height
of the label does not depend on the actual text, it is always set to ascent + descent of the font.

PyGTK 2.0 Reference Manual

gtk.Label.get_ellipsize 440

gtk.Label.get_single_line_mode

 def get_single_line_mode()

Returns :

Note

This method is available in PyGTK 2.6 and above.

The get_single_line_mode() method returns the value of the "single−line−mode" property. See the
set_single_line_mode() method for more information.

gtk.Label.set_max_width_chars

 def set_max_width_chars(n_chars)

n_chars : the new desired maximum width, in characters.

Note

This method is available in PyGTK 2.6 and above.

The set_max_width_chars() method sets the "max−width−chars" property to the value of n_chars.

gtk.Label.get_max_width_chars

 def get_max_width_chars()

Returns :

Note

This method is available in PyGTK 2.6 and above.

The get_max_width_chars() method returns the value of the "max−width−chars" property which is the
desired maximum width of the label in characters.

gtk.Label.set_angle

 def set_angle(angle)

angle : the angle that the baseline of the label makes with the horizontal, in degrees, measured
counterclockwise

Note

This method is available in PyGTK 2.6 and above.

The set_angle() method sets the "angle" property to the value of angle. angle is the angle of rotation
for the label. An angle of 90 reads from from bottom to top, an angle of 270, from top to bottom. The angle
setting for the label is ignored if the label is selectable, wrapped, or ellipsized.

PyGTK 2.0 Reference Manual

gtk.Label.get_single_line_mode 441

gtk.Label.get_angle

 def get_angle()

Returns :

Note

This method is available in PyGTK 2.6 and above.

The get_angle() method returns the value of the "angle" property. See the set_angle() method for more
information.

Signals

The "copy−clipboard" gtk.Label Signal

 def callback(label, user_param1, ...)

label : the label that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "copy−clipboard" signal is emitted when text is copied from the label to the clipboard.

The "move−cursor" gtk.Label Signal

 def callback(label, step, count, extend_selection, user_param1, ...)

label : the label that received the signal

step :

the step size of the move: gtk.MOVEMENT_LOGICAL_POSITIONS,
gtk.MOVEMENT_VISUAL_POSITIONS, gtk.MOVEMENT_WORDS,
gtk.MOVEMENT_DISPLAY_LINES,
gtk.MOVEMENT_DISPLAY_LINE_ENDS, gtk.MOVEMENT_PARAGRAPHS,
gtk.MOVEMENT_PARAGRAPH_ENDS, gtk.MOVEMENT_PAGES and
gtk.MOVEMENT_BUFFER_ENDS

count : the number of steps to take
extend_selection :if TRUE extend the range of the selection
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−cursor" signal is emitted when the cursor is being moved count steps or size step. The step
size is one of:

 gtk.MOVEMENT_LOGICAL_POSITIONS, move by graphemes
 gtk.MOVEMENT_VISUAL_POSITIONS, move by graphemes
 gtk.MOVEMENT_WORDS, move by words
 gtk.MOVEMENT_DISPLAY_LINES, move by lines(wrapped lines)
 gtk.MOVEMENT_DISPLAY_LINE_ENDS, move to line ends(wrapped lines)
 gtk.MOVEMENT_PARAGRAPHS, move by paragraphs(newline−ended lines)
 gtk.MOVEMENT_PARAGRAPH_ENDS, move to ends of a paragraph
 gtk.MOVEMENT_PAGES, move by pages
 gtk.MOVEMENT_BUFFER_ENDS move to ends of the buffer

If extend_selection is TRUE the selection will be extended to include the text moved over.

PyGTK 2.0 Reference Manual

gtk.Label.get_angle 442

The "populate−popup" gtk.Label Signal

 def callback(label, menu, user_param1, ...)

label : the label that received the signal
menu : the menu to be populated
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "populate−popup" signal is emitted when a menu needs to be populated on the fly.

Prev Up Next
gtk.ItemFactory Home gtk.Layout

gtk.Layout
Prev The gtk Class Reference Next

gtk.Layout

gtk.Layout � infinite scrollable area containing child widgets and custom drawing

Synopsis

class gtk.Layout(gtk.Container):
gtk.Layout(hadjustment=None, vadjustment=None)

 def put(child_widget, x, y)
 def move(child_widget, x, y)
 def set_size(width, height)
 def get_size()
 def get_hadjustment()
 def get_vadjustment()
 def set_hadjustment(adjustment)
 def set_vadjustment(adjustment)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Layout

Properties

"hadjustment" Read−Write The gtk.Adjustment for the horizontal position.
"vadjustment" Read−Write The gtk.Adjustment for the vertical position.
"width" Read−Write the layout width
"height" Read−Write the layout height

Child Properties

"x" Read−Write the X position of the child

PyGTK 2.0 Reference Manual

The "populate−popup" gtk.Label Signal 443

"y" Read−Write the Y position of the child

Attributes

"bin_window" Read the window of a layout to draw into

Signal Prototypes

"set−scroll−adjustments" def callback(layout, hadjustment, vadjustment,
user_param1, ...)

Description

The gtk.Layout is a simple container widget similar to the gtk.Fixed container widget. Like the
gtk.Fixed the gtk.Layout places a child widget at a specific position within the container. The
gtk.Layout offers two features beyond the gtk.Fixed widget:

a very large width and height for the container − limited by the size of an unsigned integer.•
horizontal and vertical adjustments can be specified for use with scrollbars, etc.•

The gtk.Layout can also be drawn on similar to drawing on a gtk.DrawingArea. When handling
expose events on a gtk.Layout, you must draw to the window specified by the bin_window attribute
rather than the widget window attribute.

Constructor

gtk.Layout(hadjustment=None, vadjustment=None)

hadjustment : horizontal adjustment, or None
vadjustment : vertical adjustment, or None
Returns : a new gtk.Layout
Creates a new gtk.Layout. Usually the hadjustment and vadjustment arguments are not specified
or are specified as None, so that new adjustments are created.

Methods

gtk.Layout.put

 def put(child_widget, x, y)

child_widget : the child widget
x : the X position of child widget
y : the Y position of child widget
The put() method adds child_widget to the layout and places its upper, left corner at the position
specified by x and y.

PyGTK 2.0 Reference Manual

Child Properties 444

gtk.Layout.move

 def move(child_widget, x, y)

child_widget : a current child of the layout
x : the X position to move child_widget to
y : the Y position to move child_widget to
The move() method moves a current child of the layout (specified by child_widget) to the new position
specified by x and y. The upper, left corner of child_widget will be placed at (x, y).

gtk.Layout.set_size

 def set_size(width, height)

width : width of the layout area
height : height of the layout area
The set_size() method sets the size of the virtual area of the layout to the values specified by width and
height. The "width" and "height" properties are also set by this method.

gtk.Layout.get_size

 def get_size()

Returns : a tuple containing the width and height set on layout
The get_size() method returns a tuple that contains the width and height of the virtual size that has been
set on the layout. See set_size().

gtk.Layout.get_hadjustment

 def get_hadjustment()

Returns : a horizontal adjustment
The get_hadjustment() method returns the value of the "hadjustment" property that contains the
horizontal adjustment object associated with the layout. This function should only be called after the layout
has been placed in a gtk.ScrolledWindow or has otherwise been configured for scrolling. See
gtk.ScrolledWindow, gtk.Scrollbar, gtk.Adjustment for details.

gtk.Layout.get_vadjustment

 def get_vadjustment()

Returns : a vertical adjustment
The get_vadjustment() method returns the "vadjustment" property that contains the vertical adjustment
object associated with the layout. This function should only be called after the layout has been placed in a
gtk.ScrolledWindow or has otherwise been configured for scrolling. See gtk.ScrolledWindow,
gtk.Scrollbar, gtk.Adjustment for details.

gtk.Layout.set_hadjustment

 def set_hadjustment(adjustment)

adjustment : a horizontal adjustment

PyGTK 2.0 Reference Manual

gtk.Layout.move 445

The set_hadjustment() method sets the horizontal adjustment for the layout (and the "hadjustment"
property) to the value of adjustment. See gtk.ScrolledWindow, gtk.Scrollbar,
gtk.Adjustment for details.

gtk.Layout.set_vadjustment

 def set_vadjustment(adjustment)

adjustment : a vertical adjustment
The set_vadjustment() method sets the vertical adjustment for the layout (and the "vadjustment"
property) to the value of adjustment. See gtk.ScrolledWindow, gtk.Scrollbar,
gtk.Adjustment for details.

Signals

The "set−scroll−adjustments" gtk.Layout Signal

 def callback(layout, hadjustment, vadjustment, user_param1, ...)

layout : the layout that received the signal
hadjustment : the horizontal adjustment associated with the layout.
vadjustment : the horizontal adjustment associated with the layout.
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "set−scroll−adjustments" signal is emitted when one of the adjustments associated with a layout is
changed.

Prev Up Next
gtk.Label Home gtk.ListStore

gtk.ListStore
Prev The gtk Class Reference Next

gtk.ListStore

gtk.ListStore � a list model to use with a gtk.TreeView

Synopsis

class gtk.ListStore(gobject.GObject, gtk.TreeModel, gtk.TreeDragSource, gtk.TreeDragDest, gtk.TreeSortable):
gtk.ListStore(column_type, ...)

 def set_column_types(type, ...)
 def set_value(iter, column, value)
 def set(iter, column_num, value, ...)
 def remove(iter)
 def insert(position, row=None)
 def insert_before(sibling, row=None)
 def insert_after(sibling, row=None)
 def prepend(row=None)
 def append(row=None)
 def clear()

PyGTK 2.0 Reference Manual

gtk.Layout.set_hadjustment 446

 def iter_is_valid(iter)
 def reorder(new_order)
 def swap(a, b)
 def move_after(iter, position)
 def move_before(iter, position)

Ancestry

+−− gobject.GObject
 +−− gtk.ListStore (implements gtk.TreeModel, gtk.TreeDragSource, gtk.TreeDragDest, gtk.TreeSortable)

Description

The gtk.ListStore object is a list model for use with a gtk.TreeView widget. It implements the
gtk.TreeModel interface, the gtk.TreeSortable and the tree drag and drop interfaces.

Constructor

gtk.ListStore(column_type, ...)

column_type : the column type of the first column
... : optional types for succeeding columns
Returns : a new gtk.ListStore
Creates a new list store as with one or more columns with the type specified by the arguments passed to the
constructor. For example, gtk.ListStore(gobject.TYPE_INT, gobject.TYPE_STRING,
gtk.gdk.Pixbuf); will create a new gtk.ListStore with three columns, of type int, string and
gtk.gdk.Pixbuf respectively. The built−in GObject types are:

gobject.TYPE_BOOLEAN•
gobject.TYPE_BOXED•
gobject.TYPE_CHAR•
gobject.TYPE_DOUBLE•
gobject.TYPE_ENUM•
gobject.TYPE_FLAGS•
gobject.TYPE_FLOAT•
gobject.TYPE_INT•
gobject.TYPE_INT64•
gobject.TYPE_INTERFACE•
gobject.TYPE_INVALID•
gobject.TYPE_LONG•
gobject.TYPE_NONE•
gobject.TYPE_OBJECT•
gobject.TYPE_PARAM•
gobject.TYPE_POINTER•
gobject.TYPE_PYOBJECT•
gobject.TYPE_STRING•
gobject.TYPE_UCHAR•
gobject.TYPE_UINT•
gobject.TYPE_UINT64•
gobject.TYPE_ULONG•

The column types can be any GObject type including those that are PyGTK objects or application defined
objects that are subclassed from the GObject class.

PyGTK 2.0 Reference Manual

Synopsis 447

Methods

gtk.ListStore.set_column_types

 def set_column_types(type, ...)

type : the type of the first column
... : zero or more type specifications

Note

This method is available in PyGTK 2.2 and above.

The set_column_types() method sets the liststore columns to the types specified by type and any
additional type parameters. This method is meant primarily for classes that inherit from gtk.ListStore,
and should only be used when constructing a new gtk.ListStore. It will not function after a row has been
added, or a method on the gtk.TreeModel interface is called.

gtk.ListStore.set_value

 def set_value(iter, column, value)

iter : a valid gtk.TreeIter for the row being modified
column : the column number to modify
value : the new value for the cell
The set_value() method sets the data in the cell specified by iter and column. The type of value
must be convertible to the type of the column.

gtk.ListStore.set

 def set(iter, column_num, value, ...)

iter : A valid gtk.TreeIter for the row being modified
column_num : the number of the column to modify
value : the new cell value
... : additional optional sets of column number − value pairs
The set() method sets the value of one or more cells in the row referenced by iter. The argument list
should contain integer column numbers, each followed by the value to be set (the value must be convertible to
the type of the cell column). For example, to set column 0 with type gobject.TYPE_STRING to "Foo",
you would write:

 liststore.set(iter, 0, "Foo")

gtk.ListStore.remove

 def remove(iter)

iter : A valid gtk.TreeIter for the row
Returns : TRUE if iter is still valid.
The remove() method removes the row specified by iter from the list store and returns TRUE if iter is
still valid. After being removed, iter is set to be the next valid row, or is invalidated if it pointed to the last
row.

PyGTK 2.0 Reference Manual

Methods 448

Note

Prior to PyGTK 2.4 this method returned a new gtk.TreeIter that is a copy of iter.

gtk.ListStore.insert

 def insert(position, row=None)

position : the integer position to insert the new row
row : an optional list or tuple containing ordered column values to set on the row or None
Returns : A gtk.TreeIter pointing at the new row
The insert() method creates a new row at the location specified by position. If position is larger
than the number of rows on the list, then the new row will be appended to the list. The row will be empty if
row is not specified or is None. If row is specified it must contain a list or tuple of ordered column values
(e.g. [gobject.TYPE_STRING, gobject.TYPE_INT]) that are used to set the values in the cells of the
new row. Alternatively, the application can fill in row cell values using the set() or set_value() methods.

gtk.ListStore.insert_before

 def insert_before(sibling, row=None)

sibling : A valid gtk.TreeIter or None
row : an optional list or tuple containing ordered column values to set on the row or None
Returns : A gtk.TreeIter pointing at the new row
The insert_before() method inserts a new row before the row specified by the gtk.TreeIter
sibling. The row will be empty if row is not specified or is None. If row is specified it must contain a list
or tuple of ordered column values (e.g. [gobject.TYPE_STRING, gobject.TYPE_INT]) that are used
to set the values in the cells of the new row. Alternatively, the application can fill in row cell values using the
set() or set_value() methods.

In PyGTK 2.4, if sibling is None the row will be appended to the liststore.

gtk.ListStore.insert_after

 def insert_after(sibling, row=None)

sibling : A valid gtk.TreeIter or None
row : an optional list or tuple containing ordered column values to set on the row or None
Returns : A gtk.TreeIter pointing at the new row
The insert_after() method inserts a new row after the row specified by the gtk.TreeIter
sibling. The row will be empty if row is not specified or is None. If row is specified it must contain a list
or tuple of ordered column values (e.g. [gobject.TYPE_STRING, gobject.TYPE_INT]) that are used
to set the values in the cells of the new row. Alternatively, the application can fill in row cell values using the
set() or set_value() methods.

In PyGTK 2.4, if sibling is None the row will be prepended to the liststore.

gtk.ListStore.prepend

 def prepend(row=None)

PyGTK 2.0 Reference Manual

Note 449

row : an optional list or tuple containing ordered column values to set on the row or None
Returns : A gtk.TreeIter pointing at the new row
The prepend() method prepends a new row to the liststore. The row will be empty if row is not specified or
is None. If row is specified it must contain a list or tuple of ordered column values (e.g.
[gobject.TYPE_STRING, gobject.TYPE_INT]) that are used to set the values in the cells of the new
row. Alternatively, the application can fill in row cell values using the set() or set_value() methods.

gtk.ListStore.append

 def append(row=None)

row : an optional list or tuple containing ordered column values to set on the row or None
Returns : A gtk.TreeIter pointing at the new row
The append() method appends a new row to the liststore. The row will be empty if row is not specified or is
None. If row is specified it must contain a list or tuple of ordered column values (e.g.
[gobject.TYPE_STRING, gobject.TYPE_INT]) that are used to set the values in the cells of the new
row. Alternatively, the application can fill in row cell values using the set() or set_value() methods.

gtk.ListStore.clear

 def clear()

The clear() method removes all rows from the liststore.

gtk.ListStore.iter_is_valid

 def iter_is_valid(iter)

iter : A gtk.TreeIter.
Returns : TRUE if the iter is valid, FALSE if the iter is invalid.

Note

This method is available in PyGTK 2.2 and above.

Warning

This method is slow. Only use it for debugging and/or testing purposes.

The iter_is_valid() method checks if the gtk.TreeIter specified by iter is a valid iter for this
gtk.ListStore.

gtk.ListStore.reorder

 def reorder(new_order)

new_order : a list of integers mapping the new position of each child to its old position before the
re−ordering, i.e. new_order[newpos] = oldpos.

Note

This method is available in PyGTK 2.2 and above.

PyGTK 2.0 Reference Manual

gtk.ListStore.prepend 450

The reorder() method reorders the gtk.ListStore items to follow the order indicated by new_order.
Note that this method only works with unsorted stores.

gtk.ListStore.swap

 def swap(a, b)

a : A gtk.TreeIter.
b : Another gtk.TreeIter.

Note

This method is available in PyGTK 2.2 and above.

The swap() method swaps the liststore rows specified by the gtk.TreeIters a and b. Note that this
method only works with unsorted stores.

gtk.ListStore.move_after

 def move_after(iter, position)

iter : A gtk.TreeIter.
position : A gtk.TreeIter or None.

Note

This method is available in PyGTK 2.2 and above.

The move_after() method moves the liststore row referenced by iter to the position after the row
referenced by position. Note that this method only works with unsorted stores. If position is None, the
row referenced by iter will be moved to the start of the list.

gtk.ListStore.move_before

 def move_before(iter, position)

iter : A gtk.TreeIter.
position : A gtk.TreeIter, or None.

Note

This method is available in PyGTK 2.2 and above.

The move_before() method moves the liststore row referenced by iter to the position before the row
referenced by position. Note that this method only works with unsorted stores. If position is None, the
row referenced by iter will be moved to the end of the list.

Prev Up Next
gtk.Layout Home gtk.Menu

gtk.Menu
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

Note 451

gtk.Menu

gtk.Menu � a drop down menu widget.

Synopsis

class gtk.Menu(gtk.MenuShell):
gtk.Menu()

 def popup(parent_menu_shell, parent_menu_item, func, button, activate_time)
 def reposition()
 def popdown()
 def get_active()
 def set_active(index)
 def set_accel_group(accel_group)
 def get_accel_group()
 def set_accel_path(accel_path)
 def attach_to_widget(attach_widget, detach_func)
 def detach()
 def get_attach_widget()
 def set_tearoff_state(torn_off)
 def get_tearoff_state()
 def set_title(title)
 def get_title()
 def reorder_child(child, position)
 def set_screen(screen)
 def attach(child, left_attach, right_attach, top_attach, bottom_attach)
 def set_monitor(monitor_num)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.MenuShell
 +−− gtk.Menu

Properties

"tearoff−state" Read−Write If TRUE the menu is torn−off. Default value: FALSE. Available in GTK+ 2.6
and above.

"tearoff−title" Read−Write A title that may be displayed by the window manager when this menu is
torn−off. Default value: "".

Child Properties

Note

These properties are available in GTK+ 2.4 and above.

"bottom−attach" Read−Write The row number to attach the bottom of the child to. Allowed values: >= −1.
Default value: −1.

"left−attach" Read−Write The column number to attach the left side of the child to. Allowed values: >=
−1. Default value: −1.

PyGTK 2.0 Reference Manual

gtk.Menu 452

"right−attach" Read−Write The column number to attach the right side of the child to. Allowed values: >=
−1. Default value: −1.

"top−attach" Read−Write The row number to attach the top of the child to. Allowed values: >= −1.
Default value: −1.

Style Properties

Note

These properties are available in GTK+ 2.4 and above.

"horizontal−offset" Read When the menu is a submenu, position it this number of pixels offset horizontally.
Default value: −2.

"vertical−offset" Read When the menu is a submenu, position it this number of pixels offset vertically.
Default value: 0.

"vertical−padding" Read Extra space at the top and bottom of the menu. Allowed values: >= 0. Default
value: 1.

Signal Prototypes

"move−scroll" def callback(menu, type, user_param1, ...)

Description

A gtk.Menu is a gtk.MenuShell that implements a drop down menu consisting of a list of
gtk.MenuItem objects which can be navigated and activated by the user to perform application functions.
A gtk.Menu is most commonly dropped down by activating a gtk.MenuItem in a gtk.MenuBar or
popped up by activating a gtk.MenuItem in another gtk.Menu. A gtk.Menu can also be popped up by
activating a gtk.OptionMenu. Other composite widgets such as the gtk.Notebook can pop up a
gtk.Menu as well. Applications can display a gtk.Menu as a popup menu by calling the popup() method.

Constructor

gtk.Menu()

Returns : a gtk.Menu widget
Creates a new gtk.Menu widget.

Methods

gtk.Menu.popup

 def popup(parent_menu_shell, parent_menu_item, func, button, activate_time)

parent_menu_shell : the menu shell containing the triggering menu item or None.
parent_menu_item : the menu item whose activation triggered the popup or None.
func : a user supplied function used to position the menu or None.
button : the mouse button which was pressed to initiate the event.

PyGTK 2.0 Reference Manual

Note 453

activate_time : the time at which the activation event occurred.
The popup() method displays a menu and makes it available for selection. Applications can use this function
to display context−sensitive menus, and will typically supply None for the parent_menu_shell,
parent_menu_item and func parameters. The default menu positioning function will position the menu
at the current pointer position. The button and activate_time values should be the mouse button that
was pressed to trigger the menu popup and the time the button was pressed. These values can usually be
retrieved from the "button_press_event".

gtk.Menu.reposition

 def reposition()

The reposition() method repositions the menu on the screen according to the internal position function.

gtk.Menu.popdown

 def popdown()

The popdown() method removes the menu from the screen.

gtk.Menu.get_active

 def get_active()

Returns : the gtk.MenuItem that was last selected in the menu. If a selection has not yet been
made, the first menu item is selected.

The get_active() method returns the selected menu item from the menu. This is used by the
gtk.OptionMenu.

gtk.Menu.set_active

 def set_active(index)

index : the index of the menu item to select. Index values start from 0.
The set_active() method selects the menu item within the menu at the location specified by index. This
is used by the gtk.OptionMenu and is not useful for applications.

gtk.Menu.set_accel_group

 def set_accel_group(accel_group)

accel_group : a gtk.AccelGroup
The set_accel_group() method associates the gtk.AccelGroup specified by accel_group with
the menu. The accelerator group should also be added to all windows using this menu by calling the
gtk.Window.add_accel_group() method.

gtk.Menu.get_accel_group

 def get_accel_group()

Returns : the gtk.AccelGroup associated with the menu.

PyGTK 2.0 Reference Manual

gtk.Menu.popup 454

The get_accel_group() method returns the gtk.AccelGroup that holds the global accelerators for the
menu.

gtk.Menu.set_accel_path

 def set_accel_path(accel_path)

accel_path : a valid accelerator path
The set_accel_path() method sets an accelerator path (specified by accel_path) for this menu to be
used to construct accelerator paths for its menu items. This is a convenience method used to avoid calling the
gtk.MenuItem.set_accel_path() method on each menu item that should support runtime user
changeable accelerators. Instead, by just calling set_accel_path() on their parent, each menu item of this
menu, that contains a label describing its purpose, automatically gets an accel path assigned. For example,
calling:

 menu.set_accel_path("<main>/File")

for a menu containing menu items "New" and "Exit", will assign its items the accel paths:
"<main>/File/New" and "<main>/File/Exit". Assigning accel paths to menu items enables the
user to change their accelerators at runtime.

gtk.Menu.attach_to_widget

 def attach_to_widget(attach_widget, detach_func)

attach_widget : the widget that the menu will be attached to.

detach_func : the user supplied callback function that will be called when the menu calls the
detach() method.

The attach_to_widget() method attaches the menu to the widget specified by attach_widget and
provides a callback function specified by detach_func that will be invoked when the menu calls the
detach() method during its destruction.

gtk.Menu.detach

 def detach()

The detach() method detaches the menu from the widget to which it had been attached. See
attach_to_widget()().

gtk.Menu.get_attach_widget

 def get_attach_widget()

Returns : the widget that the menu is attached to.
The get_attach_widget() method returns the gtk.Widget that the menu is attached to.

gtk.Menu.set_tearoff_state

 def set_tearoff_state(torn_off)

torn_off : If TRUE, the menu is displayed as a tearoff menu.
The set_tearoff_state() method sets the tearoff state of the menu to the value of torn_off. If
torn_off is TRUE the menu is displayed as a tearoff menu; if torn_off is FALSE the menu is displayed

PyGTK 2.0 Reference Manual

gtk.Menu.get_accel_group 455

as a drop down menu which persists as long as the menu is active.

gtk.Menu.get_tearoff_state

 def get_tearoff_state()

Returns : TRUE if the menu is currently torn off.
The get_tearoff_state() method returns whether the menu is torn off. See set_tearoff_state().

gtk.Menu.set_title

 def set_title(title)

title : a string containing the title for the menu.
The set_title() method sets the title text (from the value of title) to be used for the menu when it is
shown as a tearoff menu.

gtk.Menu.get_title

 def get_title()

Returns : the title of the menu, or None if the menu has no title set on it.
The get_title() method returns the title of the menu or None of no title is set. See set_title().

gtk.Menu.reorder_child

 def reorder_child(child, position)

child : the gtk.MenuItem to move.
position : the new position to place child. Positions are numbered starting from 0
The reorder_child() method moves the menuitem specified by child to a new position within the
menu specified by position.

gtk.Menu.set_screen

 def set_screen(screen)

screen : a gtk.gdk.Screen, or None if the screen should be determined by the widget the menu is
attached to.

Note

This method is available in PyGTK 2.2 and above.

The set_screen() method sets the gtk.gdk.Screen specified by screen on which the menu will be
displayed. If screen is None the screen is determined by the widget that the menu is attached to.

gtk.Menu.attach

 def attach(child, left_attach, right_attach, top_attach, bottom_attach)

child : a gtk.MenuItem.

PyGTK 2.0 Reference Manual

gtk.Menu.set_tearoff_state 456

left_attach : The column number to attach the left side of the item to.
right_attach : The column number to attach the right side of the item to.
top_attach : The row number to attach the top of the item to.
bottom_attach : The row number to attach the bottom of the item to.

Note

This method is available in PyGTK 2.4 and above.

The attach() method adds a new gtk.MenuItem specified by child to a (table) menu. The number of
'cells' that an item will occupy is specified by left_attach, right_attach, top_attach and
bottom_attach. These each represent the leftmost, rightmost, uppermost and lower column and row
numbers of the table. (Columns and rows are indexed from zero).

Note that this function is not related to the detach() method.

gtk.Menu.set_monitor

 def set_monitor(monitor_num)

monitor_num : the number of the monitor on which the menu should be popped up

Note

This method is available in PyGTK 2.4 and above.

The set_monitor() method informs GTK+ on which monitor a menu should be popped up. See the
gtk.gdk.Screen.get_monitor_geometry() method for more information.

This method should be called from a menu positioning function if the menu should not appear on the same
monitor as the pointer. This information can't be reliably inferred from the coordinates returned by a menu
positioning function, since, for very long menus, these coordinates may extend beyond the monitor boundaries
or even the screen boundaries.

Signals

The "move_scroll" gtk.Menu Signal

 def callback(menu, type, user_param1, ...)

menu : the menu that received the signal
type : the type of scroll that is requested
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.2 and above.

The "move_scroll" signal is emitted when the user attempts to scroll the menu. type should be one of the
GTK Scroll Step Constants.

Prev Up Next

PyGTK 2.0 Reference Manual

gtk.Menu.attach 457

gtk.ListStore Home gtk.MenuBar
gtk.MenuBar

Prev The gtk Class Reference Next

gtk.MenuBar

gtk.MenuBar � a widget that displays gtk.MenuItem widgets horizontally

Synopsis

class gtk.MenuBar(gtk.MenuShell):
gtk.MenuBar()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.MenuShell
 +−− gtk.MenuBar

Style Properties

"shadow−type" Read The style of bevel around the menubar
"internal−padding" Read Amount of border space between the menubar shadow and the menu items

Description

The gtk.MenuBar is a subclass of gtk.MenuShell which contains one or more gtk.MenuItem
widgets. A gtk.MenuBar displays the menu items horizontally in an application window or dialog.

Constructor

gtk.MenuBar()

Returns : a new gtk.MenuBar widget
Creates a new gtk.MenuBar widget.

Prev Up Next
gtk.Menu Home gtk.MenuItem

gtk.MenuItem
Prev The gtk Class Reference Next

gtk.MenuItem

gtk.MenuItem � the widget used for an item in menus

PyGTK 2.0 Reference Manual

Note 458

Synopsis

class gtk.MenuItem(gtk.Item):
gtk.MenuItem(label=None, use_underline=TRUE)

 def set_submenu(submenu)
 def get_submenu()
 def remove_submenu()
 def select()
 def deselect()
 def activate()
 def toggle_size_request()
 def toggle_size_allocate(allocation)
 def set_right_justified(right_justified)
 def get_right_justified()
 def set_accel_path(accel_path)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Item
 +−− gtk.MenuItem

Style Properties

"selected−shadow−type" Read The shadow type when the item is selected

Signal Prototypes

"activate" def callback(menuitem, user_param1, ...)

"activate−item" def callback(menuitem, user_param1, ...)

"toggle−size−allocate" def callback(menuitem, allocation, user_param1, ...)

"toggle−size−request" def callback(menuitem, requisition, user_param1, ...)

Description

The gtk.MenuItem widget implements the appearance and behavior of menu items. The gtk.MenuItem
and its derived widget subclasses are the only valid children of menus.

When menu items are selected and activated by a user they can:

display a popup menu if they have an associated submenu•
invoke an associated function or method•

As a gtk.MenuItem is a subclass of gtk.Bin it can hold any valid child widget.

Constructor

gtk.MenuItem(label=None, use_underline=TRUE)

PyGTK 2.0 Reference Manual

Synopsis 459

label : a string to be used as the text of the menu item or None

use_underline :
if TRUE, an underscore in the label text indicates the next character should be underlined
and used for the mnemonic accelerator key if it is the first character so marked.
Available in PyGTK 2.4 and above.

Returns : a new gtk.MenuItem widget
Creates a new gtk.MenuItem widget and sets the text of the menu item label to the value of label. If
label is None no label is created for the menu item. The text of label is parsed for underscore characters
that indicate that the next character is a mnemonic accelerator.

In PyGTK 2.4 and above the use_underline parameter is available and defaults to TRUE. If
use_underline is set to FALSE the label text will not be parsed for mnemonic characters.

Methods

gtk.MenuItem.set_submenu

 def set_submenu(submenu)

submenu : the menu to use as the submenu
The set_submenu() method sets the menu specified by submenu as the submenu for the menu item.

gtk.MenuItem.get_submenu

 def get_submenu()

Returns : the submenu for this menu item, or None if there is no submenu.
The get_submenu() method returns the submenu widget associated with this menu item. If there is no
submenu this method returns None. See set_submenu().

gtk.MenuItem.remove_submenu

 def remove_submenu()

The remove_submenu() method removes the submenu associated with the menu item.

gtk.MenuItem.select

 def select()

The select() method emits the "select" signal on the menu item.

gtk.MenuItem.deselect

 def deselect()

The deselect() method emits the "deselect" signal on the menu item.

PyGTK 2.0 Reference Manual

Constructor 460

gtk.MenuItem.activate

 def activate()

The activate() method emits the "activate" signal on the menu item.

gtk.MenuItem.toggle_size_request

 def toggle_size_request()

Returns : the size requisition

Note

This method is available in PyGTK 2.4 and above.

The toggle_size_request() method emits the "toggle−size−request" signal on the menuitem and
returns the size requested for the menuitem.

gtk.MenuItem.toggle_size_allocate

 def toggle_size_allocate(allocation)

allocation : the allocation size for the menu item
The toggle_size_allocate() method emits the "toggle−size−allocate" signal on the menu item.

gtk.MenuItem.set_right_justified

 def set_right_justified(right_justified)

right_justified : if TRUE the menu item will appear at the far right if added to a menu bar.
The set_right_justified() method sets the justification of the menu item according to the value of
right_justified. If right_justified is TRUE the menu item will appear at the right side of a
menu bar. If the widget layout is reversed for a right−to−left language like Hebrew or Arabic,
right−justified−menu−items appear on the left.

gtk.MenuItem.get_right_justified

 def get_right_justified()

Returns : TRUE if the menu item will appear at the far right if added to a menu bar.
The get_right_justified() method gets the justification of the menu item. If TRUE the menu item
appears justified at the right side of the menu bar.

gtk.MenuItem.set_accel_path

 def set_accel_path(accel_path)

accel_path : the accelerator path, corresponding to this menu item
The set_accel_path() method sets the accelerator path on the menu item. The accelerator path provides
access to the menu item's accelerator allowing user changes to be identified and saved to persistent storage.
See also the gtk.Menu.set_accel_path() method for a more convenient variant of this function. This
method is a convenience wrapper that handles calling gtk.Widget.set_accel_path() with the
appropriate accelerator group for the menu item.

PyGTK 2.0 Reference Manual

gtk.MenuItem.activate 461

Signals

The "activate" gtk.MenuItem Signal

 def callback(menuitem, user_param1, ...)

menuitem : the menuitem that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "activate" signal is emitted when the menu item is activated.

The "activate−item" gtk.MenuItem Signal

 def callback(menuitem, user_param1, ...)

menuitem : the menuitem that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "activate−item" signal is emitted when the menu item is activated, but also if the menu item has a
submenu. For normal applications, the relevant signal is "activate".

The "toggle−size−allocate" gtk.MenuItem Signal

 def callback(menuitem, allocation, user_param1, ...)

menuitem : the menuitem that received the signal
allocation : the size allocation for the menuitem
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "toggle−size−allocate" signal is emitted when the size allocation is changed.

The "toggle−size−request" gtk.MenuItem Signal

 def callback(menuitem, requisition, user_param1, ...)

menuitem : the menuitem that received the signal
requisition : the pointer to the location to put the size request
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "toggle−size−request" signal is emitted when a new size request is needed.

Prev Up Next
gtk.MenuBar Home gtk.MenuShell

gtk.MenuShell
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

Signals 462

gtk.MenuShell

gtk.MenuShell � a base class for menu objects.

Synopsis

class gtk.MenuShell(gtk.Container):
 def append(child)
 def prepend(child)
 def insert(child, position)
 def deactivate()
 def select_item(menu_item)
 def deselect()
 def activate_item(menu_item, force_deactivate)
 def select_first(search_sensitive)
 def cancel()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.MenuShell

Signal Prototypes

"activate−current" def callback(menushell, force_hide, user_param1, ...)

"cancel" def callback(menushell, user_param1, ...)

"cycle−focus" def callback(menushell, direction, user_param1, ...)

"deactivate" def callback(menushell, user_param1, ...)

"move−current" def callback(menushell, direction, user_param1, ...)

"selection−done" def callback(menushell, user_param1, ...)

Description

A gtk.MenuShell is the abstract base class used to derive the gtk.Menu and gtk.MenuBar
subclasses. A gtk.MenuShell is a container of gtk.MenuItem objects arranged in a list which can be
navigated, selected, and activated by the user to perform application functions. A gtk.MenuItem can have
a submenu associated with it, allowing for nested hierarchical menus.

Methods

gtk.MenuShell.append

 def append(child)

child : The gtk.MenuItem to add.
The append() method adds a new gtk.MenuItem specified by child to the end of the menu shell's item
list.

PyGTK 2.0 Reference Manual

gtk.MenuShell 463

gtk.MenuShell.prepend

 def prepend(child)

child : The gtk.MenuItem to add.
The prepend() method adds a new gtk.MenuItem specified by child to the beginning of the menu
shell's item list.

gtk.MenuShell.insert

 def insert(child, position)

child : The gtk.MenuItem to add.

position : The position in the item list where child should be added. Positions are numbered
starting from 0.

The insert() method adds a new gtk.MenuItem specified by child to the menu shell's item list at the
position specified by position.

gtk.MenuShell.deactivate

 def deactivate()

The deactivate() method deactivates the menu shell. Typically this results in the menu shell being
removed from the screen.

gtk.MenuShell.select_item

 def select_item(menu_item)

menu_item : The gtk.MenuItem to select.
The select_item() method selects the menu item specified by menu_item from the menu shell.

gtk.MenuShell.deselect

 def deselect()

The deselect() method deselects the currently selected item from the menu shell, if any.

gtk.MenuShell.activate_item

 def activate_item(menu_item, force_deactivate)

menu_item : The gtk.MenuItem to activate.
force_deactivate : If TRUE, force the deactivation of the menu shell after the menu item is activated.
The activate_item() method activates the menu item specified by menu_item. If
force_deactivate is TRUE the menushell is forcibly deactivated after menu_item is activated.

gtk.MenuShell.select_first

 def select_first(search_sensitive)

search_sensitive :

PyGTK 2.0 Reference Manual

gtk.MenuShell.prepend 464

if TRUE, search for the first selectable menu item, otherwise select nothing if the
first item isn't sensitive.

Note

This method is available in PyGTK 2.2 and above.

The select_first() method selects the first visible or selectable child of the menu shell if
search_sensitive is TRUE. Don't select tearoff items unless the only item is a tearoff item. If
search_sensitive is FALSE select nothing if the first item isn't sensitive. search_sensitive
should be FALSE if the menu is being popped up initially.

gtk.MenuShell.cancel

 def cancel()

Note

This method is available in PyGTK 2.4 and above.

The cancel() method cancels the selection within the menu shell.

Signals

The "activate−current" gtk.MenuShell Signal

 def callback(menushell, force_hide, user_param1, ...)

menushell : the menushell that received the signal
force_hide : if TRUE, hide the menu after activating the menu item.
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "activate−current" signal is emitted to activate the current menu item in the menushell.

The "cancel" gtk.MenuShell Signal

 def callback(menushell, user_param1, ...)

menushell : the menushell that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "cancel" signal is emitted to cancel the selection in the menushell. Also causes the "selection−done"
signal to be emitted.

The "cycle−focus" gtk.MenuShell Signal

 def callback(menushell, user_param1, ...)

menushell : the menushell that received the signal
direction : the direction to cycle the focus; one of: gtk.DIR_TAB_FORWARD,

PyGTK 2.0 Reference Manual

gtk.MenuShell.select_first 465

gtk.DIR_TAB_BACKWARD, gtk.DIR_UP, gtk.DIR_DOWN, gtk.DIR_LEFT or
gtk.DIR_RIGHT

user_param1 :the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "cycle−focus" signal is emitted when an action occurs requesting the focus move to the next menubar.

The "deactivate" gtk.MenuShell Signal

 def callback(menushell, user_param1, ...)

menushell : the menushell that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "deactivate" signal is emitted when the menushell is deactivated.

The "move−current" gtk.MenuShell Signal

 def callback(menushell, direction, user_param1, ...)

menushell : the menushell that received the signal

direction : the direction to move; one of: gtk.MENU_DIR_PARENT, gtk.MENU_DIR_CHILD,
gtk.MENU_DIR_NEXT or gtk.MENU_DIR_PREV

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−current" signal is emitted when the current menu item is to be moved in the direction specified by
direction which is one of:

gtk.MENU_DIR_PARENT To the parent menu shell.
gtk.MENU_DIR_CHILD To the submenu, if any, associated with the item.
gtk.MENU_DIR_NEXT To the next menu item.
gtk.MENU_DIR_PREV To the previous menu item.

The "selection−done" gtk.MenuShell Signal

 def callback(menushell, user_param1, ...)

menushell : the menushell that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "selection−done" signal is emitted when a selection has been completed within a menu shell.

Prev Up Next
gtk.MenuItem Home gtk.MenuToolButton

gtk.MenuToolButton
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

The "cycle−focus" gtk.MenuShell Signal 466

gtk.MenuToolButton

gtk.MenuToolButton � A gtk.ToolItem containing a button with an additional dropdown menu (new in
PyGTK 2.6)

Synopsis

class gtk.MenuToolButton(gtk.ToolButton):
gtk.MenuToolButton(stock_id)
gtk.MenuToolButton(icon_widget, label)

 def set_menu(menu)
 def get_menu()
 def set_arrow_tooltip(tooltips, tip_text, tip_private=None)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ToolItem
 +−− gtk.ToolButton
 +−− gtk.MenuToolButton

Properties

"menu" Read−Write The dropdown gtk.Menu.

Signal Prototypes

"show−menu" def callback(menutoolbutton, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.6 and above.

A gtk.MenuToolButton is a gtk.ToolItem that contains a button and a small additional button with
an arrow. When clicked, the arrow button pops up a dropdown menu.

Constructor

gtk.MenuToolButton

gtk.MenuToolButton(stock_id)

stock_id :
Returns : a new gtk.MenuToolButton

PyGTK 2.0 Reference Manual

gtk.MenuToolButton 467

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new gtk.MenuToolButton using from the stock item specified by stock_id. The new
gtk.MenuToolButton will contain the icon and label associated with stock_id.

gtk.MenuToolButton

gtk.MenuToolButton(icon_widget, label)

icon_widget : a widget that will be used as icon widget, or None
label : a string that will be used as label, or None
Returns : a new gtk.MenuToolButton

Note

This constructor is available in PyGTK 2.6 and above.

Creates a new gtk.MenuToolButton using the icon specified by icon_widget and the label specified
by label.

Methods

gtk.MenuToolButton.set_menu

 def set_menu(menu)

menu : a gtk.Menu

Note

This method is available in PyGTK 2.6 and above.

The set_menu() method sets the "menu" property to the gtk.Menu specified by menu.

gtk.MenuToolButton.get_menu

 def get_menu()

Returns : the associated gtk.Menu

Note

This method is available in PyGTK 2.6 and above.

The get_menu() method returns the value of the "menu" property that contains the associated gtk.Menu.

gtk.MenuToolButton.set_arrow_tooltip

 def set_arrow_tooltip(tooltips, tip_text, tip_private=None)

tooltips : A gtk.Tooltips object.

PyGTK 2.0 Reference Manual

Note 468

tip_text : The text to use as the tooltip or None
tip_private : Opitonal private tooltip text or None. Defaults to None.

Note

This method is available in PyGTK 2.6 and above.

The set_arrow_tooltip() method sets the tooltip data specified by tip_text for the arrow button
using the gtk.Tooltips object specified by tooltips.

Signals

The "show−menu" gtk.MenuToolButton Signal

 def callback(menutoolbutton, user_param1, ...)

menutoolbutton : the menutoolbutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.6 and above.

The "show−menu" signal is emitted before the dropdown menu is displayed.

Prev Up Next
gtk.MenuShell Home gtk.MessageDialog

gtk.MessageDialog
Prev The gtk Class Reference Next

gtk.MessageDialog

gtk.MessageDialog � a convenient message window

Synopsis

class gtk.MessageDialog(gtk.Dialog):
gtk.MessageDialog(parent=None, flags=0, type=gtk.MESSAGE_INFO, buttons=gtk.BUTTONS_NONE, message_format=None)

 def set_markup(str)
 def format_secondary_text(message_format)
 def format_secondary_markup(message_format)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Dialog

PyGTK 2.0 Reference Manual

gtk.MenuToolButton.set_arrow_tooltip 469

 +−− gtk.MessageDialog

Properties

"buttons" Write−Construct The buttons shown in the message dialog. One of the GTK Buttons
Type Constants: gtk.BUTTONS_NONE, gtk.BUTTONS_OK,
gtk.BUTTONS_CLOSE, gtk.BUTTONS_CANCEL,
gtk.BUTTONS_YES_NO, gtk.BUTTONS_OK_CANCEL.
Default value: gtk.BUTTONS_NONE

"message−type" Read−Write−Construct The type of message. One of the GTK Message Type Constants:
gtk.MESSAGE_INFO, gtk.MESSAGE_WARNING,
gtk.MESSAGE_QUESTION or gtk.MESSAGE_ERROR. Default
value: gtk.MESSAGE_INFO

Style Properties

"message−border" Read−Write The width of border around the label and image in the message dialog.
Allowed values: >= 0. Default value: 12.

Attributes

"image" Read The stock ID image

"label" Read The label widget that contains the message text.

Description

The gtk.MessageDialog presents a dialog with an image representing the type of message (Error,
Question, etc.) alongside some message text. It's simply a convenience widget; you could construct the
equivalent of gtk.MessageDialog from gtk.Dialog without too much effort, but
gtk.MessageDialog saves time.

The gtk.MessageDialog types are listed in the GTK Message Type Constants.

A selection of predefined button sets is available for use in a message dialog. See the GTK Buttons Type
Constants.

See the gtk.Dialog reference page for additional methods to be used with the gtk.MessageDialog.

Constructor

gtk.MessageDialog(parent=None, flags=0, type=gtk.MESSAGE_INFO, buttons=gtk.BUTTONS_NONE, message_format=None)

parent : the transient parent, or None if none

flags : the dialog flags − a combination of: gtk.DIALOG_MODAL,
gtk.DIALOG_DESTROY_WITH_PARENT or 0 for no flags

type :
the type of message: gtk.MESSAGE_INFO,
gtk.MESSAGE_WARNING, gtk.MESSAGE_QUESTION or
gtk.MESSAGE_ERROR.

buttons :

PyGTK 2.0 Reference Manual

Ancestry 470

the predefined set of buttons to use: gtk.BUTTONS_NONE,
gtk.BUTTONS_OK, gtk.BUTTONS_CLOSE,
gtk.BUTTONS_CANCEL, gtk.BUTTONS_YES_NO,
gtk.BUTTONS_OK_CANCEL

message_format : a string containing the message text or None
Returns : a new gtk.MessageDialog widget
Creates a new gtk.MessageDialog, which is a simple dialog with an icon indicating the dialog type
(error, warning, etc.) specified by type and some text (message_format) the user may want to see.
parent if specified indicates the transient parent of the dialog. The flags allow the specification special
dialog characteristics: make the dialog modal (gtk.DIALOG_MODAL) and destroy the dialog when the
parent is destroyed (gtk.DIALOG_DESTROY_WITH_PARENT). When the user clicks a button a "response"
signal is emitted with response IDs. buttons specifies the set of predefined buttons to use:
gtk.BUTTONS_NONE, gtk.BUTTONS_OK, gtk.BUTTONS_CLOSE, gtk.BUTTONS_CANCEL,
gtk.BUTTONS_YES_NO, gtk.BUTTONS_OK_CANCEL. See gtk.Dialog for more details.

Methods

gtk.MessageDialog.set_markup

 def set_markup(str)

str : a markup string (see the Pango markup language reference)

Note

This method is available in PyGTK 2.4 and above.

The set_markup() method sets the text of the message dialog to the contents of str. If str contains text
marked up with Pango markup (see The Pango Markup Language), it will be displayed with those attributes.
Note the '<', '>' and '&' characters must be replaced with '<', '>' and '&' respectively to be displayed
literally.

gtk.MessageDialog.format_secondary_text

 def format_secondary_text(message_format)

message_format : The text to be displayed as the secondary text or None.

Note

This method is available in PyGTK 2.6 and above.

The format_secondary_text() method sets the secondary text of the message dialog to the text
specified by message_format. Note that setting a secondary text makes the primary text bold, unless you
have provided explicit markup.

gtk.MessageDialog.format_secondary_markup

 def format_secondary_markup(message_format)

message_format : A string containing the pango markup to use as secondary text.

PyGTK 2.0 Reference Manual

Constructor 471

Note

This method is available in PyGTK 2.6 and above.

The format_secondary_markup() method sets the secondary text to the markup text specified by
message_format. Note that setting a secondary text makes the primary text become bold, unless you have
provided explicit markup.

Prev Up Next
gtk.MenuToolButton Home gtk.Misc

gtk.Misc
Prev The gtk Class Reference Next

gtk.Misc

gtk.Misc � a base class for widgets with alignments and padding.

Synopsis

class gtk.Misc(gtk.Widget):
 def set_alignment(xalign, yalign)
 def get_alignment()
 def set_padding(xpad, ypad)
 def get_padding()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Misc

Properties

"xalign" Read−Write The horizontal alignment, from 0.0 to 1.0
"yalign" Read−Write The vertical alignment, from 0.0 to 1.0
"xpad" Read−Write The amount of space to add on the left and right of the widget, in pixels
"ypad" Read−Write The amount of space to add above and below the widget, in pixels

Description

The gtk.Misc widget is an abstract widget used to derive subclasses which have alignment and padding
attributes. The horizontal and vertical padding attributes allow extra space to be added around the widget. The
horizontal and vertical alignment attributes enable the widget to be positioned within its allocated area. The
alignment values represent the fraction of available free space (allocation minus the widget size) to place to
the left or above the widget for x and y alignment respectively. Note that if the widget is added to a container
in such a way that it expands automatically to fill its allocated area, the alignment settings will have no effect.

PyGTK 2.0 Reference Manual

Note 472

Methods

gtk.Misc.set_alignment

 def set_alignment(xalign, yalign)

xalign : the horizontal alignment
yalign : the vertical alignment
The set_alignment() method sets the alignment of the widget in its allocated space. xalign sets the
fraction (0.0−1.0) of free space (horizontal allocation minus widget width) to place to the left of the widget.
yalign sets the fraction (0.0−1.0) of free space (vertical allocation minus widget height) to place above the
widget.

gtk.Misc.get_alignment

 def get_alignment()

Returns : a tuple containing the X and Y alignments of the widget
The get_alignment() method returns a tuple containing the X and Y alignments of the widget within its
allocation. See set_alignment().

gtk.Misc.set_padding

 def set_padding(xpad, ypad)

xpad : the amount of space to add on the left and right of the widget, in pixels.
ypad : the amount of space to add on the top and bottom of the widget, in pixels.
The set_padding() method sets the amount of space to add around the widget. The xpad value specifies
the number of pixels of padding to add to the left and right of the widget. The yalign value specifies the
number of pixels to add above and below the widget.

gtk.Misc.get_padding

 def get_padding()

Returns : a tuple containing the horizontal and vertical padding in pixels for the widget.
The get_padding() method returns a tuple containing the padding in the horizontal and vertical directions
of the widget. See set_padding().

Prev Up Next
gtk.MessageDialog Home gtk.Notebook

gtk.Notebook
Prev The gtk Class Reference Next

gtk.Notebook

gtk.Notebook � a tabbed notebook container.

PyGTK 2.0 Reference Manual

Methods 473

Synopsis

class gtk.Notebook(gtk.Container):
gtk.Notebook()

 def append_page(child, tab_label=None)
 def append_page_menu(child, tab_label=None, menu_label=None)
 def prepend_page(child, tab_label=None)
 def prepend_page_menu(child, tab_label=None, menu_label=None)
 def insert_page(child, tab_label=None, position=−1)
 def insert_page_menu(child, tab_label=None, menu_label=None, position=−1)
 def remove_page(page_num)
 def get_current_page()
 def get_nth_page(page_num)
 def get_n_pages()
 def page_num(child)
 def set_current_page(page_num)
 def next_page()
 def prev_page()
 def set_show_border(show_border)
 def get_show_border()
 def set_show_tabs(show_tabs)
 def get_show_tabs()
 def set_tab_pos(pos)
 def get_tab_pos()
 def set_scrollable(scrollable)
 def get_scrollable()
 def popup_enable()
 def popup_disable()
 def get_tab_label(child)
 def set_tab_label(child, tab_label=None)
 def set_tab_label_text(child, tab_text)
 def get_tab_label_text(child)
 def get_menu_label(child)
 def set_menu_label(child, menu_label=None)
 def set_menu_label_text(child, menu_text)
 def get_menu_label_text(child)
 def query_tab_label_packing(child)
 def set_tab_label_packing(child, expand, fill, pack_type)
 def reorder_child(child, position)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Notebook

Properties

"enable−popup" Read−Write If TRUE, pressing the right mouse button on the notebook pops up a menu that
you can use to go to a page

"homogeneous" Read−Write If TRUE, tabs should have homogeneous sizes
"page" Read−Write The index of the current page
"scrollable" Read−Write If TRUE, scroll arrows are added if there are too many tabs to fit
"show−border" Read−Write If TRUE, the border should be shown
"show−tabs" Read−Write If TRUE, tabs should be shown
"tab−border" Write The width of the border around the tab labels

PyGTK 2.0 Reference Manual

Synopsis 474

"tab−hborder" Read−Write The width of the horizontal border of tab labels
"tab−pos" Read−Write The side of the notebook that holds the tabs: gtk.POS_LEFT,

gtk.POS_RIGHT, gtk.POS_TOP or gtk.POS_BOTTOM
"tab−vborder" Read−Write The width of the vertical border of tab labels

Child Properties

"menu−label" Read−Write The string displayed in the child's menu entry
"position" Read−Write The index of the child in the parent
"tab−expand" Read−Write If TRUE, expand the child's tabs
"tab−fill" Read−Write If TRUE, the child's tab should fill the allocated area
"tab−label" Read−Write The string displayed on the child's tab label
tab−pack"" Read−Write A pack type indicating whether the child is packed with reference

to the start or end of the parent: gtk.PACK_START or
gtk.PACK_END.

Style Properties

Note

These style properties are available in PyGTK 2.4 and above.

"has−backward−stepper" Read−Write If TRUE the standard backward arrow button is
displayed.

"has−forward−stepper" Read−Write If TRUE the standard forward arrow button is
displayed.

"has−secondary−backward−stepper" Read−Write If TRUE a second backward arrow button is
displayed on the opposite end of the tab area.

"has−secondary−forward−stepper" Read−Write If TRUE a second forward arrow button is
displayed on the opposite end of the tab area.

Attributes

"tab_pos" Read The side of the notebook that holds the tabs: gtk.POS_LEFT, gtk.POS_RIGHT,
gtk.POS_TOP or gtk.POS_BOTTOM

Signal Prototypes

"change−current−page" def callback(notebook, offset, user_param1, ...)

"focus−tab" def callback(notebook, type, user_param1, ...)

"move−focus−out" def callback(notebook, direction_type, user_param1, ...)

"select−page" def callback(notebook, move_focus, user_param1, ...)

"switch−page" def callback(notebook, page, page_num, user_param1, ...)

PyGTK 2.0 Reference Manual

Properties 475

Description

The gtk.Notebook widget is a gtk.Container whose children are overlapping pages that can be
switched between by using tab labels along one edge. There are many configuration options for the
gtk.Notebook. You can choose on which edge the tabs appear (see set_tab_pos()); whether the
notebook should be made bigger or scrolling arrows added if there are too many tabs to fit (see
set_scrollable()); and, whether there will be a popup menu allowing the users to switch pages. (see
popup_enable(), popup_disable()).

The gtk.Notebook is particularly useful for displaying a large number of application controls that can be
grouped into several functional areas. The typical example is the user preferences dialog in some applications.
For example, a notebook page can be setup for each of font selection, color selection, formating, etc.

Constructor

gtk.Notebook()

Returns : the newly created gtk.Notebook
Creates a new gtk.Notebook widget with no pages.

Methods

gtk.Notebook.append_page

 def append_page(child, tab_label=None)

child : the gtk.Widget to use as the contents of the page.
tab_label : the gtk.Widget to be used as the label for the page.

Returns : in PyGTK 2.0 and 2.2 returns None. In PyGTK 2.4 and above returns the index number of
the page in the notebook

The append_page() method appends a page to the notebook using the widget specified by child and the
widget specified by tab_label as the label on the tab.

In PyGTK 2.4 and above tab_label can be None to use a default label. Also if tab_label is not
specified it will default to None.

gtk.Notebook.append_page_menu

 def append_page_menu(child, tab_label=None, menu_label=None)

child : the gtk.Widget to use as the contents of the page.
tab_label : the gtk.Widget to be used as the label for the page.
menu_label : the widget to use as a label for the page−switch menu, if that is enabled.

Returns : in PyGTK 2.0 and 2.2 returns None. In PyGTK 2.4 and above returns the index
number of the page in the notebook

The append_page_menu() method appends a page to the notebook and specifying the widget to use as the
label in the popup menu. child specifies the widget to use as the contents of the page; tab_label
specifies the widget to be used as the tab label; and, menu_label specifies the widget to use in the popup
menu.

PyGTK 2.0 Reference Manual

Description 476

In PyGTK 2.4 and above tab_label can be None to use a default label. If tab_label is a gtk.Label
or None and menu_label is None then the menu label will have the same text as the tab label. Otherwise,
menu_label must be specified and not None. These parameters will default to None in PyGTK 2.4 as
well.

gtk.Notebook.prepend_page

 def prepend_page(child, tab_label=None)

child : the gtk.Widget to use as the contents of the page.
tab_label : the gtk.Widget to be used as the label for the page.

Returns : in PyGTK 2.0 and 2.2 returns None. In PyGTK 2.4 and above returns the index number of
the page in the notebook

The prepend_page() method prepends a page to the notebook. child specifies the widget to use as the
contents of the page and tab_label specifies the widget to be used as the tab label.

In PyGTK 2.4 and above tab_label can be None to use a default label. Also if tab_label is not
specified it will default to None.

gtk.Notebook.prepend_page_menu

 def prepend_page_menu(child, tab_label=None, menu_label=None)

child : the gtk.Widget to use as the contents of the page.
tab_label : the gtk.Widget to be used as the label for the page.
menu_label : the widget to use as a label for the page−switch menu, if that is enabled.

Returns : in PyGTK 2.0 and 2.2 returns None. In PyGTK 2.4 and above returns the index
number of the page in the notebook

The prepend_page_menu() method prepends a page to the notebook specifying the widget to use as the
label in the popup menu. child specifies the widget to use as the contents of the page; tab_label
specifies the widget to use as the tab label; and, menu_label specifies the widget to use in the popup menu.

In PyGTK 2.4 and above tab_label can be None to use a default label. If tab_label is a gtk.Label
or None and menu_label is None then the menu label will have the same text as the tab label. Otherwise,
menu_label must be specified and not None. These parameters will default to None in PyGTK 2.4 as
well.

gtk.Notebook.insert_page

 def insert_page(child, tab_label=None, position=None)

child : the gtk.Widget to use as the contents of the page.
tab_label : the gtk.Widget to be used as the label for the page.

position : the index (starting at 0) at which to insert the page, or −1 to append the page after all other
pages.

Returns : in PyGTK 2.0 and 2.2 returns None. In PyGTK 2.4 and above returns the index number of
the page in the notebook

The insert_page() method inserts a page into the notebook at the location specified by position (0 is
the first page). child is the widget to use as the contents of the page and tab_label specifies the widget
to be used as the tab label. If position is −1 the page is appended to the notebook. In PyGTK 2.4 and
above if tab_label is None a default label if "page N" is used.

PyGTK 2.0 Reference Manual

gtk.Notebook.append_page_menu 477

In PyGTK 2.4 and above tab_label can be None to use a default label. Also if tab_label is not
specified it will default to None.

In Pygtk 2.4 and above position will default to −1 if not specified.

gtk.Notebook.insert_page_menu

 def insert_page_menu(child, tab_label=None, menu_label=None, position=None)

child : the gtk.Widget to use as the contents of the page.
tab_label : the gtk.Widget to be used as the label for the page.
menu_label : the widget to use as a label for the page−switch menu, if that is enabled.

position : the index (starting at 0) at which to insert the page, or −1 to append the page after all
other pages.

Returns : in PyGTK 2.0 and 2.2 returns None. In PyGTK 2.4 and above returns the index
number of the page in the notebook

The insert_page_menu() method inserts a page into the notebook at the location specified by
position. child specifies the widget to use as the contents of the page; tab_label specifies the widget
to use as the tab label; and menu_label specifies the widget to use as the label in the popup menu.

In PyGTK 2.4 and above tab_label can be None to use a default label. If tab_label is a gtk.Label
or None and menu_label is None then the menu label will have the same text as the tab label. Otherwise,
menu_label must be specified and not None. These parameters will default to None in PyGTK 2.4 as
well.

In Pygtk 2.4 and above position will default to −1 if not specified.

gtk.Notebook.remove_page

 def remove_page(page_num)

page_num : the index of a notebook page, starting from 0. If −1, the last page will be removed.
The remove_page() method removes from the notebook the page at the location specified by index. The
value of index starts from 0. If index is −1 the last page of the notebook will be removed.

gtk.Notebook.get_current_page

 def get_current_page()

Returns : the index (starting from 0) of the current page in the notebook. If the notebook has no pages, then
−1 will be returned.

The get_current_page() method returns the page index of the current page numbered from 0.

gtk.Notebook.get_nth_page

 def get_nth_page(page_num)

page_num : the index of a page in the notebook
Returns : the child widget, or None if page_num is out of bounds.
The get_nth_page() method returns the child widget contained in the page with the index specified by
page_num. If page_num is out of bounds for the page range of the notebook this method returns None.

PyGTK 2.0 Reference Manual

gtk.Notebook.insert_page 478

gtk.Notebook.get_n_pages

 def get_n_pages()

Returns : the number of pages in the notebook.

Note

This method is available in PyGTK 2.4 and above.

The get_n_pages() method returns the number of pages in a notebook.

gtk.Notebook.page_num

 def page_num(child)

child : a gtk.Widget
Returns : the index of the page containing child, or −1 if child is not in the notebook.
The page_num() method returns the index of the page which contains the widget specified by child or
None if no page contains child.

gtk.Notebook.set_current_page

 def set_current_page(page_num)

page_num : the index of the page to switch to, starting from 0. If negative, the last page will be used. If
greater than the number of pages in the notebook, nothing will be done.

The set_current_page() method switches to the page number specified by page_num. If page_num is
negative the last page is selected.

gtk.Notebook.next_page

 def next_page()

The next_page() method switches to the next page. Nothing happens if the current page is the last page.

gtk.Notebook.prev_page

 def prev_page()

The prev_page() method switches to the previous page. Nothing happens if the current page is the first
page.

gtk.Notebook.set_show_border

 def set_show_border(show_border)

show_border : if TRUE a bevel should be drawn around the notebook.
The show_border() method sets the "show−border" property to the value of show_border. If
show_border is TRUE a bevel will be drawn around the notebook pages. This only has a visual effect when
the tabs are not shown. See set_show_tabs().

PyGTK 2.0 Reference Manual

gtk.Notebook.get_n_pages 479

gtk.Notebook.get_show_border

 def get_show_border()

Returns : TRUE if the bevel should be drawn
The get_show_border() method returns the value of the "show−border" property. If "show−border" is
TRUE a bevel will be drawn around the notebook pages when tabs are not shown. See
set_show_border().

gtk.Notebook.set_show_tabs

 def set_show_tabs(show_tabs)

show_tabs : if TRUE the tabs should be shown.
The set_show_tabs() method sets the "show−tabs" property to the value of show_tabs. If show_tabs
is TRUE the notebook tabs will be displayed.

gtk.Notebook.get_show_tabs

 def get_show_tabs()

Returns : TRUE if the tabs are shown
The get_show_tabs() method returns the value of the "show−tabs" property. If "show−tabs" is TRUE the
tabs of the notebook are shown. See set_show_tabs().

gtk.Notebook.set_tab_pos

 def set_tab_pos(pos)

pos : the edge to draw the tabs at: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP or
gtk.POS_BOTTOM.

The set_tab_pos() method sets the edge at which the tabs for switching pages in the notebook are drawn
as specified by pos. The value of pos can be one of: gtk.POS_LEFT, gtk.POS_RIGHT,
gtk.POS_TOP or gtk.POS_BOTTOM.

gtk.Notebook.get_tab_pos

 def get_tab_pos()

Returns : the edge at which the tabs are drawn
The get_tab_pos() method returns the edge at which the tabs for switching pages in the notebook are
drawn. The return value is one of: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP or
gtk.POS_BOTTOM.

gtk.Notebook.set_scrollable

 def set_scrollable(scrollable)

scrollable : if TRUE scroll arrows should be added
The set_scrollable() method sets the "scrollable" property to the value specified by scrollable. If
scrollable is TRUE the tab label area will have arrows for scrolling if there are too many tabs to fit in the
area.

PyGTK 2.0 Reference Manual

gtk.Notebook.get_show_border 480

gtk.Notebook.get_scrollable

 def get_scrollable()

Returns : TRUE if arrows for scrolling are enabled
The get_scrollable() method returns the value of the "scrollable" property. If "scrollable" is TRUE the
tab label area has scrolling arrows enabled and displayed if there are too many tabs to fit in the display area.
See set_scrollable().

gtk.Notebook.popup_enable

 def popup_enable()

The popup_enable() method enables the popup menu: if the user clicks with the right mouse button on the
tabs, a menu with all the pages will be popped up.

gtk.Notebook.popup_disable

 def popup_disable()

The popup_disable() method disables the popup menu.

gtk.Notebook.get_tab_label

 def get_tab_label(child)

child : a widget contained in a notebook page
Returns : the tab label widget for the page containing child
The get_tab_label() method returns the tab label widget for the page containing the widget child.
None is returned if child is not in the notebook.

gtk.Notebook.set_tab_label

 def set_tab_label(child, tab_label=None)

child : a widget contained in a notebook page
tab_label : the tab label widget to use or None.
The set_tab_label() method replaces the tab label for the notebook page containing child with the
widget specified by tab_label.

In PyGTK 2.4 and above tab_label can be None to use a default label. Also if tab_label is not
specified it will default to None.

gtk.Notebook.set_tab_label_text

 def set_tab_label_text(child, tab_text)

child : a widget contained in a notebook page
tab_text : the new label text
The set_tab_label_text() method creates a new label with the text specified by tab_text and sets it
as the tab label for the page containing child.

PyGTK 2.0 Reference Manual

gtk.Notebook.get_scrollable 481

gtk.Notebook.get_tab_label_text

 def get_tab_label_text(child)

child : a widget contained in a notebook page

Returns : value: the text of the tab label, or None if the tab label widget is not a gtk.Label or child is
not in a notebook page.

The get_tab_label_text() retrieves the text of the tab label for the page containing child. This
method returns None if child is not in a notebook page or the page tab label is not a gtk.Label widget.

gtk.Notebook.get_menu_label

 def get_menu_label(child)

child : a widget contained in a notebook page

Returns : the menu label, or None if the notebook page does not have a menu label other than the
default (the tab label) or if child is not in a notebook page.

The get_menu_label() method retrieves the menu label widget of the page containing child. If child
is not in a notebook page or the menu label has not been set (it defaults to the tab label), this method returns
None.

gtk.Notebook.set_menu_label

 def set_menu_label(child, menu_label=None)

child : a widget contained in a notebook page
menu_label : a widget to be used as the new menu label
The set_menu_label() replaces the menu label for the page containing child with the widget specified
by menu_label.

In PyGTK 2.4 and above menu_label can be None to use a default label. Also if menu_label is not
specified it will default to None. See the append_page_menu() method for more information.

gtk.Notebook.set_menu_label_text

 def set_menu_label_text(child, menu_text)

child : a widget contained in a notebook page
menu_text : the new menu label text
The set_menu_label_text() method creates a new label widget and replaces the menu label of the page
containingchild.

gtk.Notebook.get_menu_label_text

 def get_menu_label_text(child)

child : a child widget of a notebook page.

Returns :
value: the text of the tab label, or None if the widget does not have a menu label other than
the default menu label, or the menu label widget is not a gtk.Label or child is not
contained in a notebook page.

The get_menu_label_text() method retrieves the text of the menu label for the page containing child.
If child is not in a notebook page or the menu label is not a gtk.Label widget or the menu label has not

PyGTK 2.0 Reference Manual

gtk.Notebook.get_tab_label_text 482

been set (it default to the tab label), the return value is None.

gtk.Notebook.query_tab_label_packing

 def query_tab_label_packing(child)

child : the page
Returns : a tuple containing: the expand value, the fill value and the pack type
The query_tab_label_packing() method returns a tuple containing the packing attributes (expand, fill,
pack type) for the tab label of the page containing child. If the expand attribute is TRUE the tab can expand
to take up the free space in the tab area. If fill is TRUE the label widget in the tab can use up all the space in
the tab. The pack type can be one of gtk.PACK_START or gtk.PACK_END to specify whether the tab is
packed to the left or right if tabs are on the top or bottom edge (top or bottom if the tabs are on the left or right
edge).

gtk.Notebook.set_tab_label_packing

 def set_tab_label_packing(child, expand, fill, pack_type)

child : a widget contained in a notebook page
expand : if TRUE the tab can expand to fill the free space in the tab area
fill : if TRUE the label widget can fill the space in the tab
pack_type : the position of the tab: gtk.PACK_START or gtk.PACK_END
The set_tab_label_packing() method sets the packing parameters for the tab label of the page
containing child. If expand is TRUE the tab can expand to take up the free space in the tab area. If fill
is TRUE the label widget in the tab can use up all the space in the tab. The pack_type can be one of
gtk.PACK_START or gtk.PACK_END to specify whether the tab is packed to the left or right if tabs are on
the top or bottom edge (top or bottom if the tabs are on the left or right edge).See gtk.Box.pack_start()
for the exact meaning of the parameters.

gtk.Notebook.reorder_child

 def reorder_child(child, position)

child : the child widget to move
position : the index of the page that child is to move to, or −1 to move to the end
The reorder_child() method reorders the notebook pages so that child appears in the page whose
index is specified by position. If position is greater than or equal to the number of children in the list
or negative, child will be moved to the end of the list.

Signals

The "change−current−page" gtk.Notebook Signal

 def callback(notebook, offset, user_param1, ...)

notebook : the notebook that received the signal
offset : the count of pages to move (negative count is backward)
user_param1 : the first user parameter (if any) specified with the connect() method

PyGTK 2.0 Reference Manual

gtk.Notebook.get_menu_label_text 483

... : additional user parameters (if any)
The "change−current−page" signal is emitted when the page forward or page backward request is issued.

The "focus−tab" gtk.Notebook Signal

 def callback(notebook, type, user_param1, ...)

notebook : the notebook that received the signal
type : the type of tab: gtk.NOTEBOOK_TAB_FIRST or gtk.NOTEBOOK_TAB_LAST
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled
The "focus−tab" signal is emitted when the focus is changed by tabbing.

The "move−focus−out" gtk.Notebook Signal

 def callback(notebook, direction_type, user_param1, ...)

notebook : the notebook that received the signal

direction_type :
the direction type of the focus move: gtk.DIR_TAB_FORWARD,
gtk.DIR_TAB_BACKWARD, gtk.DIR_UP, gtk.DIR_DOWN,
gtk.DIR_LEFT or gtk.DIR_RIGHT

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−focus−out" signal is emitted when the focus is moved out of the notebook with the specified
direction_type.

The "select−page" gtk.Notebook Signal

 def callback(notebook, move_focus, user_param1, ...)

notebook : the notebook that received the signal
move_focus : if TRUE move the focus to a child widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled
The "select−page" signal is emitted when a new child page is selected.

The "switch−page" gtk.Notebook Signal

 def callback(notebook, page, page_num, user_param1, ...)

notebook : the notebook that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "switch−page" signal is emitted when the notebook page is changed.

Prev Up Next
gtk.Misc Home gtk.Object

PyGTK 2.0 Reference Manual

The "change−current−page" gtk.Notebook Signal 484

gtk.Object
Prev The gtk Class Reference Next

gtk.Object

gtk.Object � the base class of the PyGTK type hierarchy.

Synopsis

class gtk.Object(gobject.GObject):
 def flags()
 def set_flags(flags)
 def unset_flags(flags)
 def destroy()

Functions

 def gtk.bindings_activate(object, keyval, modifiers)
 def gtk.bindings_activate_event(object, event)

Ancestry

+−− gobject.GObject
 +−− gtk.Object

Signal Prototypes

"destroy" def callback(object, user_param1, ...)

Description

gtk.Object is the base class for all widgets, and for a few non−widget objects such as
gtk.Adjustment. gtk.Object predates GObject; non−widgets that derive from gtk.Object rather
than GObject do so for backward compatibility reasons.

The "destroy" signal, emitted by the destroy() method asks all code owning a GTK reference to the object
to release its GTK reference. So, for example, if you call window.destroy() where window is a
gtk.Window, GTK will release the GTK reference count that it owns; if you call button.destroy()
where button is a gtk.Button, button will be removed from its parent container and the parent container
will release its GTK reference to button. Because these GTK references are released, calling destroy()
should result in freeing all memory associated with an object (finalizing it) if the GTK reference count reaches
zero. However, in PyGTK the GTK objects are wrapped in a Python object that has its own reference counting
mechanism. The destroy() method does not affect the Python reference counts. The GTK object associated
with a Python object will not be released until the Python object reference count reaches zero. Therefore,
calling the destroy() method will not result in the finalization of the GTK object until the Python object is
finalized. In the case mentioned above if a gtk.Button is destroyed using the destroy() method, it will
be removed from its container and unmapped and unrealized but it will not be finalized because the Python
wrapper object will still exist and hold a reference.

PyGTK 2.0 Reference Manual

The "switch−page" gtk.Notebook Signal 485

Methods

gtk.Object.flags

 def flags()

Returns : the flags set for the object
The flags() method returns the value of the flags for the object. The flags returned will include both the
gtk.Object flags and the gtk.Widget flags.

The gtk.Object flags are:

gtk.IN_DESTRUCTION the object is currently being destroyed.
gtk.FLOATING the object is orphaned.
gtk.RESERVED_1 reserved for future use
gtk.RESERVED_2 reserved for future use
The gtk.Widget flags are:

gtk.TOPLEVEL
widgets without a real parent (e.g. gtk.Window and gtk.Menu) have this
flag set throughout their lifetime. Toplevel widgets always contain their own
gtk.gdk.Window.

gtk.NO_WINDOW
a widget that does not provide its own gtk.gdk.Window. Visible action
(e.g. drawing) is performed on the parent's gtk.gdk.Window.

gtk.REALIZED the widget has an associated gtk.gdk.Window.
gtk.MAPPED the widget can be displayed on the screen.
gtk.VISIBLE the widget will be mapped as soon as its parent is mapped.

gtk.SENSITIVE
The sensitivity of a widget determines whether it will receive certain events
(e.g. button or key presses). One requirement for the widget's sensitivity is to
have this flag set.

gtk.PARENT_SENSITIVE
This is the second requirement for the widget's sensitivity. Once a widget has
gtk.SENSITIVE and gtk.PARENT_SENSITIVE set, its state is
effectively sensitive.

gtk.CAN_FOCUS the widget is able to handle focus grabs.
gtk.HAS_FOCUS the widget has the focus − assumes that gtk.CAN_FOCUS is set
gtk.CAN_DEFAULT the widget is allowed to receive the default action.
gtk.HAS_DEFAULT the widget currently will receive the default action.

gtk.HAS_GRAB
the widget is in the grab_widgets stack, and will be the preferred one for
receiving events.

gtk.RC_STYLE
the widgets style has been looked up through the RC mechanism. It does not
imply that the widget actually had a style defined through the RC mechanism.

gtk.COMPOSITE_CHILD the widget is a composite child of its parent.
gtk.NO_REPARENT unused

gtk.APP_PAINTABLE
set on widgets whose window the application directly draws on, in order to
keep GTK from overwriting the drawn stuff.

gtk.RECEIVES_DEFAULT
the widget when focused will receive the default action and have
gtk.HAS_DEFAULT set even if there is a different widget set as default.

gtk.DOUBLE_BUFFERED exposes done on the widget should be double−buffered.

PyGTK 2.0 Reference Manual

Methods 486

gtk.Object.set_flags

 def set_flags(flags)

flags : the gtk.Object and gtk.Widget flags to be set on this object
The set_flags() method sets the object flags according to the value of flags. See flags() for a
description of the gtk.Object and gtk.Widget flags that can be set.

gtk.Object.unset_flags

 def unset_flags(flags)

flags : the gtk.Object and gtk.Widget flags to be unset on this object
The unset_flags() method unsets the object flags according to the value of flags. See flags() for a
description of the gtk.Object and gtk.Widget flags that can be unset.

gtk.Object.destroy

 def destroy()

The destroy() method emits the "destroy" signal notifying all reference holders that they should release the
gtk.Object.

Functions

gtk.bindings_activate

 def gtk.bindings_activate(object, keyval, modifiers)

object : the gtk.Object to activate the bindings on
keyval : a key value
modifiers : a modifier mask
 :
Returns : TRUE if the binding could be activated
The gtk.bindings_activate() function activates the bindings associated with the gtk.Object
specified by object with the key value specified by keyval and the modifier mask specified by
modifiers.

gtk.bindings_activate_event

 def gtk.bindings_activate_event(object, event)

object : the gtk.Object to activate the bindings on
event : a gtk.gdk.Event
Returns : TRUE if a matching key binding was found
The gtk.bindings_activate_event() function looks up key bindings for the gtk.Object
specified by object to find one matching the key gtk.gdk.Event specified by event, and if one was
found, activate it.

PyGTK 2.0 Reference Manual

gtk.Object.set_flags 487

Signals

The "destroy" gtk.Object Signal

 def callback(object, user_param1, ...)

object : the object that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "destroy" signal is emitted when the references for the object should be destroyed.

Prev Up Next
gtk.Notebook Home gtk.OptionMenu

gtk.OptionMenu
Prev The gtk Class Reference Next

gtk.OptionMenu

gtk.OptionMenu � a widget used to provide a list of valid choices.

Synopsis

class gtk.OptionMenu(gtk.Button):
gtk.OptionMenu()

 def get_menu()
 def set_menu(menu)
 def remove_menu()
 def get_history()
 def set_history(index)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Button
 +−− gtk.OptionMenu

Properties

"menu" Read−Write The menu of options.

Style Properties

"indicator−spacing" Read The spacing around the indicator.
"indicator−size" Read The size of the dropdown indicator

PyGTK 2.0 Reference Manual

Signals 488

Signal Prototypes

"changed" def callback(optionmenu, user_param1, ...)

Description

Warning

gtk.OptionMenu is deprecated in PyGTK 2.4; use the gtk.ComboBox instead.

A gtk.OptionMenu is a widget allows the user to choose from a list of valid choices from an associated
menu. The gtk.OptionMenu displays the last selected choice. When activated (clicked) the
gtk.OptionMenu displays a popup gtk.Menu which allows the user to make a new choice. Using a
gtk.OptionMenu is simple:

build a gtk.Menu using gtk.Menu()•
then append menu items to it using gtk.MenuShell.append()•
associate the menu with the option menu using set_menu()•
set the selected menu item with set_history()•
connect to the "changed" signal on the option menu; in the "changed" signal•
check the new selected menu item with get_history().•

Constructor

gtk.OptionMenu()

Returns : a new optionmenu widget
Creates a new gtk.OptionMenu widget.

Methods

gtk.OptionMenu.get_menu

 def get_menu()

Returns : a menu widget or None if no menu is associated
The get_menu() method returns the menu that is associated with the optionmenu or None if no menu is
associated.

gtk.OptionMenu.set_menu

 def set_menu(menu)

menu : a menu to be associated with the optionmenu
The set_menu() method associates the gtk.Menu widget specified by menu with the optionmenu thus
providing the way for a user to select a new choice. A simple menu, avoiding the use of tearoff menu items,
submenus, and accelerators, should be used.

PyGTK 2.0 Reference Manual

Signal Prototypes 489

gtk.OptionMenu.remove_menu

 def remove_menu()

The remove_menu() method removes the currently associated menu from the optionmenu.

gtk.OptionMenu.get_history

 def get_history()

Returns : the index of the selected menu item, or −1 if there are no menu items
The get_history() method returns the index of the currently selected menu item or −1 if there are no
menu items. The menu items are numbered from top to bottom, starting with 0.

gtk.OptionMenu.set_history

 def set_history(index)

index : the index of the menu item to display as the selected optionmenu choice
The set_history() method selects the menu item specified by index as the displayed optionmenu
choice.

Signals

The "changed" gtk.OptionMenu Signal

 def callback(optionmenu, user_param1, ...)

optionmenu : the optionmenu that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "changed" signal is emitted when a new optionmenu choice is made.

Prev Up Next
gtk.Object Home gtk.Paned

gtk.Paned
Prev The gtk Class Reference Next

gtk.Paned

gtk.Paned � a base class for widgets with two adjustable panes

Synopsis

class gtk.Paned(gtk.Container):
 def add1(child)
 def add2(child)
 def pack1(child, resize=FALSE, shrink=TRUE)
 def pack2(child, resize=TRUE, shrink=TRUE)
 def get_position()

PyGTK 2.0 Reference Manual

gtk.OptionMenu.remove_menu 490

 def set_position(position)
 def compute_position(allocation, child1_req, child2_req)
 def get_child1()
 def get_child2()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Paned

Properties

"max−position" Read−Write The largest possible value for the position property. This property is derived
from the size and shrinkability of the widget's children. Available in GTK+ 2.4
and above.

"min−position" Read−Write The smallest possible value for the position property. This property is derived
from the size and shrinkability of the widget's children. Available in GTK+ 2.4
and above.

"position" Read−Write The position of the paned separator in pixels (0 means all the way to the left or
top).

"position−set" Read−Write If TRUE, the "position" property is valid.

Child Properties

"resize" Read−Write If TRUE, the child expands and shrinks along with the paned widget. Available in
GTK+ 2.4 and above.

"shrink" Read−Write If TRUE, the child can be made smaller than its requisition. Available in GTK+ 2.4
and above.

Style Properties

"handle−size" Read The width of the handle

Signal Prototypes

"accept−position" def callback(paned, user_param1, ...)

"cancel−position" def callback(paned, user_param1, ...)

"cycle−child−focus" def callback(paned, reversed, user_param1, ...)

"cycle−handle−focus" def callback(paned, reversed, user_param1, ...)

"move−handle" def callback(paned, scrolltype, user_param1, ...)

"toggle−handle−focus" def callback(paned, user_param1, ...)

Description

gtk.Paned is the base class for widgets with two panes, arranged either horizontally (gtk.HPaned) or
vertically (gtk.VPaned). Child widgets are added to the panes of the widget with the pack1() and

PyGTK 2.0 Reference Manual

Synopsis 491

pack2() methods. The division between the two children is set by default from the size requests of the
children, but it can be adjusted by the user.

A paned widget draws a separator between the two child widgets and a small handle that the user can drag to
adjust the division. It does not draw any relief around the children or around the separator. (The space in
which the separator located is called the gutter.) Often, it is useful to put each child inside a gtk.Frame with
the shadow type set to gtk.SHADOW_IN so that the gutter appears as a ridge.

Each child has two options that can be set, resize and shrink. If resize is TRUE, when the gtk.Paned is
resized, that child will expand or shrink along with the paned widget. If shrink is TRUE, the child can be made
smaller than it's requisition. Setting shrink to FALSE allows the application to set a minimum size. If resize is
FALSE for both children, the resizing behaves as if resize is TRUE for both children. The application can set
the position of the slider by calling the set_position() method.

Methods

gtk.Paned.add1

 def add1(child)

child : the widget to add
The add1() method adds the widget specified by child to the top or left pane with the default packing
parameters (resize is FALSE and shrink is TRUE). See the pack1() method.

gtk.Paned.add2

 def add2(child)

child : the widget to add
The add2() method adds the widget specified by child to the bottom or right pane with the default packing
parameters (resize is TRUE and shrink is TRUE). See the pack2() method.

gtk.Paned.pack1

 def pack1(child, resize=FALSE, shrink=TRUE)

child : the widget to add
resize : if TRUE child should resize when the paned is resized
shrink : if TRUE child can be made smaller than its minimum size request
The pack1() method adds the widget specified by child to the top or left pane with the parameters
specified by resize and shrink. If resize is TRUE child should be resized when the paned widget is
resized. If shrink is TRUE child can be made smaller than its minimum size request.

gtk.Paned.pack2

 def pack2(child, resize=TRUE, shrink=TRUE)

child : the widget to add
resize : if TRUE child should resize when the paned is resized
shrink : if TRUE child can be made smaller than its minimum size request

PyGTK 2.0 Reference Manual

Description 492

The pack2() method adds the widget specified by child to the bottom or right pane with the parameters
specified by resize and shrink. If resize is TRUE child should be resized when the paned widget is
resized. If shrink is TRUE child can be made smaller than its minimum size request.

gtk.Paned.get_position

 def get_position()

Returns : the position of the divider
The get_position() method returns the position of the divider in pixels between the two panes.

gtk.Paned.set_position

 def set_position(position)

position : the new pixel position of divider, a negative value means that the position is unset.
The set_position() method sets the position of the divider between the two panes to the value specified
by position and sets the "position−set" property to TRUE if position is non−negative. If position is
negative the divider position will be recalculated by the paned widget using the child widget requisitions and
the "position−set" property will be set to FALSE.

gtk.Paned.compute_position

 def compute_position(allocation, child1_req, child2_req)

allocation : the total space allocation in pixels for the paned widget
child1_req : the minimum space in pixels required for the left or top child widget
child2_req : the minimum space in pixels required for the right or bottom child widget
The compute_position() method computes the position of the separator according to the specification of
the parameters: allocation, child1_req and child2_req. The calculation is affected by the packing
parameters of the child widgets depending on whether they can resize and shrink. This method is used by
subclasses of gtk.Paned and is usually not needed by applications. the gtk.Widget.queue_resize()
method must be called after this method to have the resizing displayed.

The minimum position is 0 if child1's shrink value is TRUE or the value of child1_req, if FALSE. The
maximum position is the value of allocation if child2's shrink value is TRUE, or the value of
(allocation − child2_req), if FALSE. The final calculated position will be between the minimum and
maximum positions.

gtk.Paned.get_child1

 def get_child1()

Returns : the first child, orNone

Note

This method is available in PyGTK 2.4 and above.

The get_child1() method returns the first child of the paned widget.

PyGTK 2.0 Reference Manual

gtk.Paned.pack2 493

gtk.Paned.get_child2

 def get_child2()

Returns : the second child, or None

Note

This method is available in PyGTK 2.4 and above.

The get_child2() method returns the second child of the paned widget.

Signals

The "accept−position" gtk.Paned Signal

 def callback(paned, user_param1, ...)

paned : the paned that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled
The "accept−position" signal is emitted when paned has the focus and any of the Return, Enter, Space keys
are pressed. This will also cause the child widget with the focus to be activated.

The "cancel−position" gtk.Paned Signal

 def callback(paned, user_param1, ...)

paned : the paned that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled
The "cancel−position" signal is emitted when the Esc key is pressed while paned has the focus.

The "cycle−child−focus" gtk.Paned Signal

 def callback(paned, reversed, user_param1, ...)

paned : the paned that received the signal
reversed : if TRUE the focus cycle direction should be reversed
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled
The "cycle−child−focus" signal is emitted when F6 or Shift+F6 is pressed while paned has the focus.

The "cycle−handle−focus" gtk.Paned Signal

 def callback(paned, reversed, user_param1, ...)

PyGTK 2.0 Reference Manual

gtk.Paned.get_child2 494

paned : the paned that received the signal
reversed : if TRUE the focus cycle direction should be reversed
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled
The "cycle−handle−focus" signal is emitted when paned has the focus and any of the Tab, Ctrl+Tab,
Shift+Tab or Ctrl+Shift+Tab keys combinations are pressed. Tab and Ctrl+Tab set reversed to FALSE
while Shift+Tab and Ctrl+Shift+Tab set reversed to TRUE.

The "move−handle" gtk.Paned Signal

 def callback(paned, scrolltype, user_param1, ...)

paned : the paned that received the signal

scrolltype :

the scroll type: gtk.SCROLL_NONE, gtk.SCROLL_JUMP,
gtk.SCROLL_STEP_BACKWARD, gtk.SCROLL_STEP_FORWARD,
gtk.SCROLL_PAGE_BACKWARD, gtk.SCROLL_PAGE_FORWARD,
gtk.SCROLL_STEP_UP, gtk.SCROLL_STEP_DOWN,
gtk.SCROLL_PAGE_UP, gtk.SCROLL_PAGE_DOWN,
gtk.SCROLL_STEP_LEFT, gtk.SCROLL_STEP_RIGHT,
gtk.SCROLL_PAGE_LEFT, gtk.SCROLL_PAGE_RIGHT,
gtk.SCROLL_START or gtk.SCROLL_END

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled
The "move−handle" signal is emitted when paned has the focus and one of the following key combinations
is pressed to move the separator:

Left Arrow•
Right Arrow•
Up Arrow•
Down Arrow•
Page Up•
Page Down•
Home•
End•

The value of scrolltype is one of: gtk.SCROLL_NONE, gtk.SCROLL_JUMP,
gtk.SCROLL_STEP_BACKWARD, gtk.SCROLL_STEP_FORWARD, gtk.SCROLL_PAGE_BACKWARD,
gtk.SCROLL_PAGE_FORWARD, gtk.SCROLL_STEP_UP, gtk.SCROLL_STEP_DOWN,
gtk.SCROLL_PAGE_UP, gtk.SCROLL_PAGE_DOWN, gtk.SCROLL_STEP_LEFT,
gtk.SCROLL_STEP_RIGHT, gtk.SCROLL_PAGE_LEFT, gtk.SCROLL_PAGE_RIGHT,
gtk.SCROLL_START or gtk.SCROLL_END. The default handler for this signal moves the separator if the
separator has the focus.

The "toggle−handle−focus" gtk.Paned Signal

 def callback(paned, user_param1, ...)

paned : the paned that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method

PyGTK 2.0 Reference Manual

The "cycle−handle−focus" gtk.Paned Signal 495

... : additional user parameters (if any)
Returns : TRUE if the signal was handled
The "toggle−handle−focus" signal is emitted when paned has the focus and F8 is pressed to give the focus to
or take the focus from the separator handle.

Prev Up Next
gtk.OptionMenu Home gtk.Plug

gtk.Plug
Prev The gtk Class Reference Next

gtk.Plug

gtk.Plug � A toplevel window for embedding into other processes.

Synopsis

class gtk.Plug(gtk.Window):
gtk.Plug(socket_id)

 def construct(socket_id)
 def get_id()

Functions

 def gtk.plug_new_for_display(display, socket_id)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window
 +−− gtk.Plug

Signal Prototypes

"embedded" def callback(plug, user_param1, ...)

Description

Together with gtk.Socket, gtk.Plug provides the ability to embed widgets from one process into
another process in a fashion that is transparent to the user. One process creates a gtk.Socket widget and,
passes the ID of that widgets window to the other process, which then creates a gtk.Plug with that window
ID. Any widgets contained in the gtk.Plug then will appear inside the first applications window.

Constructor

gtk.Plug(socket_id)

socket_id : the window ID of the socket, or 0.

PyGTK 2.0 Reference Manual

The "toggle−handle−focus" gtk.Paned Signal 496

Returns : a gtk.Widget
Creates a new gtk.Plug widget inside the gtk.Socket identified by socket_id. If socket_id is 0,
the plug is left "unplugged" and can later be plugged into a gtk.Socket by the gtk.Socket.add_id()
method.

Methods

gtk.Plug.construct

 def construct(socket_id)

socket_id : the window ID of the socket

Warning

This method is not available in PyGTK 2.2 and above.

The construct() method finishes the initialization of plug for the gtk.Socket identified by
socket_id. This method will generally only be used by subclasses of gtk.Plug.

gtk.Plug.get_id

 def get_id()

Returns : the window ID for the plug
The get_id() method returns the window ID of the gtk.Plug widget, which can be used to embed this
window inside another window, for instance with gtk.Socket.add_id().

Functions

gtk.plug_new_for_display

 def gtk.plug_new_for_display(display, socket_id)

display : the gtk.gdk.Display associated with socket_id's.
socket_id : the window ID of the socket's window.
Returns : a gtk.Plug object

Note

This function is available in PyGTK 2.2 and above.

The gtk.plug_new_for_display() function creates a new plug widget inside the gtk.Socket
specified by socket_id on the gtk.gdk.Display specified by display.

Signals

PyGTK 2.0 Reference Manual

Constructor 497

The "embedded" gtk.Plug Signal

 def callback(plug, user_param1, ...)

plug : the plug that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "embedded" signal is emitted when the plug window is reparented to the socket window.

Prev Up Next
gtk.Paned Home gtk.ProgressBar

gtk.ProgressBar
Prev The gtk Class Reference Next

gtk.ProgressBar

gtk.ProgressBar � a widget which indicates progress visually.

Synopsis

class gtk.ProgressBar(gtk.Progress):
gtk.ProgressBar()

 def pulse()
 def set_text(text)
 def set_fraction(fraction)
 def set_pulse_step(fraction)
 def set_orientation(orientation)
 def get_text()
 def get_fraction()
 def get_pulse_step()
 def get_orientation()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Progress
 +−− gtk.ProgressBar

Properties

"fraction" Read−Write The fraction of total work that has been completed
"pulse−step" Read−Write The fraction of total progress to move the bouncing block when pulsed
"orientation" Read−Write The orientation and growth direction of the progress bar:

gtk.PROGRESS_LEFT_TO_RIGHT, gtk.PROGRESS_RIGHT_TO_LEFT,
gtk.PROGRESS_BOTTOM_TO_TOP, gtk.PROGRESS_TOP_TO_BOTTOM

"text" Read−Write The text to be displayed in the progress bar

PyGTK 2.0 Reference Manual

The "embedded" gtk.Plug Signal 498

Description

The gtk.ProgressBar is typically used to display the progress of a long running operation. It provides a
visual clue that processing is underway. The gtk.ProgressBar can be used in two different modes:
percentage mode and activity mode.

When an application can determine how much work needs to take place (e.g. read a fixed number of bytes
from a file) and can monitor its progress, it can use the gtk.ProgressBar in percentage mode and the
user sees a growing bar indicating the percentage of the work that has been completed. In this mode, the
application is required to call the set_fraction() method periodically to update the progress bar.

When an application has no accurate way of knowing the amount of work to do, it can use the
gtk.ProgressBar in activity mode, which shows activity by a block moving back and forth within the
progress area. In this mode, the application is required to call the pulse() method periodically to update the
progress bar.

There is quite a bit of flexibility provided to control the appearance of the gtk.ProgressBar. Methods are
provided to control the orientation of the bar, optional text can be displayed along with the bar, and the step
size used in activity mode can be set.

Constructor

gtk.ProgressBar()

Returns : a new gtk.ProgressBar widget
Creates a new gtk.Progressbar widget.

Methods

gtk.ProgressBar.pulse

 def pulse()

The pulse() method nudges the progressbar to indicate that some progress has been made, but you don't
know how much. This method also changes progress bar mode to "activity mode," where a block bounces
back and forth. Each call to the pulse() method causes the block to move by a little bit (the amount of
movement per pulse is determined by the set_pulse_step() method).

gtk.ProgressBar.set_text

 def set_text(text)

text : a UTF−8 string
The set_text() method superimposes the text specified by text on the progress bar.

gtk.ProgressBar.set_fraction

 def set_fraction(fraction)

fraction : the fraction of the task that's been completed

PyGTK 2.0 Reference Manual

Description 499

The set_fraction() method causes the progress bar to "fill in" the portion of the bar specified by
fraction. The value of fraction should be between 0.0 and 1.0.

gtk.ProgressBar.set_pulse_step

 def set_pulse_step(fraction)

fraction : a value between 0.0 and 1.0
The set_pulse_step() method sets the portion (specified by fraction) of the total progress bar length
to move the bouncing block for each call to the pulse() method.

gtk.ProgressBar.set_orientation

 def set_orientation(orientation)

orientation : the orientation of the progress bar
The set_orientation() method switches the progress bar to a different orientation as specified by the
value of orientation. The value of orientation must be one of:

gtk.PROGRESS_LEFT_TO_RIGHT A horizontal progress bar growing from left to right.
gtk.PROGRESS_RIGHT_TO_LEFT A horizontal progress bar growing from right to left.
gtk.PROGRESS_BOTTOM_TO_TOP A vertical progress bar growing from bottom to top.
gtk.PROGRESS_TOP_TO_BOTTOM A vertical progress bar growing from top to bottom.

gtk.ProgressBar.get_text

 def get_text()

Returns : the text, or None
The get_text() method returns the text superimposed on the progress bar. If there is no superimposed text
this method returns None.

gtk.ProgressBar.get_fraction

 def get_fraction()

Returns : a fraction from 0.0 to 1.0
The get_fraction() method returns the current fraction of the task that's been set by the
set_fraction() method .

gtk.ProgressBar.get_pulse_step

 def get_pulse_step()

Returns : a fraction from 0.0 to 1.0
The get_pulse_step() method returns the pulse step set with the set_pulse_step().

gtk.ProgressBar.get_orientation

 def get_orientation()

Returns : the orientation of the progress bar

PyGTK 2.0 Reference Manual

gtk.ProgressBar.set_fraction 500

The get_orientation() method returns the current progress bar orientation. See the
set_orientation() method for information about the orientation values:
gtk.PROGRESS_LEFT_TO_RIGHT, gtk.PROGRESS_RIGHT_TO_LEFT,
gtk.PROGRESS_BOTTOM_TO_TOP, gtk.PROGRESS_TOP_TO_BOTTOM.

Prev Up Next
gtk.Plug Home gtk.RadioAction

gtk.RadioAction
Prev The gtk Class Reference Next

gtk.RadioAction

gtk.RadioAction � an action that can be grouped so that only one can be active (new in PyGTK 2.4)

Synopsis

class gtk.RadioAction(gtk.ToggleAction):
gtk.RadioAction(name, label, tooltip, stock_id, value)

 def set_group(group)
 def get_group()
 def get_current_value()

Ancestry

+−− gobject.GObject
 +−− gtk.Action
 +−− gtk.ToggleAction
 +−− gtk.RadioAction

Properties

Note

These properties are available in GTK+ 2.4 and above.

"group" Write Sets a new group for a radio action.
"value" Read−Write The value is an arbitrary integer which can be used as a convenient way to determine

which action in the group is currently active in an "activate" or "changed" signal
handler. See the get_current_value() and the
gtk.ActionGroup.add_radio_actions() methods for convenient ways to get
and set this property.

Signal Prototypes

Note

This signal is available in GTK+ 2.4 and above.

"changed" def callback(radioaction, current, user_param1, ...)

PyGTK 2.0 Reference Manual

gtk.ProgressBar.get_orientation 501

Description

Note

This object is available in PyGTK 2.4 and above.

A gtk.RadioAction is a subclass of gtk.ToggleAction and similar to gtk.RadioMenuItem. A
number of radio actions can be linked together so that only one may be active at any one time.

Constructor

gtk.RadioAction(name, label, tooltip, stock_id, value)

name : A unique name for the action
label : The label displayed in menu items and on buttons
tooltip : A tooltip for this action
stock_id : The stock icon to display in widgets representing this action
value : A unique integer value that get_current_value() should return if this action is selected.
Returns : a new gtk.RadioAction

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.RadioAction object suing the properties specified by: name, label, tooltip,
stock_id and value. To add the action to a gtk.ActionGroup and set the accelerator for the action,
call the gtk.ActionGroup.add_action_with_accel().

Methods

gtk.RadioAction.set_group

 def set_group(group)

group : another gtk.RadioAction

Note

This method is available in PyGTK 2.4 and above.

The set_group() method sets the radio group for the radio action to the same group as the
gtk.RadioAction specified by group i.e. the radio action joins the group.

gtk.RadioAction.get_group

 def get_group()

Returns : a list containing the radio actions in the group

PyGTK 2.0 Reference Manual

Description 502

Note

This method is available in PyGTK 2.4 and above.

The get_group() method returns a list containing the group that the radio action belongs to.

gtk.RadioAction.get_current_value

 def get_current_value()

Returns : The value of the currently active group member

Note

This method is available in PyGTK 2.4 and above.

The get_current_value() method returns the "value" property of the the currently active member of the
group that the radio action belongs to.

Signals

The "changed" gtk.RadioAction Signal

 def callback(radioaction, current, user_param1, ...)

radioaction : the radioaction that received the signal
current : the currently active gtk.RadioAction in the group
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "changed" signal is emitted on every member of a radio group when the active member is changed. The
signal gets emitted after the "activate" signals for the previous and current active members.

Prev Up Next
gtk.ProgressBar Home gtk.RadioButton

gtk.RadioButton
Prev The gtk Class Reference Next

gtk.RadioButton

gtk.RadioButton � a choice of one of multiple check buttons.

Synopsis

class gtk.RadioButton(gtk.CheckButton):
gtk.RadioButton(group=None, label=None, use_underline=TRUE)

PyGTK 2.0 Reference Manual

Note 503

 def get_group()
 def set_group(group)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Button
 +−− gtk.ToggleButton
 +−− gtk.CheckButton
 +−− gtk.RadioButton

Properties

"group" Write The group that the radiobutton is in.

Signal Prototypes

"group−changed" def callback(radiobutton, user_param1, ...)

Description

A single gtk.RadioButton performs the same basic function as a gtk.CheckButton, as it's position
in the object hierarchy reflects. It is only when multiple radio buttons are grouped together that they become a
different user interface component in their own right. Every radio button is a member of some group of radio
buttons. When one is selected, all other radio buttons in the same group are deselected. A
gtk.RadioButton is used to give the user a choice of one of many options.

Radio button widgets are created with gtk.RadioButton() passing None as the group (first) argument if this
is the first radio button in a group. In subsequent calls, pass a reference to a gtk.RadioButton as the first
argument to specify the group. The second (optional) argument to gtk.RadioButton() is a label that is used to
specify the text of the button. The label text is parsed for mnemonic characters (preceded by an underscore) to
specify an accelerator for the radiobutton. See gtk.AccelGroup and gtk.AccelLabel for more
information on mnemonic accelerators.

To retrieve the group a gtk.RadioButton is assigned to, use the get_group() method. To remove a
gtk.RadioButton from one group and make it part of a new one, use the set_group() method.

Constructor

gtk.RadioButton(group=None, label=None, use_underline=TRUE)

group : an existing gtk.RadioButton or None
label : a string to use as the button text or None

use_underline :
if TRUE, an underscore in the label text indicates the next character should be underlined
and used for the mnemonic accelerator key if it is the first character so marked.
Available in PyGTK 2.4 and above.

Returns : a new gtk.RadioButton widget

PyGTK 2.0 Reference Manual

Synopsis 504

Creates a new gtk.RadioButton widget with the label text specified by label, adding it to the same
group as group. label is parsed for underscore characters that indicate mnemonic accelerators. If label
is None, no label is created. If group is None, the new radiobutton becomes the first member of a new
radiobutton group.

In PyGTK 2.4 and above the use_underline parameter is available and defaults to TRUE. If
use_underline is set to FALSE the label text will not be parsed for mnemonic characters.

Methods

gtk.RadioButton.get_group

 def get_group()

Returns : the list of radiobuttons in the same group that contains the radiobutton
The get_group() method returns the list of radiobuttons that are in the same group as the radiobutton.

gtk.RadioButton.set_group

 def set_group(group)

group : a gtk.RadioButton whose group the radiobutton will be added to
The set_group() method adds the radiobutton to the group of the radiobutton specified by group.

Signals

The "group−changed" gtk.RadioButton Signal

 def callback(radiobutton, user_param1, ...)

radiobutton : the radiobutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "group−changed" signal is emitted when a gtk.RadioButton is added to or removed from the group.

Prev Up Next
gtk.RadioAction Home gtk.RadioMenuItem

gtk.RadioMenuItem
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

Constructor 505

gtk.RadioMenuItem

gtk.RadioMenuItem � a choice from multiple check menu items.

Synopsis

class gtk.RadioMenuItem(gtk.CheckMenuItem):
gtk.RadioMenuItem(group=None, label=None, use_underline=TRUE)

 def get_group()
 def set_group(group)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Item
 +−− gtk.MenuItem
 +−− gtk.CheckMenuItem
 +−− gtk.RadioMenuItem

Signal Prototypes

"group−changed" def callback(radiomenuitem, user_param1, ...)

Description

A gtk.RadioMenuItem widget is a check menu item that belongs to a group. Only one of the radio menu
items in a group can be selected.

Constructor

gtk.RadioMenuItem(group=None, label=None, use_underline=TRUE)

group : a gtk.RadioMenuItem whose group the new radiomenuitem should be
added to, or None if a new group should be created

label : a string to be used as the label text or None if no label is needed

use_underline :
if TRUE, an underscore in the label text indicates the next character should
be underlined and used for the mnemonic accelerator key if it is the first
character so marked. Available in PyGTK 2.4 and above.

Returns : a new gtk.RadioMenuItem widget
Creates a new gtk.RadioMenuItem containing a label with its text specified by label. label will be
parsed for underscores that indicate the mnemonic accelerator for the radiomenuitem. The radiomenuitem will
be added to the group containing the gtk.RadioMenuItem specified by group. If group is None, a new
group will be created to hold the new radiomenuitem. If label is None the radiomenuitem is created
without a label.

In PyGTK 2.4 and above the use_underline parameter is available and defaults to TRUE. If
use_underline is set to FALSE the label text will not be parsed for mnemonic characters.

PyGTK 2.0 Reference Manual

gtk.RadioMenuItem 506

Methods

gtk.RadioMenuItem.get_group

 def get_group()

Returns : the list of radiomenuitems in the same group that contains the radiomenuitem
The get_group() method returns the list of gtk.RadioMenuItems that are in the same group as the
radiomenuitem.

gtk.RadioMenuItem.set_group

 def set_group(group)

group : a gtk.RadioMenuItem whose group the radiomenuitem will be added to
The set_group() method adds the radiomenuitem to the group of the gtk.RadioMenuItem specified by
group.

Signals

The "group−changed" gtk.RadioMenuItem Signal

 def callback(radiomenuitem, user_param1, ...)

radiomenuitem : the radiomenuitem that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "group−changed" signal is emitted when a gtk.RadioMenuItem is added to or removed from the
group.

Prev Up Next
gtk.RadioButton Home gtk.RadioToolButton

gtk.RadioToolButton
Prev The gtk Class Reference Next

gtk.RadioToolButton

gtk.RadioToolButton � a toolbar item that contains a radio button (new in PyGTK 2.4)

Synopsis

class gtk.RadioToolButton(gtk.ToggleToolButton):
gtk.RadioToolButton(group=None, stock_id=None)

 def set_group(group)

PyGTK 2.0 Reference Manual

Methods 507

 def get_group()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ToolItem
 +−− gtk.ToolButton
 +−− gtk.ToggleToolButton
 +−− gtk.RadioToolButton

Properties

Note

This property is available in GTK+ 2.4 and above.

"group" Write Sets a new group for a radio tool button.

Description

Note

This widget is available in PyGTK 2.4 and above.

A gtk.RadioToolButton is a gtk.ToolItem that contains a radio button, that is, a button that is part
of a group of toggle buttons where only one button can be active at a time. Use the gtk.RadioToolButton()
constructor to create a new gtk.RadioToolButton.

Constructor

gtk.RadioToolButton(group=None, stock_id=None)

group : an existing gtk.RadioToolButton
stock_id : the name of a stock item
Returns : a new gtk.RadioToolButton

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.RadioToolButton, adding it to the same group as the gtk.RadioToolButton
specified by group if it is not None. The new gtk.RadioToolButton will contain an icon and label
from the stock item specified by stock_id if it is not None.

Methods

PyGTK 2.0 Reference Manual

Synopsis 508

gtk.RadioToolButton.set_group

 def set_group(group)

group : an existing gtk.RadioToolButton

Note

This method is available in PyGTK 2.4 and above.

The set_group() method adds the radio tool button to the same group as the gtk.RadioToolButton
specified by group

gtk.RadioToolButton.get_group

 def get_group()

Returns : a list containing the gtk.RadioToolButtons in the group

Note

This method is available in PyGTK 2.4 and above.

The get_group() method returns a list containing the gtk.RadioButton objects that are in the same
group as the radio tool button.

Prev Up Next
gtk.RadioMenuItem Home gtk.Range

gtk.Range
Prev The gtk Class Reference Next

gtk.Range

gtk.Range � a base class for widgets that allow a user to set a value in a range.

Synopsis

class gtk.Range(gtk.Widget):
 def set_update_policy(policy)
 def get_update_policy()
 def set_adjustment(adjustment)
 def get_adjustment()
 def set_inverted(setting)
 def get_inverted()
 def set_increments(step, page)
 def set_range(min, max)
 def set_value(value)
 def get_value()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Range

PyGTK 2.0 Reference Manual

gtk.RadioToolButton.set_group 509

Properties

"adjustment" Read−Write The gtk.Adjustment that contains the current value of this range object
"inverted" Read−Write If TRUE, the slider movement is reversed e.g right−to−left instead of

left−to−right
"update−policy" Read−Write How the range should be updated on the screen:

gtk.UPDATE_CONTINUOUS, gtk.UPDATE_DISCONTINUOUS,
gtk.UPDATE_DELAYED.

Style Properties

"arrow−displacement−x" Read The distance horizontally to move the arrow when the button is depressed
"arrow−displacement−y" Read The distance vertically to move the arrow when the button is depressed
"slider−width" Read The width of scrollbar or scale thumb
"stepper−size" Read The length of step buttons at ends
"stepper−spacing" Read The spacing between step buttons and thumb
"trough−border" Read The spacing between thumb or steppers and outer trough bevel

Signal Prototypes

"adjust−bounds" def callback(range, value, user_param1, ...)

"move−slider" def callback(range, scrolltype, user_param1, ...)

"value−changed" def callback(range, user_param1, ...)

Description

The gtk.Range is the base class for the gtk.Scale and gtk.Scrollbar widgets. The gtk.Range
provides the common functionality for these widgets that allow a user to set a value in a range of values. The
gtk.Scale works in conjunction with a gtk.Adjustment which provides the range information.

Methods

gtk.Range.set_update_policy

 def set_update_policy(policy)

policy : the update policy: gtk.UPDATE_CONTINUOUS, gtk.UPDATE_DISCONTINUOUS,
gtk.UPDATE_DELAYED

The set_update_policy() method sets the "update−policy" property to the value specified by policy.
The update policy has the following values and effects:

gtk.UPDATE_CONTINUOUS
anytime the range slider is moved, the range value will change and the
"value_changed" signal will be emitted.

gtk.UPDATE_DELAYED
the value will be updated after a brief timeout where no slider motion
occurs, so value changes are delayed slightly rather than continuously
updated.

gtk.UPDATE_DISCONTINUOUS

PyGTK 2.0 Reference Manual

Properties 510

the value will only be updated when the user releases the button and
ends the slider drag operation.

gtk.Range.get_update_policy

 def get_update_policy()

Returns : the current update policy
The get_update_policy() method gets the value of the "update−policy" property. The update policy is
one of: gtk.UPDATE_CONTINUOUS, gtk.UPDATE_DISCONTINUOUS or gtk.UPDATE_DELAYED.
See the set_update_policy() method for details.

gtk.Range.set_adjustment

 def set_adjustment(adjustment)

adjustment : a gtk.Adjustment
The set_adjustment() method sets the "adjustment" property to the value specified by adjustment.
The gtk.Adjustment is used as the "model" object for this range widget. adjustment indicates the
current range value, the minimum and maximum range values, the step and page increments used for
keybindings and scrolling, and the page size. The page size is normally 0 for gtk.Scale and nonzero for
gtk.Scrollbar, and indicates the size of the visible area of the widget being scrolled. The page size
affects the size of the scrollbar slider.

gtk.Range.get_adjustment

 def get_adjustment()

Returns : a gtk.Adjustment
The get_adjustment() method returns the value of the "adjustment" property. See the
set_adjustment() method for details.

gtk.Range.set_inverted

 def set_inverted(setting)

setting : if TRUE invert the range
The set_inverted() method sets the "inverted" property to the value specified by setting. If setting
is TRUE the normal motion of the range widget is reversed. Ranges normally move from lower to higher
values as the slider moves from top to bottom or left to right. Inverted ranges have higher values at the top or
left rather than on the bottom or right.

gtk.Range.get_inverted

 def get_inverted()

Returns : TRUE if the range is inverted
The get_inverted() method returns the value of the "inverted" property that was set by the
set_inverted() method.

PyGTK 2.0 Reference Manual

gtk.Range.set_update_policy 511

gtk.Range.set_increments

 def set_increments(step, page)

step : the step size
page : the page size
The set_increments() method sets the step and page sizes for the range to the values specified by step
and page respectively. The step size is used when the user clicks the gtk.Scrollbar arrows or moves
gtk.Scale via the arrow keys. The page size is used for example when moving via Page Up or Page Down
keys.

gtk.Range.set_range

 def set_range(min, max)

min : the minimum range value
max : the maximum range value
The set_range() method sets the minimum and maximum allowable values for the gtk.Range to that
values specified by min and max respectively. If the range has a non−zero page size, it is also forced to be
between min and max.

gtk.Range.set_value

 def set_value(value)

value : the new value of the range
The set_value() method sets the current value of the range to the value specified by value. value will
be forced inside the minimum or maximum range values. The range emits the "value_changed" signal if the
value changes.

gtk.Range.get_value

 def get_value()

Returns : the current value of the range.
The get_value() method gets the current value of the range.

Signals

The "adjust−bounds" gtk.Range Signal

 def callback(range, value, user_param1, ...)

range : the range that received the signal
value : the value
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "adjust−bounds" signal is emitted when the range is adjusted by user action. Note the value can be more
or less than the range since it depends on the mouse position.

PyGTK 2.0 Reference Manual

gtk.Range.set_increments 512

The "move−slider" gtk.Range Signal

 def callback(range, scrolltype, user_param1, ...)

range : the range that received the signal

scrolltype :

the scroll type issued because a key was pressed by the user; one of:
gtk.SCROLL_NONE, gtk.SCROLL_JUMP,
gtk.SCROLL_STEP_BACKWARD, gtk.SCROLL_STEP_FORWARD,
gtk.SCROLL_PAGE_BACKWARD, gtk.SCROLL_PAGE_FORWARD,
gtk.SCROLL_STEP_UP, gtk.SCROLL_STEP_DOWN,
gtk.SCROLL_PAGE_UP, gtk.SCROLL_PAGE_DOWN,
gtk.SCROLL_STEP_LEFT, gtk.SCROLL_STEP_RIGHT,
gtk.SCROLL_PAGE_LEFT, gtk.SCROLL_PAGE_RIGHT,
gtk.SCROLL_START or gtk.SCROLL_END

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−slider" signal is emitted when the user presses a key (e.g. Page Up, Home, Right Arrow) to
move the slider.

The "value−changed" gtk.Range Signal

 def callback(range, user_param1, ...)

range : the range that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "value−changed" signal is emitted when the range value is changed either programmatically or by user
action.

Prev Up Next
gtk.RadioToolButton Home gtk.RcStyle

gtk.RcStyle
Prev The gtk Class Reference Next

gtk.RcStyle

gtk.RcStyle � an object holding resource styles

Synopsis

class gtk.RcStyle(gobject.GObject):
 def copy()

Functions

 def gtk.rc_add_default_file(filename)
 def gtk.rc_set_default_files(filenames)
 def gtk.rc_get_default_files()
 def gtk.rc_get_style_by_paths(settings, widget_path, class_path, type)
 def gtk.rc_reparse_all_for_settings(settings, force_load)
 def gtk.rc_reset_styles(settings)
 def gtk.rc_parse(filename)
 def gtk.rc_parse_string(rc_string)

PyGTK 2.0 Reference Manual

The "move−slider" gtk.Range Signal 513

 def gtk.rc_reparse_all()
 def gtk.rc_find_module_in_path(module_file)
 def gtk.rc_get_theme_dir()
 def gtk.rc_get_module_dir()
 def gtk.rc_get_im_module_path()
 def gtk.rc_get_im_module_file()

Ancestry

+−− gobject.GObject
 +−− gtk.RcStyle

Description

PyGTK via GTK+ provides resource file mechanism for configuring various aspects of the operation of a
program at runtime.

Default files

An application can cause GTK+ to parse a specific RC file by calling the gtk.rc_parse() function. In
addition to this, certain files will be read at the end of GTK+ initialization. Unless modified, the files looked
for will be <SYSCONFDIR>/gtk−2.0/gtkrc and .gtkrc−2.0 in the users home directory.
(<SYSCONFDIR> defaults to /usr/local/etc.) The set of these default files can be retrieved with the
gtk.rc_get_default_files() function and modified with the gtk.rc_add_default_file() and
gtk.rc_set_default_files() functions. Additionally, the GTK_RC_FILES environment variable can
be set to a list of files in order to overwrite the set of default files at runtime.

For each RC file, in addition to the file itself, GTK+ will look for a locale−specific file that will be parsed after
the main file. For instance, if LANG is set to ja_JP.ujis, when loading the default file ~/.gtkrc then
GTK+ looks for ~/.gtkrc.ja_JP and ~/.gtkrc.ja, and parses the first of those that exists.

Pathnames and patterns

A resource file defines a number of styles and key bindings and attaches them to particular widgets. The
attachment is done by the widget, widget_class, and class declarations. As an example of such a statement:

 widget "mywindow.*.GtkEntry" style "my−entry−class"

attaches the style "my−entry−class" to all widgets whose widget class matches the pattern
"mywindow.*.GtkEntry". The patterns here are given in the standard shell glob syntax. The "?" wildcard
matches any character, while "*" matches zero or more of any character. The three types of matching are
against the widget path, the class path and the class hierarchy. Both the widget and the class paths consists of
a "." separated list of all the parents of the widget and the widget itself from outermost to innermost. The
difference is that in the widget path, the name assigned by the set_name() method is used if present,
otherwise the class name of the widget, while for the widget path, the class name is always used. So, if you
have a gtk.Entry named "myentry", inside of a of a window named "mywindow", then the widget path is:
"mwindow.GtkHBox.myentry" while the class path is: "GtkWindow.GtkHBox.GtkEntry".

Matching against class is a little different. The pattern match is done against all class names in the widgets
class hierarchy (not the layout hierarchy) in sequence, so the pattern:

 class "GtkButton" style "my−style"

will match not just gtk.Button widgets, but also gtk.ToggleButton and gtk.CheckButton
widgets, since those classes derive from gtk.Button.

PyGTK 2.0 Reference Manual

Synopsis 514

Toplevel declarations

An RC file is a text file which is composed of a sequence of declarations. '#' characters delimit comments and
the portion of a line after a '#' is ignored when parsing an RC file. The possible toplevel declarations are:

binding name { ... } Declares a binding set.

class pattern [style | binding [: priority]] nameSpecifies a style or binding set for a particular branch of the
inheritance hierarchy.

include filename

Parses another file at this point. If filename is not an absolute
filename, it is searched in the directories of the currently open RC
files. GTK+ also tries to load a locale−specific variant of the included
file.

module_path path Sets a path (a list of directories separated by colons) that will be
searched for theme engines referenced in RC files.

pixmap_path path Sets a path (a list of directories separated by colons) that will be
searched for pixmaps referenced in RC files.

style name [= parent] { ... } Declares a style.

widget pattern [style | binding [: priority]] nameSpecifies a style or binding set for a particular group of widgets by
matching on the widget pathname.

widget_class pattern [style | binding [: priority]] nameSpecifies a style or binding set for a particular group of widgets by
matching on the class pathname.

Styles

A RC style is specified by a style declaration in a RC file, and then bound to widgets with a widget,
widget_class, or class declaration. All styles applying to a particular widget are composited together
with widget declarations overriding widget_class declarations which, in turn, override class
declarations. Within each type of declaration, later declarations override earlier ones. Within a style
declaration, the possible elements are:

bg[state] = color Sets the color used for the background of most widgets.
fg[state] = color Sets the color used for the foreground of most widgets.

base[state] = color
Sets the color used for the background of widgets displaying
editable text. This color is used for the background of, among
others, gtk.TextView and gtk.Entry.

text[state] = color Sets the color used for foreground of widgets using base for the
background color.

bg_pixmap[state] = pixmap

Sets a background pixmap to be used in place of the bg color (or for
gtk.TextView, in place of the base color). The special value
"<parent>" may be used to indicate that the widget should use the
same background pixmap as its parent. The special value "<none>"
may be used to indicate no background pixmap.

font = font Sets the font for a widget. font must be a XLFD font description,
e.g. "−*−helvetica−medium−r−normal−−10−*−*−*−*−*−*−*".

fontset = font

Sets the fontset for a widget. Overrides any font declarations. font
must be a comma−separated list of XLFD font descriptions, e.g.
"−JIS−Fixed−Medium−R−Normal−−26−180−100−100−C−240,
−JIS−Fixed−Medium−R−Normal−−26−180−100−100−C−120,
−GB−Fixed−Medium−R−Normal−−26−180−100−100−C−240,
−Adobe−Courier−Bold−R−Normal−−25−180−100−100−M−150".

font_name = font

PyGTK 2.0 Reference Manual

Toplevel declarations 515

Sets the font for a widget. Overrides any font or fontset
declarations. font must be a Pango font name, e.g. "Sans Italic 10".

stock["stock−id"] = { icon source specifications }Defines the icon for a stock item.
engine "engine" { engine−specific settings }Defines the engine to be used when drawing with this style.
The colors and background pixmaps are specified as a function of the state of the widget. The states are:

NORMAL A color used for a widget in its normal state.

ACTIVE

A variant of the NORMAL color used when the widget is in the gtk.STATE_ACTIVE state,
and also for the trough of a gtk.Scrollbar, tabs of a gtk.Notebook other than the
current tab and similar areas. Frequently, this should be a darker variant of the NORMAL
color.

PRELIGHT
A color used for widgets in the gtk.STATE_PRELIGHT state. This state is the used for
gtk.Button and gtk.MenuItem widgets that have the mouse cursor over them, and for
their children.

SELECTED
A color used to highlight data selected by the user. for instance, the selected items in a list
widget, and the selection in an editable widget.

INSENSITIVE
A color used for the background of widgets that have been set insensitive with the
set_sensitive() method.

Colors can be specified as a string containing a color name (from the X color database
/usr/lib/X11/rgb.txt), in one of the hexadecimal forms #rrrrggggbbbb, #rrrgggbbb,
#rrggbb, or #rgb, where r, g and b are hex digits, or they can be specified as a triplet { r, g, b},
where r, g and b are either integers in the range 0−65635 or floats in the range 0.0−1.0.

In a stock definition, icon sources are specified as a 4−tuple of image filename, text direction, widget state,
and size, in that order. Each icon source specifies an image filename to use with a given direction, state, and
size. The * character can be used as a wildcard, and if direction−state−size are omitted they default to *. So
for example, the following specifies different icons to use for left−to−right and right−to−left languages:

 stock["my−stock−item"] =
 {
 { "itemltr.png", LTR, *, * },
 { "itemrtl.png", RTL, *, * }
 }

This could be abbreviated as follows:

 stock["my−stock−item"] =
 {
 { "itemltr.png", LTR },
 { "itemrtl.png", RTL }
 }

You can specify custom icons for specific sizes, as follows:

 stock["my−stock−item"] =
 {
 { "itemmenusize.png", *, *, "gtk−menu" },
 { "itemtoolbarsize.png", *, *, "gtk−large−toolbar" }
 { "itemgeneric.png" } /* implicit *, *, * as a fallback */
 }

The sizes that come with GTK+ itself are "gtk−menu", "gtk−small−toolbar", "gtk−large−toolbar",
"gtk−button", "gtk−dialog". Applications can define other sizes. It's also possible to use custom icons for a
given state, for example:

 stock["my−stock−item"] =
 {
 { "itemprelight.png", *, PRELIGHT },

PyGTK 2.0 Reference Manual

Styles 516

 { "iteminsensitive.png", *, INSENSITIVE },
 { "itemgeneric.png" } /* implicit *, *, * as a fallback */
 }

When selecting an icon source to use, GTK+ will consider text direction most important, state second, and size
third. It will select the best match based on those criteria. If an attribute matches exactly (e.g. you specified
PRELIGHT or specified the size), GTK+ won't modify the image; if the attribute matches with a wildcard,
GTK+ will scale or modify the image to match the state and size the user requested.

Key bindings

Key bindings allow the user to specify actions to be taken on particular key presses. The form of a binding set
declaration is:

 binding name {
 bind key {
 signalname (param, ...)
 ...
 }
 ...
 }

key is a string consisting of a series of modifiers followed by the name of a key. The modifiers can be:

<alt>•
<control>•
<mod1>•
<mod2>•
<mod3>•
<mod4>•
<mod5>•
<release>•
<shft>•
<shift>•

<shft> is an alias for <shift> and <alt> is an alias for <mod1>.

The action that is bound to the key is a sequence of signal names (strings) followed by parameters for each
signal. The signals must be action signals. Each parameter can be a float, integer, string, or unquoted string
representing an enumeration value. The types of the parameters specified must match the types of the
parameters of the signal. Binding sets are connected to widgets in the same manner as styles, with one
addition. A priority can be specified for each pattern, and within each type of pattern, binding sets override
other binding sets first by priority, and only then by order of specification. (Later overrides earlier). The
priorities that can be specified are (highest to lowest):

highest•
rc•
theme•
application•
gtk•
lowest•

rc is the default for bindings read from an RC file, theme is the default for bindings read from theme RC
files, application should be used for bindings an application sets up, and gtk is used for bindings that
GTK+ creates internally.

PyGTK 2.0 Reference Manual

Key bindings 517

Methods

gtk.RcStyle.copy

 def copy()

Returns : a new gtk.RcStyle that is a copy of the rcstyle
The copy() method returns a new gtk.RcStyle that is a copy of the RC style. This method will correctly
copy an RC style that is a member of a class derived from gtk.RcStyle.

Functions

gtk.rc_add_default_file

 def gtk.rc_add_default_file(filename)

filename : the name of a file containing resource data
The gtk.rc_add_default_file() function adds the file specified by filename to the list of files to
be parsed for resource data.

gtk.rc_set_default_files

 def gtk.rc_set_default_files(filenames)

filenames : a list of filenames
The gtk.rc_set_default_files() function sets the list of files (specified by filenames) that will
be parsed for resource information.

gtk.rc_get_default_files

 def gtk.rc_get_default_files()

Returns : the current list of resource files
The gtk.rc_get_default_files() function returns a list of filenames (as set by the
gtk.rc_set_default_files() function) that will be parsed for resource data.

gtk.rc_get_style_by_paths

 def gtk.rc_get_style_by_paths(settings, widget_path, class_path, type)

settings : a gtk.Settings object
widget_path : the widget path to use when looking up the style
class_path : the class path to use when looking up the style

type : a type that will be used along with parent types of this type when matching
against class styles, or gobject.TYPE_NONE

Returns : a gtk.Style created by matching with the supplied paths, or None if
nothing matching was specified and the default style should be used.

The gtk.rc_get_style_by_paths() function returns a gtk.Style created from styles defined in a
RC file by providing the raw components used in matching. This function may be useful when creating

PyGTK 2.0 Reference Manual

Methods 518

pseudo−widgets that should be themed like widgets but don't actually have corresponding PyGTK widgets. An
example of this would be items inside a GNOME canvas widget.

gtk.rc_reparse_all_for_settings

 def gtk.rc_reparse_all_for_settings(settings, force_load)

settings : a gtk.Settings object
force_load : if TRUE reparse the RC files even if they haven't changed
Returns : TRUE if the files were reparsed
The gtk.rc_reparse_all_for_settings() function reparses the files associated with the
gtk.Settings object specified by settings if any of the files have changed and force_load is
FALSE and . If force_load is TRUE the files are always reparsed.

gtk.rc_reset_styles

 def gtk.rc_reset_styles(settings)

settings : a gtk.Settings object
Returns : a gtk.Style

Note

This function is available in PyGTK 2.4 and above.

The gtk.rc_reset_styles() function returns a gtk.Style. This function computes the styles for all
widgets that use the gtk.Settings object specified by settings. (There is one gtk.Settings object
per gtk.gdk.Screen, see the gtk.settings_get_for_screen() function). It is useful when some
global parameter has changed that affects the appearance of all widgets, because when a widget gets a new
style, it will both redraw and recompute any cached information about its appearance. As an example, it is
used when the default font size set by the operating system changes. Note that this function doesn't affect
widgets that have a style set explicitly on them with the gtk.Widget.set_style() method.

gtk.rc_parse

 def gtk.rc_parse(filename)

filename : the name of a file to parse for resource data
The gtk.rc_parse() function parses the file specified by filename for resource data.

gtk.rc_parse_string

 def gtk.rc_parse_string(rc_string)

rc_string : a string to parse for resource data
The gtk.rc_parse_string() function parses the string specified by rc_string for resource data.

gtk.rc_reparse_all

 def gtk.rc_reparse_all()

Returns : TRUE if the files were reparsed.

PyGTK 2.0 Reference Manual

gtk.rc_get_style_by_paths 519

The gtk.rc_reparse_all() function discards all style data and reparses all the RC files for resource data
if any of them have changed.

gtk.rc_find_module_in_path

 def gtk.rc_find_module_in_path(module_file)

module_file : the name of a theme engine
Returns : the filename of the theme engine or None
The gtk.rc_find_module_in_path() function searches for a theme engine named by
module_file. This function is not useful for applications and should not be used.

gtk.rc_get_theme_dir

 def gtk.rc_get_theme_dir()

Returns : the name of the themes directory
The gtk.rc_get_theme_dir() function returns the name of the directory where themes should be
installed.

gtk.rc_get_module_dir

 def gtk.rc_get_module_dir()

Returns : the theme engines directory name
The gtk.rc_get_module_dir() function returns the name of the directory where PyGTK searches for
theme engines.

gtk.rc_get_im_module_path

 def gtk.rc_get_im_module_path()

Returns : the IM modules path
The gtk.rc_get_im_module_path() function returns the path where PyGTK searches for IM modules.

gtk.rc_get_im_module_file

 def gtk.rc_get_im_module_file()

Returns : the name of the IM modules file
The gtk.rc_get_im_module_file() function returns the name of the PyGTK IM modules file.

Prev Up Next
gtk.Range Home gtk.Requisition

gtk.Requisition
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

gtk.rc_reparse_all 520

gtk.Requisition

gtk.Requisition � an object containing information about the desired space requirements of a widget.

Synopsis

class gtk.Requisition(gobject.GBoxed):
 def copy()
 def free()

Attributes

"width" Read−Write the desired width of the widget

"height" Read−Write the desired height of the widget

Description

A gtk.Requisition holds the information about the desired space requirements (width and height) of a
widget. A gtk.Requisition object has width and height attributes that can be read and written.

Note

There appears to be no way to create or use a gtk.Requisition in PyGTK other than as an argument in
the handler for the gtk.Widget "size−request" signal.

Methods

gtk.Requisition.copy

 def copy()

Returns : a copy of the gtk.Requisition
The copy() method returns a copy of the gtk.Requisition.

gtk.Requisition.free

 def free()

The free() method frees the resources allocated to the gtk.Requisition.

Prev Up Next
gtk.RcStyle Home gtk.Ruler

gtk.Ruler
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

gtk.Requisition 521

gtk.Ruler

gtk.Ruler � a base class for horizontal or vertical rulers

Synopsis

class gtk.Ruler(gtk.Widget):
 def set_metric(metric)
 def set_range(lower, upper, position, max_size)
 def draw_ticks()
 def draw_pos()
 def get_metric()
 def get_range()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Ruler

Properties

"lower" Read−Write the lower limit of the ruler
"upper" Read−Write the upper limit of the ruler
"position" Read−Write the position of the mark on the ruler
"max−size" Read−Write the maximum size of the ruler

Description

Note

This widget is considered too specialized or little−used for PyGTK and GTK+, and will in the future be
moved to some other package. If your application needs this widget, feel free to use it, as the widget does
work and is useful in some applications; it's just not of general interest. However, it will eventually move out
of the PyGTK and GTK+ distribution.

The gtk.Ruler widget is a base class for horizontal and vertical rulers. Rulers are used to show the mouse
pointer's location in a window. Within the ruler a small triangle indicates the location of the mouse relative to
the horizontal or vertical ruler. See gtk.HRuler to learn about horizontal rulers. See gtk.VRuler to learn
about vertical rulers.

Methods

gtk.Ruler.set_metric

 def set_metric(metric)

metric : the measurement units

PyGTK 2.0 Reference Manual

gtk.Ruler 522

The set_metric() method sets the measurement units of the ruler to the value specified by metric.
Available units are gtk.PIXELS, gtk.INCHES, or gtk.CENTIMETERS. The default unit of
measurement is gtk.PIXELS.

gtk.Ruler.set_range

 def set_range(lower, upper, position, max_size)

lower : the upper limit of the ruler
upper : the lower limit of the ruler
position : the position of the mark on the ruler
max_size : the maximum size of the rule
The set_range() method sets the range of the ruler to the values specified by lower, upper, position
and max_size (all values are floats).

gtk.Ruler.draw_ticks

 def draw_ticks()

The draw_ticks() method is overridden by the gtk.Ruler subclasses (gtk.HRuler and
gtk.VRuler) to draw the tick marks on the ruler. This method is not used by applications.

gtk.Ruler.draw_pos

 def draw_pos()

The draw_pos() method is overridden by the gtk.Ruler subclasses (gtk.HRuler and gtk.VRuler)
to draw the position mark on the ruler. This method is not used by applications.

gtk.Ruler.get_metric

 def get_metric()

Returns : the measurement units currently used for the ruler
The get_metric() method returns the units used for a gtk.Ruler. See the set_metric() method.

gtk.Ruler.get_range

 def get_range()

Returns> :
a tuple containing: the lower limit of the ruler, the upper limit of the ruler, the current position of
the mark on the ruler and the maximum size of the ruler used when calculating the space to leave
for the text.

The get_range() method returns a tuple containing the values indicating the range and current position of a
gtk.Ruler. See the set_range() method.

Prev Up Next
gtk.Requisition Home gtk.Scale

gtk.Scale
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

gtk.Ruler.set_metric 523

gtk.Scale

gtk.Scale � a base class for the scale widgets.

Synopsis

class gtk.Scale(gtk.Range):
 def set_digits(digits)
 def get_digits()
 def set_draw_value(draw_value)
 def get_draw_value()
 def set_value_pos(pos)
 def get_value_pos()
 def get_layout()
 def get_layout_offsets()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Range
 +−− gtk.Scale

Properties

"digits" Read−Write The number of decimal places that are displayed in the value
"draw−value" Read−Write If TRUE the current value is displayed as a string next to the slider
"value−pos" Read−Write The position in which the current value is displayed: gtk.POS_LEFT,

gtk.POS_RIGHT, gtk.POS_TOP or gtk.POS_BOTTOM

Style Properties

"slider−length" Read The length of scale's slider
"value−spacing" Read The space between value text and the slider or trough area

Signal Prototypes

"format−value" def callback(scale, user_param1, ...)

Description

The gtk.Scale widget is an abstract base class, used only for deriving the subclasses gtk.HScale and
gtk.VScale. A gtk.Scale is a slider control used to select a numeric value. Since gtk.Scale is a
subclass of gtk.Range, see the gtk.Range methods for additional methods. To set the value of a scale,
you would normally use set_value(). To detect changes to the value, you would normally use the
"value_changed" signal.

PyGTK 2.0 Reference Manual

gtk.Scale 524

Methods

gtk.Scale.set_digits

 def set_digits(digits)

digits : the number of decimal places to display
The set_digits() method sets the "digits" property to the value specified by digits. The value of
digits specifies the number of decimal places that are displayed in the value. The value of the adjustment is
also rounded off to this number of digits, so the retrieved value matches the value the user sees.

gtk.Scale.get_digits

 def get_digits()

Returns : the number of decimal places that are displayed.
The get_digits() method returns the value of the "digits" property that indicates the number of decimal
places that are displayed in the value.

gtk.Scale.set_draw_value

 def set_draw_value(draw_value)

draw_value : If TRUE draw the current value next to the slider
The set_draw_value() method sets the "draw−value" property to the value specified by draw_value. If
draw_value is TRUE the current value is displayed next to the slider.

gtk.Scale.get_draw_value

 def get_draw_value()

Returns : TRUE if the current value is to be drawn next to the slider
The get_draw_value() method returns the value of the "draw−value" property. If "draw−value" is TRUE
the current scale value is drawn next to the slider.

gtk.Scale.set_value_pos

 def set_value_pos(pos)

pos : the position where the current value is displayed.
The set_value_pos() method sets the value of the "value−pos" property to the value specified by pos.
The value of pos must be one of: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP or
gtk.POS_BOTTOM.

gtk.Scale.get_value_pos

 def get_value_pos()

Returns : the position where the current value is displayed.
The get_value_pos() method returns the value of the "value−pos" property. See the set_value_pos()
method.

PyGTK 2.0 Reference Manual

Methods 525

gtk.Scale.get_layout

 def get_layout()

Returns : the pango.Layout for this scale or None if the draw_value property is FALSE.

Note

This method is available in PyGTK 2.4 and above.

The get_layout() method returns the pango.Layout used to display the scale.

gtk.Scale.get_layout_offsets

 def get_layout_offsets()

Returns : a 2−tuple containing the coordinates where the scale will draw the pango.Layout representing
the text in the scale

Note

This method is available in PyGTK 2.4 and above.

The get_layout_offsets() method returns a 2−tuple containing the coordinates where the scale will
draw the pango.Layout representing the text in the scale. Remember when using the pango.Layout
function you need to convert to and from pixels using the pango.PIXELS() function or pango.SCALE. If
the "draw−value" property is FALSE, the return values are undefined.

Signals

The "format−value" gtk.Scale Signal

 def callback(scale, value, user_param1, ...)

scale : the scale that received the signal
value : the value to be formatted
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : a string representing value for display
The "format−value" signal is emitted when the scale is being redrawn with a value displayed. The
"format−value" signal handler should return a formatted string containing value.

Prev Up Next
gtk.Ruler Home gtk.Scrollbar

gtk.Scrollbar
Prev The gtk Class Reference Next

gtk.Scrollbar

gtk.Scrollbar � a base class for scrollbar widgets.

PyGTK 2.0 Reference Manual

gtk.Scale.get_layout 526

Synopsis

class gtk.Scrollbar(gtk.Range):

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Range
 +−− gtk.Scrollbar

Style Properties

"fixed−slider−length" Read If TRUE don't change the slider size, just lock it to the
minimum length

"has−backward−stepper" Read If TRUE display the standard backward arrow button
"has−forward−stepper" Read If TRUE display the standard forward arrow button
"has−secondary−backward−stepper" Read If TRUE display a second backward arrow button on the

opposite end of the scrollbar
"has−secondary−forward−stepper" Read If TRUE display a secondary forward arrow button on the

opposite end of the scrollbar
min−slider−length"" Read The minimum length of scrollbar slider

Description

The gtk.Scrollbar widget is an abstract base class for gtk.HScrollbar and gtk.VScrollbar.
The position of the thumb in a scrollbar is controlled by the scroll adjustments. The gtk.Scrollbar uses
the attributes in an adjustment (see gtk.Adjustment) as follows:

the adjustment.lower attribute is the minimum value of the scroll region•
the adjustment.upper attribute is the maximum value of the scroll region•
the adjustment.value attribute represents the position of the scrollbar, which must be between
adjustment.lower and adjustment.upper − adjustment.page_size

•

the adjustment.page_size attribute represents the size of the visible scrollable area•
the adjustment.step_increment attribute is the distance to scroll when the small stepper
arrows are clicked

•

the adjustment.page_increment attribute is the distance to scroll when the Page Up or Page
Down keys are pressed

•

Prev Up Next
gtk.Scale Home gtk.ScrolledWindow

gtk.ScrolledWindow
Prev The gtk Class Reference Next

gtk.ScrolledWindow

gtk.ScrolledWindow � adds scrollbars to its child widget.

PyGTK 2.0 Reference Manual

Synopsis 527

Synopsis

class gtk.ScrolledWindow(gtk.Bin):
gtk.ScrolledWindow(hadjustment=None, vadjustment=None)

 def set_hadjustment(hadjustment)
 def set_vadjustment(hadjustment)
 def get_hadjustment()
 def get_vadjustment()
 def set_policy(hscrollbar_policy, vscrollbar_policy)
 def get_policy(hscrollbar_policy, vscrollbar_policy)
 def set_placement(window_placement)
 def get_placement()
 def set_shadow_type(type)
 def get_shadow_type()
 def add_with_viewport(child)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ScrolledWindow

Properties

"hadjustment" Read−Write−Construct The gtk.Adjustment for the horizontal position.
hscrollbar−policy"" Read−Write The horizontal scrollbar display policy; one of:

gtk.POLICY_ALWAYS, gtk.POLICY_AUTOMATIC or
gtk.POLICY_NEVER.

"shadow−type" Read−Write The style of bevel around the contents; one of:
gtk.SHADOW_NONE, gtk.SHADOW_IN,
gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN,
gtk.SHADOW_ETCHED_OUT.

"vadjustment" Read−Write−Construct The gtk.Adjustment for the vertical position.
"vscrollbar−policy" Read−Write The vertical scrollbar display policy; one of:

gtk.POLICY_ALWAYS, gtk.POLICY_AUTOMATIC or
gtk.POLICY_NEVER.

"window−placement" Read−Write Where the contents are located with respect to the scrollbars;
one of: gtk.CORNER_TOP_LEFT,
gtk.CORNER_BOTTOM_LEFT,
gtk.CORNER_TOP_RIGHT,
gtk.CORNER_BOTTOM_RIGHT.

Style Properties

"scrollbar−spacing" Read The number of pixels between the scrollbars and the scrolled window. Available
in GTK+ 2.2 and above.

Signal Prototypes

"move−focus−out" def callback(scrolledwindow, direction, user_param1, ...)

PyGTK 2.0 Reference Manual

Synopsis 528

"scroll−child" def callback(scrolledwindow, scrolltype, horizontal,
user_param1, ...)

Description

A gtk.ScrolledWindow is a subclass of gtk.Bin that adds scrollbars to a single child widget and
optionally draws a beveled frame around the child widget. The scrolled window can work in two ways:

Some widgets have native scrolling support using "slots" to hold gtk.Adjustment objects.
Widgets with native scroll support include gtk.TreeView, gtk.TextView, and gtk.Layout.

•

Widgets that lack native scrolling support use the gtk.Viewport widget that acts as an adapter
class, implementing scrollability for child widgets that lack their own scrolling capabilities. Use
gtk.Viewport to scroll child widgets such as gtk.Table, gtk.Box, and so on.

•

If a widget has native scrolling abilities, it can be added to the gtk.ScrolledWindow with the
gtk.Container.add() method. If a widget does not, you must first add the widget to a gtk.Viewport,
then add the gtk.Viewport to the scrolled window. The convenience method add_with_viewport()
does exactly this, so you can ignore the presence of the viewport.

The position of the scrollbars is controlled by the scroll adjustments. The gtk.ScrolledWindow uses the
attributes in an adjustment (see gtk.Adjustment) as follows:

the adjustment.lower attribute is the minimum value of the scroll region•
the adjustment.upper attribute is the maximum value of the scroll region•
the adjustment.value attribute represents the position of the scrollbar, which must be between
adjustment.lower and adjustment.upper − adjustment.page_size

•

the adjustment.page_size attribute represents the size of the visible scrollable area•
the adjustment.step_increment attribute is the distance to scroll when the small stepper
arrows are clicked

•

the adjustment.page_increment attribute is the distance to scroll when the Page Up or Page
Down keys are pressed

•

If a gtk.ScrolledWindow doesn't behave quite as you would like, or doesn't have exactly the right
layout, it's very possible to set up your own scrolling with gtk.Scrollbar and for example a
gtk.Table.

Constructor

gtk.ScrolledWindow(hadjustment=None, vadjustment=None)

hadjustment : the horizontal gtk.Adjustment or None
vadjustment : a vertical gtk.Adjustment or None
Returns : a new gtk.ScrolledWindow widget
Creates a new scrolled window with the horizontal and vertical gtk.Adjustment specified by
hadjustment and vadjustment respectively. These will be shared with the scrollbars and the child
widget to keep the bars in sync with the child. If hadjustment and vadjustment are None or not
specified the scrolled window will create them for you.

Methods

PyGTK 2.0 Reference Manual

Signal Prototypes 529

gtk.ScrolledWindow.set_hadjustment

 def set_hadjustment(hadjustment)

hadjustment : the horizontal gtk.Adjustment
The set_hadjustment() method sets the horizontal adjustment (and the "hadjustment" property) to the
value of hadjustment. hadjustment must be a gtk.Adjustment.

gtk.ScrolledWindow.set_vadjustment

 def set_vadjustment(hadjustment)

hadjustment : the vertical gtk.Adjustment
The set_vadjustment() method sets the vertical adjustment (and the "vadjustment" property) to the value
of vadjustment. vadjustment must be a gtk.Adjustment.

gtk.ScrolledWindow.get_hadjustment

 def get_hadjustment()

Returns : the horizontal gtk.Adjustment
The get_hadjustment() method returns the value of the "hadjustment" property which is a reference to
the horizontal adjustment.

gtk.ScrolledWindow.get_vadjustment

 def get_vadjustment()

Returns : the vertical gtk.Adjustment
The get_vadjustment() method returns the value of the "vadjustment" property which is a reference to
the vertical adjustment.

gtk.ScrolledWindow.set_policy

 def set_policy(hscrollbar_policy, vscrollbar_policy)

hscrollbar_policy : the policy for the horizontal scrollbar
vscrollbar_policy : the policy for the vertical scrollbar
The set_policy() method sets the "hscrollbar_policy" and "vscrollbar_policy" properties to the value of
hscrollbar_policy and vscrollbar_policy respectively. The policy determines when the
scrollbar should be displayed. The policy value is one of:

gtk.POLICY_ALWAYS the scrollbar is always present

gtk.POLICY_AUTOMATIC the scrollbar is present only if needed i.e. the contents are larget than the
window

gtk.POLICY_NEVER the scrollbar is never present

gtk.ScrolledWindow.get_policy

 def get_policy()

Returns> : a tuple containing the horizontal and vertical scrollbar policies

PyGTK 2.0 Reference Manual

gtk.ScrolledWindow.set_hadjustment 530

The get_policy() method returns a tuple containing the horizontal and vertical scrollbar policies. See the
set_policy() method for more detail.

gtk.ScrolledWindow.set_placement

 def set_placement(window_placement)

window_placement : the placement of the contents with respect to the scrollbars
The set_placement() method sets the "window−placement" property to the value specified by
window_placement. The window placement determines the location of the child widget with respect to
the scrollbars. window_placement must be one of:

gtk.CORNER_TOP_LEFT Place the scrollbars on the right and bottom of the widget (default
behavior).

gtk.CORNER_BOTTOM_LEFT Place the scrollbars on the top and right of the widget.
gtk.CORNER_TOP_RIGHT Place the scrollbars on the left and bottom of the widget.
gtk.CORNER_BOTTOM_RIGHT Place the scrollbars on the top and left of the widget.

gtk.ScrolledWindow.get_placement

 def get_placement()

Returns : the current placement value.
The get_placement() method returns the value of the "window−placement" property that determines the
placement of the scrollbars with respect to the scrolled window. See the set_placement() method for
more detail.

gtk.ScrolledWindow.set_shadow_type

 def set_shadow_type(type)

type : the kind of bevel shadow to draw around the scrolled window contents
The set_shadow_type() method sets the value of the "shadow−type" property to the value of
shadow_type. shadow_type determines the type of bevel shadow drawn around the contents of the
scrolled window. The shadow type must be one of:

gtk.SHADOW_NONE No outline.
gtk.SHADOW_IN The outline is beveled inward.
gtk.SHADOW_OUT The outline is beveled outward.
gtk.SHADOW_ETCHED_IN The outline is an inward etched bevel.
gtk.SHADOW_ETCHED_OUT The outline is an outward etched bevel.

gtk.ScrolledWindow.get_shadow_type

 def get_shadow_type()

Returns : the current shadow type
The get_shadow_type() method returns the value of the "shadow−type" property that determines the
shadow type of the scrolled window. See the set_shadow_type() method for more detail.

PyGTK 2.0 Reference Manual

gtk.ScrolledWindow.get_policy 531

gtk.ScrolledWindow.add_with_viewport

 def add_with_viewport(child)

child : the widget to be scrolled
The add_with_viewport() method is used to add a widget (specified by child) without native scrolling
capabilities to the scrolled window. This is a convenience function that is equivalent to adding child to a
gtk.Viewport, then adding the viewport to the scrolled window. If a child has native scrolling (e.g.
gtk.TextView, gtk.TreeView, gtk.Layout), use gtk.Container.add() instead of this method.

The viewport scrolls the child by moving its gtk.gdk.Window, and takes the size of the child to be the size
of its toplevel gtk.gdk.Window. This will be wrong for most widgets that support native scrolling. For
example, if you add a widget such as gtk.TreeView with a viewport, the whole widget will scroll,
including the column headings.

Signals

The "move−focus−out" gtk.ScrolledWindow Signal

 def callback(scrolledwindow, direction, user_param1, ...)

scrolledwindow : the scrolledwindow that received the signal

direction : the direction that the focus is moving either gtk.DIR_TAB_FORWARD or
gtk.DIR_TAB_BACKWARD.

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−focus−out" signal is emitted when the user presses Control+Tab or Control+Shift+Tab to move
the focus out of the scrolled window. The direction is either gtk.DIR_TAB_FORWARD or
gtk.DIR_TAB_BACKWARD

The "scroll−child" gtk.ScrolledWindow Signal

 def callback(scrolledwindow, scrolltype, horizontal, user_param1, ...)

scrolledwindow :the scrolledwindow that received the signal

scrolltype :

the scroll type; one of: gtk.SCROLL_STEP_BACKWARD,
gtk.SCROLL_STEP_FORWARD, gtk.SCROLL_PAGE_BACKWARD,
gtk.SCROLL_PAGE_FORWARD, gtk.SCROLL_PAGE_UP,
gtk.SCROLL_PAGE_DOWN, gtk.SCROLL_START or gtk.SCROLL_END.

horizontal : if TRUE scroll in the horizontal direction
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "scroll−child" signal is emitted when the child widget is being scrolled by a keyboard action. The default
key bindings with resulting scrolltype and horizontal arguments are:

Control+Left Arrow gtk.SCROLL_STEP_BACKWARD − horizontal
Control+Right Arrow gtk.SCROLL_STEP_FORWARD − horizontal
Control+Up Arrow gtk.SCROLL_STEP_BACKWARD − vertical
Control+Down Arrow gtk.SCROLL_STEP_FORWARD − vertical
Control+Page Up gtk.SCROLL_PAGE_BACKWARD − horizontal

PyGTK 2.0 Reference Manual

gtk.ScrolledWindow.add_with_viewport 532

Control+Page Down gtk.SCROLL_PAGE_FORWARD − horizontal
Page Up gtk.SCROLL_PAGE_BACKWARD − vertical
Page Down gtk.SCROLL_PAGE_FORWARD − vertical
Control+Home gtk.SCROLL_START − horizontal
Control+End gtk.SCROLL_END − horizontal
Home gtk.SCROLL_START − vertical
End gtk.SCROLL_END − vertical

Prev Up Next
gtk.Scrollbar Home gtk.SelectionData

gtk.SelectionData
Prev The gtk Class Reference Next

gtk.SelectionData

gtk.SelectionData � an object that stores information about a selection

Synopsis

class gtk.SelectionData(gobject.GBoxed):
 def set(type, format, data)
 def set_text(str, len)
 def get_text()
 def get_targets()
 def targets_include_text()
 def tree_set_row_drag_data(tree_model, path)
 def tree_get_row_drag_data()
 def set_pixbuf(pixbuf)
 def get_pixbuf()
 def set_uris(uris)
 def get_uris()
 def targets_include_image(writable)

Functions

 def gtk.selection_owner_set_for_display(display, widget, selection, time=0)
 def gtk.target_list_add_image_targets(list=None, info=0, writable=FALSE)
 def gtk.target_list_add_text_targets(list=None, info=0)
 def gtk.target_list_add_uri_targets(list=None, info=0)

Attributes

"selection" Read A gtk.gdk.Atom indicating the selection type (e.g. "PRIMARY").

"target" Read A gtk.gdk.Atom indicating the selection target type (e.g. "TARGETS").

"type" Read A gtk.gdk.Atom indicating the selection data type (e.g. "STRING").

"format" Read The unit length of the data in bits (e.g. 8 for a string or 32 of an integer).

"data" Read The data as a string.

PyGTK 2.0 Reference Manual

The "scroll−child" gtk.ScrolledWindow Signal 533

Description

A gtk.SelectionData object is used to store information about a chunk of data associated with a
selection. In PyGTK the selection data is always a string so the application will have to provide functions to
convert the data to and from a string to support data types other than strings and targets. The string and targets
types are directly supported using the set_text(), get_text() and get_targets() methods.

Methods

gtk.SelectionData.set

 def set(type, format, data)

type : a gtk.gdk.Atom or string that specifies a gtk.gdk.Atom
format : the number of bits in a unit
data : a string containing the data
The set() method sets the data for a selection in the gtk.SelectionData object. data is a string
containing the data to be set; format is the number of bits in a unit of the data (e.g. integer data has a format
of 32 on most systems; string data format is 8); and, type is a gtk.gdk.Atom or a string that specifies a
gtk.gdk.Atom.

gtk.SelectionData.set_text

 def set_text(str, len)

str : a string
len : the length of str, or −1 if str for the full length.
Returns : TRUE, if the selection was successfully set; otherwise, FALSE.
The set_text() method sets the contents of the selection from the string specified by str. The string is
converted to the form specified by the selection_data.target attribute. This method returns TRUE if
the selection data was successfully set.

gtk.SelectionData.get_text

 def get_text()

Returns : a string containing the converted text, or None.
The get_text() method returns the contents of the selection data as a string.

gtk.SelectionData.get_targets

 def get_targets()

Returns : a tuple containing a list of targets (gtk.gdk.Atoms) or None if no valid targets are available.
The get_targets() method returns a tuple containing a list of valid targets for the selection as a list of
gtk.gdk.Atoms or None if there are no valid targets.

PyGTK 2.0 Reference Manual

Description 534

gtk.SelectionData.targets_include_text

 def targets_include_text()

Returns : TRUE if the selection data holds a list of targets, and a suitable target for text is included.
The targets_include_text() method returns TRUE if any of the selection data targets can be used to
provide text.

gtk.SelectionData.tree_set_row_drag_data

 def tree_set_row_drag_data(tree_model, path)

tree_model : a gtk.TreeModel
path : a row in tree_model
Returns : TRUE if the gtk.SelectionData had the proper target type to allow us to set a tree row
The tree_set_row_drag_data() method sets the selection data of target type
GTK_TREE_MODEL_ROW for the row (specified by path) in the gtk.TreeModel (specified by
tree_model). Normally used in a "drag−data−get" signal handler.

gtk.SelectionData.tree_get_row_drag_data

 def tree_get_row_drag_data()

Returns : a tuple containing a gtk.TreeModel and one of its rows.
The tree_get_row_drag_data() method returns a tuple containing a gtk.TreeModel and a row
from that gtk.TreeModel from selection data of target type GTK_TREE_MODEL_ROW. Normally called
from a "drag−data−received" signal handler. This method can only be used if the selection data originates
from the same process that's calling this method, because a pointer to the tree model is being passed around.
In the "drag−data−received" signal handler, you can assume that selection data of type
"GTK_TREE_MODEL_ROW" is from the current process.

gtk.SelectionData.set_pixbuf

 def set_pixbuf(pixbuf)

pixbuf : a gtk.gdk.Pixbuf
Returns : TRUE, if the selection was successfully set; otherwise, FALSE.

Note

This method is available in PyGTK 2.6 and above.

The set_pixbuf() method sets the contents of the selection from the gtk.gdk.Pixbuf specified by
pixbuf. This method returns TRUE if the selection data was successfully set.

gtk.SelectionData.get_pixbuf

 def get_pixbuf()

Returns : if the selection data contained a recognized image type and it could be converted to a
gtk.gdk.Pixbuf, a newly allocated pixbuf is returned, or None.

PyGTK 2.0 Reference Manual

gtk.SelectionData.targets_include_text 535

Note

This method is available in PyGTK 2.6 and above.

The get_pixbuf() method returns the contents of the selection data as a gtk.gdk.Pixbuf if possible.

gtk.SelectionData.set_uris

 def set_uris(uris)

uris : a list of strings holding URIs
Returns : TRUE, if the selection was successfully set; otherwise, FALSE.

Note

This method is available in PyGTK 2.6 and above.

The set_uris() method sets the contents of the selection from the list of URIs specified by uris. This
method returns TRUE if the selection data was successfully set.

gtk.SelectionData.get_uris

 def get_uris()

Returns : a list of URIs, or None.

Note

This method is available in PyGTK 2.6 and above.

The get_uris() method returns the contents of the selection data as a list or URIs.

gtk.SelectionData.targets_include_image

 def targets_include_image(writable)

writable : If TRUE only accept targets that GTK+ can convert a gtk.gdk.Pixbuf to.
Returns : TRUE, if the selection has a list of targets that includes an image target.

Note

This method is available in PyGTK 2.6 and above.

The targets_include_image() method returns TRUE if the selection targets include an image target.

Functions

gtk.selection_owner_set_for_display

 def gtk.selection_owner_set_for_display(display, widget, selection, time=0)

display : the gtk.gdk.Display where the selection is set
widget : the new selection owner (a gtk.Widget), or None.

PyGTK 2.0 Reference Manual

Note 536

selection : a gtk.gdk.Atom or string representing a selection target
time : the timestamp used to claim the selection
Returns : TRUE if the operation succeeded
The gtk.selection_owner_set_for_display() function claims ownership of the selection
specified by selection for the widget specified by widget on the gtk.gdk.Display specified by
display. If widget is None, the ownership of the selection is released.

gtk.target_list_add_image_targets

 def gtk.target_list_add_image_targets(list=None, info=0, writable=FALSE)

list : A sequence of target entry tuples or None
info : an application specified ID that will be passed back to the application
writable : If TRUE, only add targets for image formats that a pixbuf can be converted to.

Returns : a new list concatenating list and the built−in image targets supported by
gtk.SelectionData.

Note

This function is available in PyGTK 2.6 and above.

The gtk.target_list_add_image_targets() function adds the image target tuples supported by
gtk.SelectionData to the list of target entry tuples specified by list. info is used as the info field of
the target entry tuples.

gtk.target_list_add_text_targets

 def gtk.target_list_add_text_targets(list=None, info=0)

list : A sequence of target entry tuples or None
info : an application specified ID that will be passed back to the application

Returns : a new list concatenating list and the built−in text targets supported by
gtk.SelectionData.

Note

This function is available in PyGTK 2.6 and above.

The gtk.target_list_add_text_targets() function adds the text target tuples supported by
gtk.SelectionData to the list of target entry tuples specified by list. info is used as the info field of
the target entry tuples.

gtk.target_list_add_uri_targets

 def gtk.target_list_add_uri_targets(list=None, info=0)

list : A sequence of target entry tuples or None
info : an application specified ID that will be passed back to the application
Returns : a new list concatenating list and the built−in URI targets supported by gtk.SelectionData.

PyGTK 2.0 Reference Manual

gtk.selection_owner_set_for_display 537

Note

This function is available in PyGTK 2.6 and above.

The gtk.target_list_add_uri_targets() function adds the URI target tuples supported by
gtk.SelectionData to the list of target entry tuple specified by list. info is used as the info field of
the target entry tuples.

Prev Up Next
gtk.ScrolledWindow Home gtk.Separator

gtk.Separator
Prev The gtk Class Reference Next

gtk.Separator

gtk.Separator � a base class for visual separator widgets.

Synopsis

class gtk.Separator(gtk.Widget):

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Separator

Description

The gtk.Separator widget is an abstract base class, used only for deriving the subclasses
gtk.HSeparator and gtk.VSeparator. A separator is a visual delimiter between widgets.

Prev Up Next
gtk.SelectionData Home gtk.SeparatorMenuItem

gtk.SeparatorMenuItem
Prev The gtk Class Reference Next

gtk.SeparatorMenuItem

gtk.SeparatorMenuItem � a separator used in menus.

Synopsis

class gtk.SeparatorMenuItem(gtk.MenuItem):
gtk.SeparatorMenuItem()

PyGTK 2.0 Reference Manual

Note 538

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Item
 +−− gtk.MenuItem
 +−− gtk.SeparatorMenuItem

Description

The gtk.SeparatorMenuItem is a separator used to group items within a menu. It displays a horizontal
line with a shadow to make it appear sunken into the interface.

Constructor

gtk.SeparatorMenuItem()

Returns : a new gtk.SeparatorMenuItem widget
Creates a new gtk.SeparatorMenuItem widget.

Prev Up Next
gtk.Separator Home gtk.SeparatorToolItem

gtk.SeparatorToolItem
Prev The gtk Class Reference Next

gtk.SeparatorToolItem

gtk.SeparatorToolItem � a toolbar item that separates groups of other toolbar items (new in PyGTK 2.4)

Synopsis

class gtk.SeparatorToolItem(gtk.ToolItem):
gtk.SeparatorToolItem()

 def get_draw()
 def set_draw(draw)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ToolItem
 +−− gtk.SeparatorToolItem

PyGTK 2.0 Reference Manual

Ancestry 539

Properties

"draw" Read−Write If TRUE, the separator is drawn. Available in GTK+ 2.4.

Description

Note

This widget is available in PyGTK 2.4 and above.

A gtk.SeparatorToolItem is a gtk.ToolItem that separates groups of other gtk.ToolItem
objects. Depending on the theme, a gtk.SeparatorToolItem will often look like a vertical line on
horizontally docked toolbars.

If the gtk.SeparatorToolItem is set to expand (using the gtk.ToolItem.set_expand() method)
and the "draw" property is FALSE, a gtk.SeparatorToolItem will act as a "spring" that forces other
items to the ends of the toolbar.

Constructor

gtk.SeparatorToolItem()

Returns : the new gtk.SeparatorToolItem Since: 2.4

Note

This constructor is available in PyGTK 2.4 and above.

Create a new gtk.SeparatorToolItem

Methods

gtk.SeparatorToolItem.get_draw

 def get_draw()

Returns : TRUE if separator_tool_item is drawn as a line, or just blank.

Note

This method is available in PyGTK 2.4 and above.

The get_draw() method returns TRUE if the separator tool item is drawn as a line or FALSE, if it's just
blank. See the set_draw() method.

gtk.SeparatorToolItem.set_draw

 def set_draw(draw)

draw : if TRUE the gtk.SeparatorToolItem is drawn as a vertical line

PyGTK 2.0 Reference Manual

Properties 540

Note

This method is available in PyGTK 2.4 and above.

The set_draw() method sets the "draw" property to the value of draw. If draw is TRUE the
gtk.SeparatorToolItem is drawn as a vertical line; if FALSE, just blank. Setting the "draw" property
to FALSE along with passing TRUE to the gtk.ToolItem.set_expand() is useful to create an item that
forces following items to the end of the toolbar.

Prev Up Next
gtk.SeparatorMenuItem Home gtk.Settings

gtk.Settings
Prev The gtk Class Reference Next

gtk.Settings

gtk.Settings � an object that contains the global settings for the widgets on a gtk.gdk.Screen

Synopsis

class gtk.Settings(gobject.GObject):
 def set_string_property(name, v_string, origin)
 def set_long_property(name, v_long, origin)
 def set_double_property(name, v_double, origin)

Functions

 def gtk.settings_get_default()
 def gtk.settings_get_for_screen(screen)

Ancestry

+−− gobject.GObject
 +−− gtk.Settings

Properties

"gtk−alternative−button−order" Read−Write If TRUE, buttons in dialogs should use the alternative button
order. Available in GTK+ 2.6 and above. Default value:
FALSE

"gtk−button−images" Read−Write If TRUE, stock icons should be shown in buttons. Available in
GTK+ 2.4 and above. Default value: TRUE

"gtk−can−change−accels" Read−Write If TRUE, the menu accelerators can be changed by pressing a
key over the menu item. Default value: FALSE

"gtk−color−palette" Read−Write The palette to use in the color selector. Default value:
"black:white:gray50:red:purple:blue:light
blue:green:yellow:orange:lavender:brown:goldenrod4:dodger
blue:pink:light green:gray10:gray30:gray75:gray90"

"gtk−cursor−blink" Read−Write If TRUE, the cursor should blink. Default value: TRUE
"gtk−cursor−blink−time" Read−Write The length of the cursor blink cycle, in milliseconds. Allowed

values: >= 100. Default value: 1200

PyGTK 2.0 Reference Manual

Note 541

"gtk−dnd−drag−threshold" Read−Write The number of pixels the cursor can move before dragging
starts. Allowed values: >= 1. Default value: 8

"gtk−double−click−distance" Read−Write The maximum distance allowed between two clicks for them
to be considered a double click (in pixels). Available in GTK+
2.4 and above. Allowed values: >= 0. Default value: 5

"gtk−double−click−time" Read−Write The maximum time allowed between two clicks for them to be
considered a double click (in milliseconds). Allowed values:
>= 0. Default value: 250

"gtk−entry−select−on−focus" Read−Write If TRUE, select the contents of an entry when it is focused.
Default value: TRUE

"gtk−font−name" Read−Write The name of the default font to use. Default value: "Sans 10"
"gtk−icon−sizes" Read−Write The list of icon sizes (gtk−menu=16,16;gtk−button=20,20...).

Default value: None
"gtk−icon−theme−name" Read−Write The name of the icon theme to use. Available in GTK+ 2.4

and above. Default value: "hicolor"
"gtk−key−theme−name" Read−Write The name of the key theme RC file to load. Default value:

None

"gtk−menu−bar−accel" Read−Write The keybinding to activate the menu bar. Default value: "F10"
"gtk−menu−bar−popup−delay" Read−Write The delay before the submenus of a menu bar appear. Allowed

values: >= 0. Default value: 0 Available in GTK+ 2.2 and
above.

"gtk−menu−images" Read−Write If TRUE images should be shown in menus. Default value:
TRUE. Available in GTK+ 2.4 and above.

"gtk−menu−popdown−delay" Read−Write The time before hiding a submenu when the pointer is moving
toward the submenu. Allowed values: >= 0. Default value:
1000. Available in GTK+ 2.2 and above.

"gtk−menu−popup−delay" Read−Write Minimum time the pointer must stay over a menu item before
the submenu appears. Allowed values: >= 0. Default value:
225. Available in GTK+ 2.2 and above.

"gtk−modules" Read−Write The list of currently active GTK modules. Default value:
None. Available in GTK+ 2.6 and above.

"gtk−split−cursor" Read−Write If TRUE, two cursors should be displayed for mixed
left−to−right and right−to−left text. Default value: TRUE

"gtk−theme−name" Read−Write The name of the theme RC file to load. Default value:
"Default"

"gtk−toolbar−icon−size" Read−Write the toolbar icon size − one of: gtk.ICON_SIZE_MENU,
gtk.ICON_SIZE_SMALL_TOOLBAR,
gtk.ICON_SIZE_LARGE_TOOLBAR,
gtk.ICON_SIZE_BUTTON, gtk.ICON_SIZE_DND or
gtk.ICON_SIZE_DIALOG. Default value:
gtk.ICON_SIZE_LARGE_TOOLBAR

"gtk−toolbar−style" Read−Write The toolbar display style − one of: gtk.TOOLBAR_ICONS,
gtk.TOOLBAR_TEXT, gtk.TOOLBAR_BOTH or
gtk.TOOLBAR_BOTH_HORIZ. Default value:
gtk.TOOLBAR_BOTH

"gtk−xft−antialias" Read−Write Whether to antialias Xft fonts; 0=no, 1=yes, −1=default.
Default value: −1. Available in GTK+ 2.4 and above.

"gtk−xft−dpi" Read−Write Resolution for Xft, in 1024 * dots/inch. −1 to use default
value. Allowed values: [−1,1048576]. Default value: −1.
Available in GTK+ 2.4 and above.

PyGTK 2.0 Reference Manual

Properties 542

"gtk−xft−hinting" Read−Write Whether to hint Xft fonts; 0=no, 1=yes, −1=default. Default
value: −1. Available in GTK+ 2.4 and above.

"gtk−xft−hintstyle" Read−Write What degree of hinting to use; none, slight, medium, or full.
Default value: None. Available in GTK+ 2.4 and above.

"gtk−xft−rgba" Read−Write Type of subpixel antialiasing; none, rgb, bgr, vrgb, vbgr.
Default value: None. Available in GTK+ 2.4 and above.

Description

The gtk.Settings object stores the values of the global settings associated with a gtk.gdk.Screen.
The gtk.Settings object for the default gtk.gdk.Screen can be retrieved using the
gtk.settings_get_default() function. The gtk.Widget.get_settings() method returns the
gtk.Settings object of the gtk.gdk.Screen that the widget is displayed on.

Methods

gtk.Settings.set_string_property

 def set_string_property(name, v_string, origin)

name : the name of the property to set
v_string : the string value
origin : the string value of the origin
The set_string_property() method sets the property named name to the string value specified by
v_string at the string origin specified by origin.

gtk.Settings.set_long_property

 def set_long_property(name, v_long, origin)

name : the name of the property to set
v_long : the long value
origin : the string value of the origin
The set_long_property() method sets the property named name to the long value specified by v_long
at the string origin specified by origin.

gtk.Settings.set_double_property

 def set_double_property(name, v_double, origin)

name : the name of the property to set
v_double : the double value
origin : the string value of the origin
The set_double_property() method sets the property named name to the double value specified by
v_long at the string origin specified by origin.

PyGTK 2.0 Reference Manual

Description 543

Functions

gtk.settings_get_default

 def gtk.settings_get_default()

Returns : the singleton gtk.Settings object
The gtk.settings_get_default function returns the singleton gtk.Settings object.

gtk.settings_get_for_screen

 def gtk.settings_get_for_screen(screen)

screen : a gtk.gdk.Screen object
Returns : a gtk.Settings object

Note

This function is available in PyGTK 2.2 and above.

The gtk.settings_get_for_screen() function returns the singleton gtk.Settings object for the
gtk.gdk.Screen specified by screen.

Prev Up Next
gtk.SeparatorToolItem Home gtk.SizeGroup

gtk.SizeGroup
Prev The gtk Class Reference Next

gtk.SizeGroup

gtk.SizeGroup � an object that groups widgets so they request the same size

Synopsis

class gtk.SizeGroup(gobject.GObject):
gtk.SizeGroup(mode)

 def set_mode(mode)
 def get_mode()
 def add_widget(widget)
 def remove_widget(widget)

Ancestry

+−− gobject.GObject
 +−− gtk.SizeGroup

Properties

"mode" Read−Write The directions in which the size group effects the requested sizes of its component
widgets − one of: gtk.SIZE_GROUP_NONE, gtk.SIZE_GROUP_HORIZONTAL,

PyGTK 2.0 Reference Manual

Functions 544

gtk.SIZE_GROUP_VERTICAL, gtk.SIZE_GROUP_BOTH.

Description

gtk.SizeGroup provides a mechanism for grouping a number of widgets together so they all request the
same amount of space. This is typically useful when you want a column of widgets to have the same size, but
you can't use a gtk.Table widget. The size requested for each widget in a gtk.SizeGroup is the
maximum of the sizes that would have been requested for each widget in the size group if they were not in the
size group. The mode of the size group (see set_mode()) determines whether this applies to the horizontal
size, the vertical size, or both sizes:

gtk.SIZE_GROUP_NONE the group has no effect
gtk.SIZE_GROUP_HORIZONTAL the group affects the horizontal requisition
gtk.SIZE_GROUP_VERTICAL the group affects the vertical requisition
gtk.SIZE_GROUP_BOTH the group affects both the horizontal and vertical requisition
Note that size groups only affect the amount of space requested, not the size that the widgets finally receive. If
you want the widgets in a gtk.SizeGroup to actually be the same size, you need to pack them in such a
way that they get the size they request and not more. For example, if you are packing your widgets into a
table, you would not include the gtk.FILL flag. gtk.SizeGroup objects are referenced by each widget
in the size group, so once you have added all widgets to a gtk.SizeGroup. If the widgets in the size group
are subsequently destroyed, then they will be removed from the size group and drop their references on the
size group; when all widgets have been removed, the size group will be freed.

Widgets can be part of multiple size groups; PyGTK will compute the horizontal size of a widget from the
horizontal requisition of all widgets that can be reached from the widget by a chain of size groups of type
gtk.SIZE_GROUP_HORIZONTAL or gtk.SIZE_GROUP_BOTH, and the vertical size from the vertical
requisition of all widgets that can be reached from the widget by a chain of size groups of type
gtk.SIZE_GROUP_VERTICAL or gtk.SIZE_GROUP_BOTH.

Constructor

gtk.SizeGroup(mode)

mode : the mode for the new size group.
Returns : a new gtk.SizeGroup
Creates a new gtk.SizeGroup with the mode specified by the value of mode:

gtk.SIZE_GROUP_NONE the group has no effect
gtk.SIZE_GROUP_HORIZONTAL the group affects the horizontal requisition
gtk.SIZE_GROUP_VERTICAL the group affects the vertical requisition
gtk.SIZE_GROUP_BOTH the group affects both the horizontal and vertical requisition

Methods

gtk.SizeGroup.set_mode

 def set_mode(mode)

mode : the mode to set for the size group.

PyGTK 2.0 Reference Manual

Properties 545

The set_mode() method sets the "mode" property of the size group to the value specified by mode. The
"mode" of the size group determines whether the widgets in the size group should all have the same horizontal
requisition (gtk.SIZE_GROUP_MODE_HORIZONTAL) all have the same vertical requisition
(gtk.SIZE_GROUP_MODE_VERTICAL), or should all have the same requisition in both directions
(gtk.SIZE_GROUP_MODE_BOTH).

gtk.SizeGroup.get_mode

 def get_mode()

Returns : the current mode of the size group.
The get_mode() method returns the value of the "mode" property of the size group. See the set_mode()
method.

gtk.SizeGroup.add_widget

 def add_widget(widget)

widget : the gtk.Widget to add
The add_widget() method adds the widget specified by widget to the gtk.SizeGroup. The
requisition of the widget will then be determined as the maximum of its requisition and the requisition of the
other widgets in the size group. Whether this applies horizontally, vertically, or in both directions depends on
the mode of the size group. See the set_mode() method for more detail.

gtk.SizeGroup.remove_widget

 def remove_widget(widget)

widget : the gtk.Widget to remove
The remove_widget() method removes the widget specified by widget from the gtk.SizeGroup.

Prev Up Next
gtk.Settings Home gtk.Socket

gtk.Socket
Prev The gtk Class Reference Next

gtk.Socket

gtk.Socket � a container for widgets from other processes.

Synopsis

class gtk.Socket(gtk.Container):
gtk.Socket()

 def add_id(window_id)
 def get_id()

PyGTK 2.0 Reference Manual

gtk.SizeGroup.set_mode 546

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Socket

Signal Prototypes

"plug−added" def callback(socket, user_param1, ...)

"plug−removed" def callback(socket, user_param1, ...)

Description

Together with a gtk.Plug, a gtk.Socket provides the ability to embed widgets from one process into
another process in a fashion that is transparent to the user. One process creates a gtk.Socket widget and,
passes the that widget's window ID to the other process, which then creates a gtk.Plug with that window
ID. Any widgets contained in the gtk.Plug then will appear inside the first applications window. The
socket's window ID is obtained by using the get_id() method. Before using this function, the socket must
have been realized, and added to its parent.

When PyGTK is notified that the embedded window has been destroyed, then it will destroy the socket as
well. You should always, therefore, be prepared for your sockets to be destroyed at any time when the main
event loop is running. The communication between a gtk.Socket and a gtk.Plug follows the XEmbed
protocol.

Constructor

gtk.Socket()

Returns : the new gtk.Socket.
Creates a new gtk.Socket.

Methods

gtk.Socket.add_id

 def add_id(window_id)

window_id : the window ID of a client participating in the XEMBED protocol.
The add_id() method adds an XEMBED client specified by window_id, such as a gtk.Plug, to the
gtk.Socket. The client may be in the same process or in a different process.

To embed a gtk.Plug in a gtk.Socket, you can either:

create the gtk.Plug by calling gtk.Plug(), then call gtk.Plug.get_id() to get the window ID
of the plug, and finally pass that to the gtk.Socket.add_id(); or,

•

call the gtk.Socket.get_id() method to get the window ID for the socket, then create the
gtk.Plug by calling gtk.Plug() passing in that ID. The gtk.Socket must have already be added
into a toplevel window before you can make this call.

•

PyGTK 2.0 Reference Manual

Ancestry 547

gtk.Socket.get_id

 def get_id()

Returns : the window ID for the socket
The get_id() method gets the window ID of a gtk.Socket widget, which can then be used to create a
client embedded inside the socket, for instance with gtk.Plug(). The gtk.Socket must have already be
added into a toplevel window before you can make this call.

Signals

The "plug−added" gtk.Socket Signal

 def callback(socket, user_param1, ...)

socket : the socket that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "plug−added" signal is emitted when a plug is added to the socket.

The "plug−removed" gtk.Socket Signal

 def callback(socket, user_param1, ...)

socket : the socket that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the gtk.Socket should not be destroyed.
The "plug−removed" signal is emitted when a plug is removed from the socket. The default action is to
destroy the gtk.Socket widget, so if you want to reuse it you must add a signal handler that returns TRUE.

Prev Up Next
gtk.SizeGroup Home gtk.SpinButton

gtk.SpinButton
Prev The gtk Class Reference Next

gtk.SpinButton

gtk.SpinButton � retrieve an integer or floating−point number from the user.

Synopsis

class gtk.SpinButton(gtk.Entry):
gtk.SpinButton(adjustment=None, climb_rate=0.0, digits=0)

 def configure(adjustment, climb_rate, digits)
 def set_adjustment(adjustment)
 def get_adjustment()
 def set_digits(digits)
 def get_digits()
 def set_increments(step, page)

PyGTK 2.0 Reference Manual

gtk.Socket.get_id 548

 def get_increments()
 def set_range(min, max)
 def get_range()
 def get_value()
 def get_value_as_int()
 def set_value(value)
 def set_update_policy(policy)
 def get_update_policy()
 def set_numeric(numeric)
 def get_numeric()
 def spin(direction, increment)
 def set_wrap(wrap)
 def get_wrap()
 def set_snap_to_ticks(snap_to_ticks)
 def get_snap_to_ticks()
 def update()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Entry (implements gtk.Editable, gtk.CellEditable)
 +−− gtk.SpinButton

Properties

"adjustment" Read−Write The adjustment that holds the value of the spinbutton
"climb−rate" Read−Write The acceleration rate when you hold down a button
"digits" Read−Write The number of decimal places to display
"numeric" Read−Write If TRUE, non−numeric characters should be ignored
"snap−to−ticks" Read−Write If TRUE, erroneous values are automatically changed to a

spin button's nearest step increment
"update−policy" Read−Write either gtk.UPDATE_ALWAYS (the spin button should

update always), or gtk.UPDATE_IF_VALID the spin
button should update only when the value is legal)

"value" Read−Write the current value
"wrap" Read−Write If TRUE, a spin button should wrap upon reaching its limits

Style Properties

"shadow−type" Read the shadow type of the spinbutton − one of: gtk.SHADOW_NONE,
gtk.SHADOW_IN, gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN or
gtk.SHADOW_ETCHED_OUT

Signal Prototypes

"change−value" def callback(spinbutton, scrolltype, user_param1, ...)

"input" def callback(spinbutton, value_ptr, user_param1, ...)

"output" def callback(spinbutton, user_param1, ...)

"value−changed" def callback(spinbutton, user_param1, ...)

PyGTK 2.0 Reference Manual

Synopsis 549

Description

A gtk.SpinButton is a subclass of gtk.Entry that provides a way for a user to set the value of some
numeric attribute within a predefined range. Rather than having to directly type a number into a gtk.Entry,
a gtk.SpinButton allows the user to click on one of two arrows to increment or decrement the displayed
value. A value can still be typed in and validated. A gtk.SpinButton uses a gtk.Adjustment to
specify the range and value of interest. See the gtk.Adjustment section for more details about an
adjustment's properties.

Constructor

gtk.SpinButton(adjustment=None, climb_rate=0.0, digits=0)

adjustment : a gtk.Adjustment or None to create a new adjustment
climb_rate : the acceleration factor
digits : the number of decimal places to display
Returns : a new gtk.SpinButton widget
Creates a new gtk.SpinButton widget using the gtk.Adjustment specified by adjustment, the
acceleration factor specified by climb_rate and displaying the number of decimals specified by digits.
If adjustment is None or is not specified a new gtk.Adjustment will be created. If climb_rate is
not specified it defaults to 0.0. If digits is not specified it defaults to 0.

Methods

gtk.SpinButton.configure

 def configure(adjustment, climb_rate, digits)

adjustment : a gtk.Adjustment or None to create a new adjustment
climb_rate : the acceleration factor
digits : the number of decimal places to display
The configure() method changes the properties of an existing spin button by associating the
gtk.Adjustment specified by adjustment, setting the acceleration rate to the c value specified by
climb_rate and setting the number of decimal places to display to the value specified by digits. If
adjustment is None a new gtk.Adjustment will be created.

gtk.SpinButton.set_adjustment

 def set_adjustment(adjustment)

adjustment : a gtk.Adjustment to replace the existing adjustment
The set_adjustment() method sets the "adjustment" property to the value specified by adjustment
replacing the current adjustment object associated with the spinbutton.

gtk.SpinButton.get_adjustment

 def get_adjustment()

Returns : the gtk.Adjustment object associated with the spinbutton

PyGTK 2.0 Reference Manual

Description 550

The get_adjustment() method returns the value of the "adjustment" property.

gtk.SpinButton.set_digits

 def set_digits(digits)

digits : the number of decimal places to be displayed for the spin button's value
The set_digits() method sets the "digits" property to the value specified by digits. The value of
"digits" determines the number of decimal places (up to 20 digits) to be displayed by the spinbutton.

gtk.SpinButton.get_digits

 def get_digits()

Returns : the current number of decimal places to be displayed
The get_digits() method returns the value of the "digits" property. The value of "digits" determines the
number of decimal places the spinbutton displays. See the set_digits() method for more detail.

gtk.SpinButton.set_increments

 def set_increments(step, page)

step : increment applied for each left mousebutton press.
page : increment applied for each middle mousebutton press.
The set_increments() method sets the step_increment and page_increment attributes of the
gtk.Adjustment associated with the spinbutton to the values specified by step and page respectively.
These affect how quickly the value changes when the spin button's arrows are activated.

gtk.SpinButton.get_increments

 def get_increments()

Returns : a tuple containing the step and page increments
The get_increments() method returns a tuple containing the values of the step_increment and
page_increment attributes of the gtk.Adjustment associated with the spinbutton. See the
set_increments() method for more detail.

gtk.SpinButton.set_range

 def set_range(min, max)

min : the minimum allowable value
max : the maximum allowable value
The set_range() method sets the minimum and maximum allowable values for spinbutton by setting the
lower and upper attributes of the associated gtk.Adjustment to the values of min and max
respectively.

gtk.SpinButton.get_range

 def get_range()

PyGTK 2.0 Reference Manual

gtk.SpinButton.get_adjustment 551

Returns : a tuple containing the minimum and maximum allowed values
The get_range() method returns a tuple containing the range allowed for the spinbutton. See the
set_range() method for more detail.

gtk.SpinButton.get_value

 def get_value()

Returns : the value of the spin_button
The get_value() method returns the value of the "value" property of the spinbutton (really the value
attribute of the associated gtk.Adjustment).

gtk.SpinButton.get_value_as_int

 def get_value_as_int()

Returns : the value of the spinbutton as an integer
The get_value_as_int() method returns the value of the spinbutton represented as an integer.

gtk.SpinButton.set_value

 def set_value(value)

value : the new value
The set_value() method sets the value of the "value" property to the value specified by value (sets the
value attribute of the associated gtk.Adjustment.

gtk.SpinButton.set_update_policy

 def set_update_policy(policy)

policy : the new update policy
The set_update_policy() method sets the "update−policy" property to the value of policy. The value
of policy is either of:

gtk.UPDATE_ALWAYS the value is always displayed.

gtk.UPDATE_IF_VALID
the value is only displayed if it is valid within the bounds of the
spinbutton's gtk.Adjustment.

gtk.SpinButton.get_update_policy

 def get_update_policy()

Returns : the current update policy
The get_update_policy() method returns the value of the "update−policy" property that determines the
update behavior of a spin button. See the set_update_policy() method for more detail.

gtk.SpinButton.set_numeric

 def set_numeric(numeric)

PyGTK 2.0 Reference Manual

gtk.SpinButton.get_range 552

numeric : a flag indicating if only numeric entry is allowed.
The set_numeric() method sets the value of the "numeric" property to the value of numeric. If
numeric is TRUE only numeric text can be typed into the spin button.

gtk.SpinButton.get_numeric

 def get_numeric()

Returns : TRUE if only numeric text can be entered
The get_numeric() method returns the value of the "numeric" preoperty. See the set_numeric()
method for more detail.

gtk.SpinButton.spin

 def spin(direction, increment)

direction : the direction to spin.
increment : the step increment to apply in the specified direction.
The spin() method increments or decrements a spin button's value in the direction specified by direction
with a step size specified by increment. The value of increment is only used if direction is
gtk.SPIN_USER_DEFINED. The value of direction must be one of:

gtk.SPIN_STEP_FORWARD forward by step_increment
gtk.SPIN_STEP_BACKWARD backward by step_increment
gtk.SPIN_PAGE_FORWARD forward by step_increment
gtk.SPIN_PAGE_BACKWARD backward by step_increment
gtk.SPIN_HOME move to minimum value
gtk.SPIN_END move to maximum value
gtk.SPIN_USER_DEFINED add increment to the value

gtk.SpinButton.set_wrap

 def set_wrap(wrap)

wrap : if TRUE wrapping is performed.
The set_wrap() method sets the "wrap" property to the value of wrap. If wrap is TRUE the spin button
value wraps around to the opposite limit when the upper or lower limit of the range is exceeded.

gtk.SpinButton.get_wrap

 def get_wrap()

Returns : TRUE if the spin button wraps
The get_wrap() method returns the value of the "wrap" property. If the value of "wrap" is TRUE the
spinbutton's value wraps around to the opposite limit when the upper or lower limit of the range is exceeded.
See the set_wrap() method.

PyGTK 2.0 Reference Manual

gtk.SpinButton.set_numeric 553

gtk.SpinButton.set_snap_to_ticks

 def set_snap_to_ticks(snap_to_ticks)

snap_to_ticks : if TRUE invalid values should be corrected.
The set_snap_to_ticks() method sets the "snap−to−ticks" property to the value of snap_to_ticks.
If snap_to_ticks is TRUE values are corrected to the nearest step increment when a spin button is
activated after providing an invalid value.

gtk.SpinButton.get_snap_to_ticks

 def get_snap_to_ticks()

Returns : TRUE if values are snapped to the nearest step.
The get_snap_to_ticks() method returns the value of the "snap−to−ticks" property. If the value of
"snap−to−ticks" is TRUE the input values are corrected to the nearest step. See the set_snap_to_ticks()
method.

gtk.SpinButton.update

 def update()

The update() method manually forces an update of the spin button.

Signals

The "change−value" gtk.SpinButton Signal

 def callback(spinbutton, scrolltype, user_param1, ...)

spinbutton : the spinbutton that received the signal

scrolltype :
the scrolltype: gtk.SCROLL_STEP_UP, gtk.SCROLL_STEP_DOWN,
gtk.SCROLL_PAGE_UP, gtk.SCROLL_PAGE_DOWN, gtk.SCROLL_START or
gtk.SCROLL_END

user_param1 :the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "change−value" signal is emitted when the spinbutton value is changed by keyboard action using the Up
Arrow, Down Arrow, Page Up, Page Down, Control+Page Up or Control+Page Down keys.

The "input" gtk.SpinButton Signal

 def callback(spinbutton, value_ptr, user_param1, ...)

spinbutton : the spinbutton that received the signal
value_ptr : a pointer to the value
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE if the input value was retrieved and handled; FALSE if not handled and −1 if an
error occurred during processing.

The "input" signal is emitted when the value changes. The value_ptr is a GPointer to the value that cannot be

PyGTK 2.0 Reference Manual

gtk.SpinButton.set_snap_to_ticks 554

accessed from PyGTK. This signal cannot be handled in PyGTK.

The "output" gtk.SpinButton Signal

 def callback(spinbutton, user_param1, ...)

spinbutton : the spinbutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if no further processing is required.
The "output" signal is emitted when the spinbutton display value is changed either by setting a new value or
changing the digits and on realizing the widget. Returns TRUE if the handler successfully set the text and no
further processing is required.

The "value−changed" gtk.SpinButton Signal

 def callback(spinbutton, user_param1, ...)

spinbutton : the spinbutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "value−changed" signal is emitted when any of the settings (i.e. value, digits) that change the display of
the spinbutton are changed.

Prev Up Next
gtk.Socket Home gtk.Statusbar

gtk.Statusbar
Prev The gtk Class Reference Next

gtk.Statusbar

gtk.Statusbar � report messages of minor importance to the user.

Synopsis

class gtk.Statusbar(gtk.HBox):
gtk.Statusbar()

 def get_context_id(context_description)
 def push(context_id, text)
 def pop(context_id)
 def remove(context_id, message_id)
 def set_has_resize_grip(setting)
 def get_has_resize_grip()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box

PyGTK 2.0 Reference Manual

The "input" gtk.SpinButton Signal 555

 +−− gtk.HBox
 +−− gtk.Statusbar

Properties

"has−resize−grip" Read−Write If TRUE, the statusbar has a grip for resizing the toplevel window. Available
in GTK+ 2.4 and above.

Style Properties

"shadow−type" Read The style of bevel around the statusbar text

Signal Prototypes

"text−popped" def callback(statusbar, context_id, text, user_param1, ...)

"text−pushed" def callback(statusbar, context_id, text, user_param1, ...)

Description

A gtk.Statusbar is usually placed along the bottom of an application's main gtk.Window. It may
provide a regular commentary of the application's status (as is usually the case in a web browser, for
example), or may be used to simply output a message when the status changes, (when an upload is complete
in an FTP client, for example). It may also have a resize grip (a triangular area in the lower right corner)
which can be clicked on to resize the window containing the statusbar. Status bars in PyGTK maintain a stack
of messages. The message at the top of the each bar's stack is the one that will currently be displayed.

Any messages added to a statusbar's stack must specify a context_id that is used to uniquely identify the
source of a message. The context_id can be generated by the get_context_id() method, and
associated with a context message. An existing context_id can be retrieved using the context message using
the get_context_id() method. Note that messages are stored in a stack, and when choosing which
message to display, the stack structure is adhered to, regardless of the context identifier of a message.

Constructor

gtk.Statusbar()

Returns : a new gtk.Statusbar widget
Creates a new gtk.Statusbar widget.

Methods

gtk.Statusbar.get_context_id

 def get_context_id(context_description)

context_description : a string identifying the context for the message
Returns : an integer context identifier
The get_context_id() method returns a new or existing context identifier, given a description of the
actual context specified by context_description. In effect, get_context_id() both registers and

PyGTK 2.0 Reference Manual

Ancestry 556

retrieves a context identifier.

gtk.Statusbar.push

 def push(context_id, text)

context_id : a context identifier
text : the message text
Returns : an integer message identifier
The push() method pushes a new message specified by text with the specified context_id onto a
statusbar's stack and returns a message id that that can be used with the remove() method.

gtk.Statusbar.pop

 def pop(context_id)

context_id : a context identifier
The pop() method removes the top message with the specified context_id from the statusbar's stack.

gtk.Statusbar.remove

 def remove(context_id, message_id)

context_id : the context identifier
message_id : the message identifier
The remove() method removes the message with the specified message_id and context_id from the
statusbar's message stack.

gtk.Statusbar.set_has_resize_grip

 def set_has_resize_grip(setting)

setting : if TRUE a resize grip is displayed
The set_has_resize_grip() method sets the internal "has_resize_grip" property to the value specified
by setting. If setting is TRUE a resize grip is displayed on the statusbar

gtk.Statusbar.get_has_resize_grip

 def get_has_resize_grip()

Returns : TRUE if a resize grip is displayed
The get_has_resize_grip() method returns the value of the internal "has_resize_grip" property that
determines if a resize grip is displayed on the statusbar.

Signals

PyGTK 2.0 Reference Manual

gtk.Statusbar.get_context_id 557

The "text−popped" gtk.Statusbar Signal

 def callback(statusbar, context_id, text, user_param1, ...)

statusbar : the statusbar that received the signal
context_id : the context identifier of the top message
text : the string containing the top message text
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "text−popped" signal is emitted when a message is removed from the statusbar message stack. Note the
text and context_id are for the top message on the statusbar stack not the message that was actually removed.

The "text−pushed" gtk.Statusbar Signal

 def callback(statusbar, context_id, text, user_param1, ...)

statusbar : the statusbar that received the signal
context_id : the context identifier of the message added
text : the string containing the message text
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "text−pushed" signal is emitted when a message is added to the statusbar message stack.

Prev Up Next
gtk.SpinButton Home gtk.Style

gtk.Style
Prev The gtk Class Reference Next

gtk.Style

gtk.Style � an object that hold style information for widgets

Synopsis

class gtk.Style(gobject.GObject):
gtk.Style()

 def copy()
 def attach(window)
 def detach()
 def set_background(window, state_type)
 def apply_default_background(window, set_bg, state_type, area, x, y, width, height)
 def lookup_icon_set(stock_id)
 def render_icon(source, direction, state, size, widget, detail)
 def paint_hline(window, state_type, area, widget, detail, x1, x2, y)
 def paint_vline(window, state_type, area, widget, detail, y1, y2, x)
 def paint_shadow(window, state_type, shadow_type, area, widget, detail, x, y, width, height)
 def paint_polygon(window, state_type, shadow_type, area, widget, detail, points, fill)
 def paint_arrow(window, state_type, shadow_type, area, widget, detail, arrow_type, fill, x, y, width, height)
 def paint_diamond(window, state_type, shadow_type, area, widget, detail, x, y, width, height)
 def paint_box(window, state_type, shadow_type, area, widget, detail, x, y, width, height)
 def paint_flat_box(window, state_type, shadow_type, area, widget, detail, x, y, width, height)
 def paint_check(window, state_type, shadow_type, area, widget, detail, x, y, width, height)
 def paint_option(window, state_type, shadow_type, area, widget, detail, x, y, width, height)

PyGTK 2.0 Reference Manual

The "text−popped" gtk.Statusbar Signal 558

 def paint_tab(window, state_type, shadow_type, area, widget, detail, x, y, width, height)
 def paint_shadow_gap(window, state_type, shadow_type, area, widget, detail, x, y, width, height, gap_side, gap_x, gap_width)
 def paint_box_gap(window, state_type, shadow_type, area, widget, detail, x, y, width, height, gap_side, gap_x, gap_width)
 def paint_extension(window, state_type, shadow_type, area, widget, detail, x, y, width, height, gap_side)
 def paint_focus(window, state_type, area, widget, detail, x, y, width, height)
 def paint_slider(window, state_type, shadow_type, area, widget, detail, x, y, width, height, orientation)
 def paint_handle(window, state_type, shadow_type, area, widget, detail, x, y, width, height, orientation)
 def paint_expander(window, state_type, area, widget, detail, x, y, expander_style)
 def paint_layout(window, state_type, use_text, area, widget, detail, x, y, layout)
 def paint_resize_grip(window, state_type, area, widget, detail, edge, x, y, width, height)

Ancestry

+−− gobject.GObject
 +−− gtk.Style

Attributes

"fg" Read An array of gtk.gdk.Colors to be used for the foreground
colors in each widget state.

"bg" Read An array of gtk.gdk.Colors to be used for the background
colors in each widget state.

"light" Read An array of gtk.gdk.Colors to be used for the light colors
in each widget state. The light colors are slightly lighter than the
bg colors and used for creating shadows.

"dark" Read An array of gtk.gdk.Colors to be used for the dark colors
in each widget state. The dark colors are slightly darker than the
bg colors and used for creating shadows.

"mid" Read An array of gtk.gdk.Colors to be used for the mid colors
(between light and dark) in each widget state

"text" Read An array of gtk.gdk.Colors to be used for the text colors in
each widget state.

"base" Read An array of gtk.gdk.Colors to be used for the base colors
in each widget state.

"text_aa" Read An array of gtk.gdk.Colors to be used for the anti−aliased
text colors in each widget state.

"black" Read A gtk.gdk.Color that is used for the black color.

"white" Read A gtk.gdk.Color that is used for the white color.

"font_desc" Read A pango.FontDescription used as the default text font.

"xthickness" Read The thickness of lines drawn vertically.

"ythickness" Read The thickness of lines drawn horizontally.

"fg_gc" Read An array of graphics contexts (gtk.gdk.GC) for drawing
using the fg colors.

"bg_gc" Read An array of graphics contexts (gtk.gdk.GC) for drawing
using the bg colors.

PyGTK 2.0 Reference Manual

Synopsis 559

"light_gc" Read An array of graphics contexts (gtk.gdk.GC) for drawing
using the light colors.

"dark_gc" Read An array of graphics contexts (gtk.gdk.GC) for drawing
using the dark colors.

"mid_gc" Read An array of graphics contexts (gtk.gdk.GC) for drawing
using the mid colors.

"text_gc" Read An array of graphics contexts (gtk.gdk.GC) for drawing
using the text colors.

"base_gc" Read An array of graphics contexts (gtk.gdk.GC) for drawing
using the base colors.

"text_aa_gc" Read An array of graphics contexts (gtk.gdk.GC) for drawing
using the anti−aliased text colors.

"black_gc" Read A graphics context (gtk.gdk.GC) for drawing using the black
color.

"white_gc" Read A graphics context (gtk.gdk.GC) for drawing using the white
color.

"bg_pixmap" Read An array of gtk.gdk.Pixmap to be used for the background
stippling in each widget state.

Description

A gtk.Style object encapsulates the information that provides the look and feel for a widget. Each
gtk.Widget has an associated gtk.Style object that is used when rendering that widget. Usually the
gtk.Style for a widget is the same as the default style that is set by GTK and modified the theme engine.
A gtk.Style holds information for the five possible widget states though not every widget supports all five
states:

gtk.STATE_NORMAL The state of a sensitive widget that is not active and does not have the focus

gtk.STATE_ACTIVE
The state of a sensitive widget when it is active e.g. a button that is pressed
but not yet released

gtk.STATE_PRELIGHT
The state of a sensitive widget that has the focus e.g. a button that has the
mouse pointer over it.

gtk.STATE_SELECTED
The state of a widget that is selected e.g. selected text in a gtk.Entry
widget

gtk.STATE_INSENSITIVE
The state of a widget that is insensitive and will not respond to any events
e.g. cannot be activated, selected or prelit.

A gtk.Style contains the read−only attributes described in the above section.

Usually applications should not need to use or modify the gtk.Style of their widgets.

Constructor

gtk.Style()

Returns : a new gtk.Style object
Creates a new gtk.Style object.

PyGTK 2.0 Reference Manual

Attributes 560

Methods

gtk.Style.copy

 def copy()

Returns : a copy of the gtk.Style object
The copy() method returns a copy of the style object.

gtk.Style.attach

 def attach(window)

window : a gtk.Window.
Returns : a gtk.Style object
The attach() method adapts a style to the specified window. This process allocates the colors and creates
the graphics contexts for the style specializing them to a particular visual and colormap. A new gtk.Style
may be created if the style has already been adapted to a window with a different style and colormap.

gtk.Style.detach

 def detach()

The detach() method detaches the style and frees its resources if it is no longer attached.

gtk.Style.set_background

 def set_background(window, state_type)

window : a gtk.gdk.Window
state_type : a widget state
The set_background() method sets the background of window to the background color or pixmap of the
style for the widget state specified by state_type.

gtk.Style.apply_default_background

 def apply_default_background(window, set_bg, state_type, area, x, y, width, height)

window : a gtk.gdk.Window
set_bg : if TRUE use the bg_pixmap for the widget state
state_type : the widget state
area : the clipping area
x : the x location
y : the y location
width : the width
height : the height
The apply_default_background() method sets the background of the specified window in the area
specified by x, y, width and height. The background color is derived from the bg_gc of the style with the
state specified by state_type. If area is not None it specifies a clipping area for the application of the
background.

PyGTK 2.0 Reference Manual

Methods 561

gtk.Style.lookup_icon_set

 def lookup_icon_set(stock_id)

stock_id : a stock ID
Returns : a gtk.IconSet
The lookup_icon_set() method looks in the gtk.IconFactory list associated with the style and the
default icon factory for the stock icon specified by stock_id. If the stock icon iconset is found it is
returned.

gtk.Style.render_icon

 def render_icon(source, direction, state, size, widget=None, detail=None)

source : the gtk.IconSource specifying the icon to render
direction : a text direction
state : a widget state

size : the size to render the icon at. A size of −1 means render at the size of the source and don't
scale.

widget : a widget
detail : a style detail
Returns : a gtk.gdk.Pixbuf
The render_icon() method renders the icon specified by source at the specified size for the specified
widget state according to the given parameters and returns the result in a gtk.gdk.Pixbuf.

gtk.Style.paint_hline

 def paint_hline(window, state_type, area, widget, detail, x1, x2, y)

window : a gtk.gdk.Window
state_type : a widget state
area : the rectangle that clips the output
widget : a widget
detail : a detail string
x1 : the starting x coordinate
x2 : the ending x coordinate
y : the y coordinate
The paint_hline() method draws a horizontal line from (x1, y) to (x2, y) in window using the specified
state_type of the style. If area is not None the line is clipped by the rectangle specified by area.

gtk.Style.paint_vline

 def paint_vline(window, state_type, area, widget, detail, y1, y2, x)

window : a gtk.gdk.Window
state_type : a widget state
area : the rectangle to which the output is clipped
widget : a widget
detail : a detail string
y1 : the starting y coordinate

PyGTK 2.0 Reference Manual

gtk.Style.lookup_icon_set 562

y2 : the ending y coordinate
x : the x coordinate
The paint_vline() method draws a vertical line from (x, y1) to (x, y2) in window using the specified
state_type of the style. If area is not None the line is clipped by the rectangle specified by area.

gtk.Style.paint_shadow

 def paint_shadow(window, state_type, shadow_type, area, widget, detail, x, y, width, height)

window : a gtk.gdk.Window*
state_type : a widget state

shadow_type :
a type of shadow − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN,
gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN,
gtk.SHADOW_ETCHED_OUT

area : the rectangle to which the output is clipped
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height
The paint_shadow() method draws a shadow of the specified shadow_type on the specified window
with the size specified by x, y, width and height. If area is not None the shadow is clipped to the
rectangle' area. state_type specifies the style state to use for drawing.

gtk.Style.paint_polygon

 def paint_polygon(window, state_type, shadow_type, area, widget, detail, points, fill)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
points : a list or tuple containing point (x, y) tuples
fill : if TRUE the polygon should be filled
The paint_polygon() method draws a polygon on the specified window with the shadow type specified
by shadow_type connecting the points specified by points. If area is not None it specifies a clipping
rectangle. The style state specified by state_type determines the graphics context to use while drawing.

gtk.Style.paint_arrow

 def paint_arrow(window, state_type, shadow_type, area, widget, detail, arrow_type, fill, x, y, width, height)

window : a gtk.gdk.Window
state_type : the widget state
shadow_type :

PyGTK 2.0 Reference Manual

gtk.Style.paint_vline 563

a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string

arrow_type : an arrow type − one of: gtk.ARROW_UP, gtk.ARROW_DOWN, gtk.ARROW_LEFT,
gtk.ARROW_RIGHT

fill : if TRUE the arrow should be filled
x : the x location
y : the y location
width : the width
height : the height
The paint_arrow() method draws an arrow of the type specified by arrow_type on the specified
window with the shadow type specified by shadow_type with the location and size specified by x, y,
width and height. If area is not None it specifies a clipping rectangle. The widget state specified by
state_type determines the graphics context to use while drawing.

gtk.Style.paint_diamond

 def paint_diamond(window, state_type, shadow_type, area, widget, detail, x, y, width, height)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height
The paint_diamond() method draws a diamond on the specified window with the shadow type specified
by shadow_type and the location and size specified by x, y, width and height. If area is not None it
specifies a clipping rectangle. The widget state specified by state_type determines the graphics context to
use while drawing.

gtk.Style.paint_box

 def paint_box(window, state_type, shadow_type, area, widget, detail, x, y, width, height)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string

PyGTK 2.0 Reference Manual

gtk.Style.paint_arrow 564

x : the x location
y : the y location
width : the width
height : the height
The paint_box() method draws a box on the specified window with the shadow type specified by
shadow_type and the location and size specified by x, y, width and height. If area is not None it
specifies a clipping rectangle. The widget state specified by state_type determines the graphics context to
use while drawing.

gtk.Style.paint_flat_box

 def paint_flat_box(window, state_type, shadow_type, area, widget, detail, x, y, width, height)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height
The paint_flat_box() method draws a flat box (no shadow) on the specified window with the location
and size specified by x, y, width and height. If area is not None it specifies a clipping rectangle. The
style state specified by state_type determines the graphics context to use while drawing.

gtk.Style.paint_check

 def paint_check(window, state_type, shadow_type, area, widget, detail, x, y, width, height)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height
The paint_check() method draws a check on the specified window with the shadow type specified by
shadow_type and the location and size specified by x, y, width and height. If area is not None it
specifies a clipping rectangle. The widget state specified by state_type determines the graphics context to
use while drawing.

PyGTK 2.0 Reference Manual

gtk.Style.paint_box 565

gtk.Style.paint_option

 def paint_option(window, state_type, shadow_type, area, widget, detail, x, y, width, height)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height
The paint_option() method draws an option menu item on the specified window with the shadow type
specified by shadow_type and the location and size specified by x, y, width and height. If area is not
None it specifies a clipping rectangle. The widget state specified by state_type determines the graphics
context to use while drawing.

gtk.Style.paint_tab

 def paint_tab(window, state_type, shadow_type, area, widget, detail, x, y, width, height)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height
The paint_tab() method draws a tab on the specified window with the shadow type specified by
shadow_type and the location and size specified by x, y, width and height. If area is not None it
specifies a clipping rectangle. The widget state specified by state_type determines the graphics context to
use while drawing.

gtk.Style.paint_shadow_gap

 def paint_shadow_gap(window, state_type, shadow_type, area, widget, detail, x, y, width, height, gap_side, gap_x, gap_width)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle

PyGTK 2.0 Reference Manual

gtk.Style.paint_option 566

widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height

gap_side : a position − one of: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP,
gtk.POS_BOTTOM

gap_x : the x position of the gap
gap_width : the gap width
The paint_shadow_gap() method draws a shadow with a gap on the specified window with the shadow
type specified by shadow_type and the location and size specified by x, y, width and height. The gap
position and width is specified by gap_side, gap_x and gap_width. If area is not None it specifies a
clipping rectangle. The widget state specified by state_type determines the graphics context to use while
drawing.

gtk.Style.paint_box_gap

 def paint_box_gap(window, state_type, shadow_type, area, widget, detail, x, y, width, height, gap_side, gap_x, gap_width)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height

gap_side : a position − one of: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP,
gtk.POS_BOTTOM

gap_x : the x position of the gap
gap_width : the gap width
The paint_box_gap() method draws a box with a gap on the specified window with the shadow type
specified by shadow_type and the location and size specified by x, y, width and height. The gap
position and width is specified by gap_side, gap_x and gap_width. If area is not None it specifies a
clipping rectangle. The widget state specified by state_type determines the graphics context to use while
drawing.

gtk.Style.paint_extension

 def paint_extension(window, state_type, shadow_type, area, widget, detail, x, y, width, height, gap_side)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

PyGTK 2.0 Reference Manual

gtk.Style.paint_shadow_gap 567

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height

gap_side : a position − one of: gtk.POS_LEFT, gtk.POS_RIGHT, gtk.POS_TOP,
gtk.POS_BOTTOM

The paint_extension() method draws an extension on the specified window with the shadow type
specified by shadow_type and the location and size specified by x, y, width and height. The extension
position is specified by gap_side. If area is not None it specifies a clipping rectangle. The widget state
specified by state_type determines the graphics context to use while drawing.

gtk.Style.paint_focus

 def paint_focus(window, state_type, area, widget, detail, x, y, width, height)

window : a gtk.gdk.Window
state_type : a widget state
area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height
The paint_focus() method draws a focus indicator on the specified window with the location and size
specified by x, y, width and height. If area is not None it specifies a clipping rectangle. The widget
state specified by state_type determines the graphics context to use while drawing.

gtk.Style.paint_slider

 def paint_slider(window, state_type, shadow_type, area, widget, detail, x, y, width, height, orientation)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height

orientation :a position − one of: gtk.ORIENTATION_HORIZONTAL or
gtk.ORIENTATION_VERTICAL

PyGTK 2.0 Reference Manual

gtk.Style.paint_extension 568

The paint_slider() method draws a slider with the specified orientation on the specified window
with the shadow type specified by shadow_type and the location and size specified by x, y, width and
height. If area is not None it specifies a clipping rectangle. The widget state specified by state_type
determines the graphics context to use while drawing.

gtk.Style.paint_handle

 def paint_handle(window, state_type, shadow_type, area, widget, detail, x, y, width, height, orientation)

window : a gtk.gdk.Window
state_type : a widget state

shadow_type :a shadow type − one of: gtk.SHADOW_NONE, gtk.SHADOW_IN, gtk.SHADOW_OUT,
gtk.SHADOW_ETCHED_IN, gtk.SHADOW_ETCHED_OUT

area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
width : the width
height : the height

orientation :a position − one of: gtk.ORIENTATION_HORIZONTAL or
gtk.ORIENTATION_VERTICAL

The paint_handle() method draws a handle with the specified orientation on the specified window
with the shadow type specified by shadow_type and the location and size specified by x, y, width and
height. If area is not None it specifies a clipping rectangle. The widget state specified by state_type
determines the graphics context to use while drawing.

gtk.Style.paint_expander

 def paint_expander(window, state_type, area, widget, detail, x, y, expander_style)

window : a gtk.gdk.Window
state_type : a widget state
area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location

expander_style :
an expander style − one of: gtk.EXPANDER_COLLAPSED,
gtk.EXPANDER_SEMI_COLLAPSED, gtk.EXPANDER_SEMI_EXPANDED or
gtk.EXPANDER_EXPANDED

The paint_expander() method draws an expander with the specified expander_style on the
specified window at the location specified by x, y. If area is not None it specifies a clipping rectangle. The
widget state specified by state_type determines the graphics context to use while drawing.

gtk.Style.paint_layout

 def paint_layout(window, state_type, use_text, area, widget, detail, x, y, layout)

PyGTK 2.0 Reference Manual

gtk.Style.paint_slider 569

window : a gtk.gdk.Window
state_type : a widget state
use_text : if TRUE use the text graphics context for drawing
area : a clipping rectangle
widget : a widget
detail : a detail string
x : the x location
y : the y location
layout : a Pango.Layout object containing the text to display
The paint_layout() method draws the text in a pango.Layout specified by layout on the specified
window at the location specified by x and y. If text is TRUE use the text graphics context of the style for
drawing, otherwise use the fg graphics context. If area is not None it specifies a clipping rectangle. The
widget state specified by state_type determines the graphics context to use while drawing.

gtk.Style.paint_resize_grip

 def paint_resize_grip(window, state_type, area, widget, detail, edge, x, y, width, height)

window : a gtk.gdk.Window
state_type : a widget state
area : a clipping rectangle
widget : a widget
detail : a detail string

edge : the edge in which to draw the resize grip, currently only
gtk.WINDOW_EDGE_SOUTH_EAST is implemented

x : the x location
y : the y location
width : the width
height : the height
The paint_resize_grip() method draws a resize grip at the specified edge on the specified window
with the location and size specified by x, y, width and height. If area is not None it specifies a clipping
rectangle. The widget state specified by state_type determines the graphics context to use while drawing.
Currently the grip can only be drawn at the gtk.WINDOW_EDGE_SOUTH_EAST (lower right) edge.

Prev Up Next
gtk.Statusbar Home gtk.Table

gtk.Table
Prev The gtk Class Reference Next

gtk.Table

gtk.Table � layout widgets in a two−dimensional array

Synopsis

class gtk.Table(gtk.Container):
gtk.Table(rows=1, columns=1, homogeneous=FALSE)

PyGTK 2.0 Reference Manual

gtk.Style.paint_layout 570

 def resize(rows, columns)
 def attach(child, left_attach, right_attach, top_attach, bottom_attach, xoptions=gtk.EXPAND|gtk.FILL, yoptions=gtk.EXPAND|gtk.FILL, xpadding=0, ypadding=0)
 def set_row_spacing(row, spacing)
 def get_row_spacing(row)
 def set_col_spacing(column, spacing)
 def get_col_spacing(column)
 def set_row_spacings(spacing)
 def get_default_row_spacing()
 def set_col_spacings(spacing)
 def get_default_col_spacing()
 def set_homogeneous(homogeneous)
 def get_homogeneous()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Table

Properties

"column−spacing" Read−Write The amount of space between two adjacent columns
"homogeneous" Read−Write If TRUE, the table cells are all the same width or height
"n−columns" Read−Write The number of columns in the table
"n−rows" Read−Write The number of rows in the table
"row−spacing" Read−Write The amount of space between two adjacent rows

Child Properties

"bottom−attach" Read−Write The lowest row of the child
"left−attach" Read−Write The leftmost column of the child
"right−attach" Read−Write The rightmost column of the child
"top−attach" Read−Write The uppermost row of the child
"x−options" Read−Write the horizontal behavior of the child − a combination of: gtk.EXPAND,

gtk.SHRINK and gtk.FILL
"x−padding" Read−Write Extra space added between the child widget and its left and right neighbors, in

pixels
"y−options" Read−Write the vertical behavior of the child − a combination of: gtk.EXPAND,

gtk.SHRINK and gtk.FILL
"y−padding" Read−Write Extra space added between the child widget and its top and bottom neighbors,

in pixels

Description

The gtk.Table manages a group of widgets that are arranged in rows and columns, making it easy to align
many widgets next to each other, horizontally and vertically. Tables are created with a call to gtk.Table(). The
size of a table can be changed using the resize() method.

Widgets can be added to a table using the attach() method. To alter the space of the row next to a specific
row, use the set_row_spacing() method, and for a column, the set_col_spacing() method. The

PyGTK 2.0 Reference Manual

Synopsis 571

gaps between all rows or columns can be changed by calling the set_row_spacings() or
set_col_spacings() methods respectively. The set_homogeneous() method changes the setting that
determines whether all cells in the table will resize themselves to the size of the largest widget in the table.

Constructor

gtk.Table(rows=1, columns=1, homogeneous=FALSE)

rows : the number of rows
columns : the number of columns
homogeneous : if TRUE all table cells will be the same size as the largest cell
Returns : a new gtk.Table widget
Creates a new gtk.Table widget with the number of rows and columns specified by the value of rows and
columns respectively. The value of rows and columns must be in the range 0 .. 65535. If homogeneous
is TRUE the table cells will all be the same size as the largest cell. If rows or columns are not specified they
default to 1.

Methods

gtk.Table.resize

 def resize(rows, columns)

rows : The new number of rows.
columns : The new number of columns.
The resize() method changes the size of the table as specified by the parameters, rows and columns.

gtk.Table.attach

 def attach(child, left_attach, right_attach, top_attach, bottom_attach, xoptions=gtk.EXPAND|gtk.FILL, yoptions=gtk.EXPAND|gtk.FILL, xpadding=0, ypadding=0)

child : the widget to add.
left_attach : the column number to attach the left side of a child widget to.
right_attach : the column number to attach the right side of a child widget to.
top_attach : the row number to attach the top side of a child widget to.
bottom_attach : the row number to attach the bottom side of a child widget to.
xoptions : used to specify the properties of the child widget when the table is resized horizontally.
yoptions : used to specify the properties of the child widget when the table is resized vertically.
xpadding : the amount of padding to add on the left and right of the widget
ypadding : the amount of padding to add above and below the widget
The attach() method adds the widget specified by child to the table. The number of 'cells' that a widget
will occupy is specified by:

left_attach − the column to the left of the widget•
right_attach − the column to the right of the widget•
top_attach − the row above the widget and•
bottom_attach − the row below the widget•

PyGTK 2.0 Reference Manual

Description 572

The xoptions and yoptions determine the expansion properties of the widget in the horizontal and
vertical directions respectively (the default value is gtk.FILL|gtk.EXPAND). The value of the options is a
combination of:

gtk.EXPAND the table cell should expand to take up any extra space that has been allocated to the table.
gtk.SHRINK the widget should shrink when the table cell shrinks.
gtk.FILL the widget should fill the space allocated to it in the table cell.
The xpadding and ypadding parameters determine the extra padding added around the widget. By default
these are 0.

gtk.Table.set_row_spacing

 def set_row_spacing(row, spacing)

row : the row number whose spacing will be changed.
spacing : the number of pixels of added spacing
The set_row_spacing() method sets the spacing in pixels (specified by spacing) between the specified
row and the following row.

gtk.Table.get_row_spacing

 def get_row_spacing(row)

row : a row in the table, 0 indicates the first row
Returns : the row spacing
The get_row_spacing() method returns the amount of space between the specified row, and the
following row. See the set_row_spacing() method.

gtk.Table.set_col_spacing

 def set_col_spacing(column, spacing)

column : the column number whose spacing will be changed.
spacing : the number of pixels of added spacing
The set_col_spacing() method sets the spacing in pixels (specified by spacing) between the specified
column and the following column.

gtk.Table.get_col_spacing

 def get_col_spacing(column)

column : a column in the table, 0 indicates the first column
Returns : the column spacing
The get_col_spacing() returns the amount of space between the specified column, and the following
column. See the set_col_spacing() method.

gtk.Table.set_row_spacings

 def set_row_spacings(spacing)

spacing : the number of pixels of space to place between every row in the table.

PyGTK 2.0 Reference Manual

gtk.Table.attach 573

The set_row_spacings() method sets the "row−spacing" property, that determines the space between
every row in table, to the value of spacing.

gtk.Table.get_default_row_spacing

 def get_default_row_spacing()

Returns : the default row spacing
The get_default_row_spacing() method returns the value of the "row−spacing" property that
specifies the default row spacing for the table i.e. the spacing that will be used for newly added rows. (See the
set_row_spacings())

gtk.Table.set_col_spacings

 def set_col_spacings(spacing)

spacing : the number of pixels of space to place between every column in the table.
The set_col_spacings() method sets the "column−spacing" property, that determines the space between
every column in table, to the value of spacing.

gtk.Table.get_default_col_spacing

 def get_default_col_spacing()

Returns : the default column spacing
The get_default_col_spacing() method returns the value of the "column−spacing" property to the
default column spacing for the table i.e. the spacing that will be used for newly added columns. (See the
set_col_spacings())

gtk.Table.set_homogeneous

 def set_homogeneous(homogeneous)

homogeneous : if TRUE all cells will be the same size as the largest cell
The set_homogeneous() method sets the "homogeneous" property to the value of homogeneous. If
homogeneous is TRUE all cells will be the same size as the largest cell.

gtk.Table.get_homogeneous

 def get_homogeneous()

Returns : TRUE if the cells are all set to the same size
The get_homogeneous() method returns the value of the "homogeneous" property. If the value of
"homogeneous" is TRUE all cells are set to the same width and height. (See the set_homogeneous()
method)

Prev Up Next
gtk.Style Home gtk.TearoffMenuItem

gtk.TearoffMenuItem
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

gtk.Table.set_row_spacings 574

gtk.TearoffMenuItem

gtk.TearoffMenuItem � a menu item used to tear off and reattach its menu.

Synopsis

class gtk.TearoffMenuItem(gtk.MenuItem):
gtk.TearoffMenuItem()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Item
 +−− gtk.MenuItem
 +−− gtk.TearoffMenuItem

Description

A gtk.TearoffMenuItem is a special gtk.MenuItem which is used to tear off and reattach its menu.
When its menu is shown normally, the gtk.TearoffMenuItem is drawn as a dotted line indicating that
the menu can be torn off. Activating it causes its menu to be torn off and displayed in its own window as a
tearoff menu. When its menu is shown as a tearoff menu, the gtk.TearoffMenuItem is drawn as a dotted
line which has a left pointing arrow graphic indicating that the tearoff menu can be reattached. Activating it
will remove the tearoff menu window.

Constructor

gtk.TearoffMenuItem()

Returns : a new gtk.TearoffMenuItem widget
Creates a new gtk.TearoffMenuItem widget.

Prev Up Next
gtk.Table Home gtk.TextAttributes

gtk.TextAttributes
Prev The gtk Class Reference Next

gtk.TextAttributes

gtk.TextAttributes � an object containing the attributes set on some text

Synopsis

class gtk.TextAttributes(gobject.GBoxed):
gtk.TextAttributes()

 def copy()

PyGTK 2.0 Reference Manual

gtk.TearoffMenuItem 575

 def copy_values(dest)

Attributes

"bg_color" Read The background color

"fg_color" Read The foreground color

"bg_stipple" Read The background stipple bitmap

"fg_stipple" Read The foreground stipple bitmap

"rise" Read The subscript or superscript rise

"underline" Read The style of underline − one of: pango.UNDERLINE_NONE,
pango.UNDERLINE_SINGLE, pango.UNDERLINE_DOUBLE,
pango.UNDERLINE_LOW

"strikethrough" Read If TRUE strikethrough the text

"draw_bg" Read If TRUE some background attributes are set

"justification" Read The type of justification − one of: gtk.JUSTIFY_LEFT,
gtk.JUSTIFY_RIGHT, gtk.JUSTIFY_CENTER,
gtk.JUSTIFY_FILL

"direction" Read The text direction − one of: gtk.TEXT_DIR_NONE,
gtk.TEXT_DIR_LTR, gtk.TEXT_DIR_RTL

"font" Read A pango.FontDescription

"font_scale" Read The scale of the font e.g. 2.5

"left_margin" Read The width of the left margin in pixels

"indent" Read The width of the paragraph indent in pixels

"right_margin" Read The width of the right margin

"pixels_above_lines" Read The number of pixels space above a paragraph

"pixels_below_lines" Read The number of pixels space below a paragraph

"pixels_inside_wrap" Read The number of pixels of space between wrapped lines in a paragraph

"tabs" Read A set of tabs contained in a pango.TabArray

"wrap_mode" Read The wrap mode − one of: gtk.WRAP_NONE, gtk.WRAP_CHAR,
gtk.WRAP_WORD

"language" Read The pango.Language object describing the text language

"invisible" Read If TRUE the text is hidden (Not implemented in PyGTK2)

"bg_full_height" Read If TRUE the background is fit to the full line height

"editable" Read If TRUE the text is editable

"realized" Read If TRUE the text has been realized

"pad1" Read

PyGTK 2.0 Reference Manual

Synopsis 576

"pad2" Read

"pad3" Read

"pad4" Read

Description

A gtk.TextAttributes object holds a set of attributes that describe the properties of a section of text. A
gtk.TextAttributes object is usually obtained by calling either of the
gtk.TextIter.get_attributes() or gtk.TextView.get_default_attributes() methods
to retrieve the attributes in effect.

A gtk.TextAttributes object created with gtk.TextAttributes() cannot be applied within PyGTK
because there is no way to set the attributes. Likewise, the copy() and copy_values() methods can create
a new copy or copy the attributes but there are no methods in PyGTK that take a gtk.TextAttributes
object as an argument. The most effective way to use a gtk.TextAttributes object is to read its
attributes and use them to set the properties of a gtk.TextTag.

Constructor

gtk.TextAttributes()

Returns : a new gtk.TextAttributes
Creates a gtk.TextAttributes object, that contains a set of attributes of some text.

Methods

gtk.TextAttributes.copy

 def copy()

Returns : a copy of the gtk.TextAttributes object
The copy() method copies the text attributes and returns a new gtk.TextAttributes object.

gtk.TextAttributes.copy_values

 def copy_values(dest)

dest : the gtk.TextAttributes whose attributes will be set
The copy_values() method copies the values from the gtk.TextAttributes object to dest so that
dest has the same values. Frees existing values in dest.

Prev Up Next
gtk.TearoffMenuItem Home gtk.TextBuffer

gtk.TextBuffer
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

Attributes 577

gtk.TextBuffer

gtk.TextBuffer � stores attributed text for display in a gtk.TextView

Synopsis

class gtk.TextBuffer(gobject.GObject):
gtk.TextBuffer(table=None)

 def get_line_count()
 def get_char_count()
 def get_tag_table()
 def set_text(text)
 def insert(iter, text)
 def insert_at_cursor(text)
 def insert_interactive(iter, text, default_editable)
 def insert_interactive_at_cursor(text, default_editable)
 def insert_range(iter, start, end)
 def insert_range_interactive(iter, start, end, default_editable)
 def insert_with_tags(iter, text, ...)
 def insert_with_tags_by_name(iter, text, ...)
 def delete(start, end)
 def delete_interactive(start_iter, end_iter, default_editable)
 def get_text(start, end, include_hidden_chars=TRUE)
 def get_slice(start, end, include_hidden_chars=TRUE)
 def insert_pixbuf(iter, pixbuf)
 def insert_child_anchor(iter, anchor)
 def create_child_anchor(iter)
 def create_mark(mark_name, where, left_gravity=FALSE)
 def move_mark(mark, where)
 def delete_mark(mark)
 def get_mark(name)
 def move_mark_by_name(name, where)
 def delete_mark_by_name(name)
 def get_insert()
 def get_selection_bound()
 def place_cursor(where)
 def select_range(ins, bound)
 def apply_tag(tag, start, end)
 def remove_tag(tag, start, end)
 def apply_tag_by_name(name, start, end)
 def remove_tag_by_name(name, start, end)
 def remove_all_tags(start, end)
 def create_tag(tag_name=None, ...)
 def get_iter_at_line_offset(line_number, char_offset)
 def get_iter_at_line_index(line_number, byte_index)
 def get_iter_at_offset(char_offset)
 def get_iter_at_line(line_number)
 def get_start_iter()
 def get_end_iter()
 def get_bounds()
 def get_iter_at_mark(mark)
 def get_iter_at_child_anchor(anchor)
 def get_modified()
 def set_modified(setting)
 def add_selection_clipboard(clipboard)
 def remove_selection_clipboard(clipboard)
 def cut_clipboard(clipboard, default_editable)
 def copy_clipboard(clipboard)
 def paste_clipboard(clipboard, override_location, default_editable)
 def get_selection_bounds()
 def delete_selection(interactive, default_editable)
 def begin_user_action()

PyGTK 2.0 Reference Manual

gtk.TextBuffer 578

 def end_user_action()
 def backspace(iter, interactive, default_editable)

Ancestry

+−− gobject.GObject
 +−− gtk.TextBuffer

Properties

"tag−table" Read−Write−Construct
Only

The gtk.TextTagTable associated with the textbuffer.
Available in GTK+ 2.2 and above.

Attributes

"tag_table" Read The gtk.TextTagTable associated with the textbuffer.

Signal Prototypes

"apply−tag" def callback(textbuffer, texttag, start, end,
user_param1, ...)

"begin−user−action" def callback(textbuffer, user_param1, ...)

"changed" def callback(textbuffer, user_param1, ...)

"delete−range" def callback(textbuffer, start, end, user_param1, ...)

"end−user−action" def callback(textbuffer, user_param1, ...)

"insert−child−anchor" def callback(textbuffer, iter, anchor, user_param1, ...)
"insert−pixbuf" def callback(textbuffer, iter, pixbuf, user_param1, ...)

"insert−text" def callback(textbuffer, iter, text, length, user_param1,
...)

"mark−deleted" def callback(textbuffer, textmark, user_param1, ...)

"mark−set" def callback(textbuffer, iter, textmark, user_param1,
...)

"modified−changed" def callback(textbuffer, user_param1, ...)

"remove−tag" def callback(textbuffer, texttag, start, end,
user_param1, ...)

Description

A gtk.TextBuffer is the core component of the PyGTK text editing system. A gtk.TextBuffer
contains the text, pixbufs and child widget anchors that are displayed in one or more gtk.TextView
widgets. A gtk.TextBuffer has an associated gtk.TextTagTable that contains the gtk.TextTag
objects that can be used to set attributes on the text in the textbuffer.

A gtk.TextBuffer can be automatically created when creating a gtk.TextView or it can be created
with the gtk.TextBuffer() constructor and associated with a gtk.TextView using the set_buffer()
method or the gtk.TextView() constructor.

PyGTK 2.0 Reference Manual

Synopsis 579

Constructor

gtk.TextBuffer(table=None)

table : a tag table, or None to create a new one
Returns : a new text buffer object
Creates a new gtk.TextBuffer object.

Methods

gtk.TextBuffer.get_line_count

 def get_line_count()

Returns : the number of lines in the buffer
The get_line_count() method returns the number of lines in the buffer. This value is cached, so the
function is very fast.

gtk.TextBuffer.get_char_count

 def get_char_count()

Returns : the number of characters in the buffer
The get_char_count() method returns the number of characters in the buffer; note that characters and
bytes are not the same, you can't e.g. expect the contents of the buffer in string form to be this many bytes
long. The character count is cached, so this function is very fast.

gtk.TextBuffer.get_tag_table

 def get_tag_table()

Returns : the buffer's tag table
The get_tag_table() method returns the gtk.TextTagTable object associated with the textbuffer.

gtk.TextBuffer.set_text

 def set_text(text)

text : UTF−8 text to insert
The set_text() method replaces the current contents of the textbuffer with the contents of text. text
must be valid UTF−8.

gtk.TextBuffer.insert

 def insert(iter, text)

iter : a position in the buffer
text : UTF−8 format text to insert
The insert() method inserts the contents of text into the textbuffer at the position specified by iter. The
"insert_text" signal is emitted and the text insertion actually occurs in the default handler for the signal. iter
is invalidated when insertion occurs (because the buffer contents change), but the default signal handler

PyGTK 2.0 Reference Manual

Constructor 580

revalidates it to point to the end of the inserted text.

gtk.TextBuffer.insert_at_cursor

 def insert_at_cursor(text)

text : some text in UTF−8 format
The insert_at_cursor() method is a convenience method that calls the insert() method, using the
current cursor position as the insertion point.

gtk.TextBuffer.insert_interactive

 def insert_interactive(iter, text, default_editable)

iter : a position in buffer
text : some UTF−8 text
default_editable : default editability of buffer
Returns : TRUE if the text was actually inserted
The insert_interactive() method is similar to the insert() method, except the insertion of text at
iter will not occur if iter is at a non−editable location in the buffer. A location is non−editable if a
gtk.TextTag applied at that location has its "editable" attribute set to FALSE or the gtk.TextView
used by the user is set non−editable. Usually you want to prevent insertions at locations if the insertion results
from a user action (is interactive).

default_editable indicates the editability of text that doesn't have a tag affecting editability applied to
it. Typically the result of the gtk.TextView.get_editable() method is appropriate here.

gtk.TextBuffer.insert_interactive_at_cursor

 def insert_interactive_at_cursor(text, default_editable)

text : text in UTF−8 format
default_editable : default editability of buffer
Returns : TRUE if the text was actually inserted
The insert_interactive_at_cursor() method calls the insert_interactive() method to
insert text at the cursor (insert) position. default_editable indicates the editability of text that doesn't
have a tag affecting editability applied to it. Typically the result of the gtk.TextView.get_editable()
method is appropriate here.

gtk.TextBuffer.insert_range

 def insert_range(iter, start, end)

iter : a position in the textbuffer
start : a position in a (possibly different) gtk.TextBuffer
end : another position in the same buffer as start
The insert_range() method copies text, tags, and pixbufs (but not child anchors) between start and
end (the order of start and end doesn't matter) form a gtk.TextBuffer and inserts the copy at iter.
Used instead of simply getting/inserting text because it preserves images and tags. If start and end are in a
different buffer from buffer, the two buffers must share the same tag table. This method is implemented via
emissions of the "insert_text" and "apply_tag" signals.

PyGTK 2.0 Reference Manual

gtk.TextBuffer.insert 581

gtk.TextBuffer.insert_range_interactive

 def insert_range_interactive(iter, start, end, default_editable)

iter : a position in the textbuffer
start : a position in a (possibly different) gtk.TextBuffer
end : another position in the same buffer as start
default_editable : default editability of the buffer
Returns : TRUE if an insertion was possible at iter
The insert_range_interactive() method is similar to the insert_range() method, except the
insertion of text at iter will not occur if the insertion position is non−editable. A location is non−editable
if a gtk.TextTag applied at that location has its "editable" attribute set to FALSE or the gtk.TextView
used by the user is set non−editable. The default_editable parameter indicates whether the text is
editable at iter if no tags enclosing iter affect editability. Typically the result of the
gtk.TextView.get_editable() method is appropriate here.

gtk.TextBuffer.insert_with_tags

 def insert_with_tags(iter, text, ...)

iter : an iterator in buffer
text : UTF−8 text
... : one or more optional gtk.TextTag objects to apply to text
The insert_with_tags() method inserts the specified text into the textbuffer at the location specified
by iter, applying any optional tags following the first two parameters to the newly−inserted text. This
method is a convenience method that is equivalent to calling the insert() method, then the apply_tag()
method on the inserted text.

gtk.TextBuffer.insert_with_tags_by_name

 def insert_with_tags_by_name(iter, text, ...)

iter : position in buffer
text : UTF−8 text
... : one or more optional gtk.TextTag names to apply to text
The insert_with_tags_by_name() method is similar to the insert_with_tags() method, but uses
tag names instead of tag objects.

gtk.TextBuffer.delete

 def delete(start, end)

start : a position in the textbuffer
end : another position in the textbuffer
The delete() method deletes the text between start and end. The order of start and end is not
actually relevant as the delete() method will reorder them. This method emits the "delete_range" signal,
and the default handler of that signal deletes the text. Because the textbuffer is modified, all outstanding
iterators become invalid after calling this function; however, start and end will be re−initialized to point to
the location where text was deleted.

PyGTK 2.0 Reference Manual

gtk.TextBuffer.insert_range_interactive 582

gtk.TextBuffer.delete_interactive

 def delete_interactive(start_iter, end_iter, default_editable)

start_iter : the start of the text to delete
end_iter : the end of the text to delete
default_editable : whether the buffer is editable by default
Returns : TRUE if some text was actually deleted
The delete_interactive() method deletes all editable text in the given range. This method calls the
delete() method for each editable sub−range of [start,end). start and end are revalidated to point to
the location of the last deleted range, or left untouched if no text was deleted. A range of text is
non−editable if a gtk.TextTag applied to that range has its "editable" attribute set to FALSE or the
gtk.TextView used by the user is set non−editable. The default_editable parameter indicates
whether text is editable if no tags enclosing any part of text affect editability. Typically the result of the
gtk.TextView.get_editable() method is appropriate here.

gtk.TextBuffer.get_text

 def get_text(start, end, include_hidden_chars=TRUE)

start : the start of a range
end : the end of a range
include_hidden_chars : if TRUE include invisible text
Returns : the text in the range
The get_text() method returns the text in the specified range [start,end). Undisplayed text (text marked
with tags that set the invisibility attribute) are excluded if include_hidden_chars is FALSE.
get_text() does not return characters representing embedded images, so byte and character indexes into the
returned string do not correspond to byte and character indexes into the buffer. Contrast this behavior with the
get_slice() method.

gtk.TextBuffer.get_slice

 def get_slice(start, end, include_hidden_chars)

start : the start of a range
end : the end of a range
include_hidden_chars : if TRUE include invisible text

Returns : the contents of the range including text and indicators for pixbufs and
child anchors

The get_slice() method returns the text in the range [start,end). Undisplayed text (text marked with
tags that set the invisibility attribute) is excluded if include_hidden_chars is FALSE. The returned
string includes a 0xFFFC character whenever the textbuffer contains embedded images or child anchors, so
byte and character indexes into the returned string do correspond to byte and character indexes into the buffer.
Contrast this behavior with the get_text() method. Note that 0xFFFC can occur in normal text as well, so
it is not a reliable indicator that a pixbuf or widget is in the buffer.

gtk.TextBuffer.insert_pixbuf

 def insert_pixbuf(iter, pixbuf)

iter : the location to insert the pixbuf

PyGTK 2.0 Reference Manual

gtk.TextBuffer.delete_interactive 583

pixbuf : a gtk.gdk.Pixbuf
The insert_pixbuf() method inserts an image specified by pixbuf into the text buffer at the location
specified by iter. The image will be counted as one character in character counts, and when obtaining the
buffer contents as a string, will be represented by the Unicode "object replacement character" 0xFFFC. Note
that the "slice" variants for obtaining portions of the buffer as a string include this character for pixbufs, but
the "text" variants do not. e.g. see the get_slice() and get_text() methods.

gtk.TextBuffer.insert_child_anchor

 def insert_child_anchor(iter, anchor)

iter : the location to insert the anchor
anchor : a gtk.TextChildAnchor
The insert_child_anchor() method inserts a child widget anchor specified by anchor into the
textbuffer at the location specified by iter. The anchor will be counted as one character in character counts,
and when obtaining the buffer contents as a string, will be represented by the Unicode "object replacement
character" 0xFFFC. Note that the "slice" variants for obtaining portions of the buffer as a string include this
character for child anchors, but the "text" variants do not. e.g. see the get_slice() and get_text()
methods. The create_child_anchor() is a more convenient alternative to this function.

gtk.TextBuffer.create_child_anchor

 def create_child_anchor(iter)

iter : a location in the buffer
Returns : the new child anchor
The create_child_anchor() method is a convenience function that creates a child anchor with the
gtk.TextChildAnchor() constructor and inserts it into the textbuffer at the location specified by iter with the
insert_child_anchor() method.

gtk.TextBuffer.create_mark

 def create_mark(mark_name, where, left_gravity)

mark_name : the name for the new mark, or None
where : the location to place the mark
left_gravity : if TRUE the mark has left gravity
Returns : the new gtk.TextMark object
The create_mark() method creates a mark with the name specified by mark_name at the position
specified by where and left gravity specified by left_gravity. If mark_name is None, the mark is
anonymous; otherwise, the mark can be retrieved by name using the get_mark() method. If a mark has left
gravity, and text is inserted at the mark's current location, the mark will be moved to the left of the
newly−inserted text. If the mark has right gravity (left_gravity = FALSE), the mark will end up on the
right of newly−inserted text. The standard left−to−right cursor is a mark with right gravity (when you type,
the cursor stays on the right side of the text you're typing). Marks are owned by the buffer and go away when
the buffer does. This method emits the "mark_set" signal as notification of the mark's initial placement.

gtk.TextBuffer.move_mark

 def move_mark(mark, where)

PyGTK 2.0 Reference Manual

gtk.TextBuffer.insert_pixbuf 584

mark : a gtk.TextMark
where : a new location for mark
The move_mark() method moves the gtk.TextMark specified by mark to the new location specified by
where.This method emits the "mark_set" signal as notification of the move.

gtk.TextBuffer.delete_mark

 def delete_mark(mark)

mark : a gtk.TextMark in the textbuffer
The delete_mark() method deletes the gtk.TextMark specified by mark, so that it's no longer located
anywhere in the textbuffer. Most operations on mark become invalid and there is no way to undelete a mark.
The get_deleted() method will return TRUE after this method has been called on a mark to indicate that a
mark no longer belongs to a textbuffer. The "mark_deleted" signal will be emitted as notification after the
mark is deleted.

gtk.TextBuffer.get_mark

 def get_mark(name)

name : a mark name
Returns : a gtk.TextMark, or None
The get_mark() method returns the mark named name in the textbuffer, or None if no such mark exists in the
buffer.

gtk.TextBuffer.move_mark_by_name

 def move_mark_by_name(name, where)

name : the name of a mark
where : the new location for mark
The move_mark_by_name() method moves the mark named name (which must exist) to the textbuffer
location specified by where. See the move_mark() method for details.

gtk.TextBuffer.delete_mark_by_name

 def delete_mark_by_name(name)

name : the name of a mark in buffer
The delete_mark_by_name() method deletes the mark (which must exist) named name. See the
delete_mark() for details.

gtk.TextBuffer.get_insert

 def get_insert()

Returns : the insertion point mark
The get_insert() method returns the mark that represents the cursor (insertion point). Equivalent to
calling the get_mark() method to get the mark named "insert", but very slightly more efficient, and
involving less typing.

PyGTK 2.0 Reference Manual

gtk.TextBuffer.move_mark 585

gtk.TextBuffer.get_selection_bound

 def get_selection_bound()

Returns : the selection bound mark
The get_selection_bound() method returns the mark that represents the selection bound. Equivalent to
calling the get_mark() method to get the mark named "selection_bound", but very slightly more efficient,
and involving less typing. The currently−selected text in a textbuffer is the region between the
"selection_bound" and "insert" marks. If "selection_bound" and "insert" are in the same place, then there is no
current selection. The get_selection_bounds() method is a convenience method for handling the
selection, if you just want to know whether there's a selection and what its bounds are.

gtk.TextBuffer.place_cursor

 def place_cursor(where)

where : where to put the cursor
The place_cursor() method moves the "insert" and "selection_bound" marks simultaneously to the
location specified by where. If you move them to the same place in two steps with the move_mark()
method, you will temporarily select a region in between their old and new locations, which is inefficient. This
method moves them as a unit, which can be optimized.

gtk.TextBuffer.select_range

 def select_range(ins, bound)

ins : where to put the "insert" mark
bound : where to put the "selection_bound" mark

Note

This method is available in PyGTK 2.4 and above.

The select_range() method moves the "insert" and "selection_bound" marks simultaneously to the
locations specified by ins and bound respectively. If you move them to the same place in two steps with the
move_mark() method, you will temporarily select a region in between their old and new locations, which is
inefficient. This method moves them as a unit, which can be optimized.

gtk.TextBuffer.apply_tag

 def apply_tag(tag, start, end)

tag : a gtk.TextTag
start : the start of the range
end : the end of the range
The apply_tag() method emits the "apply−tag" signal that causes the gtk.TextTag specified by tag to
be applied to the range of text between start and end by the default signal handler. start and end do not
have to be in order.

gtk.TextBuffer.remove_tag

 def remove_tag(tag, start, end)

PyGTK 2.0 Reference Manual

gtk.TextBuffer.get_selection_bound 586

tag : a gtk.TextTag
start : the start of the range
end : the end of the range
The delete_tag() method emits the "remove_tag" signal that causes the default handler for the signal to
remove all occurrences of the gtk.TextTag specified by tag from the text in the range between start
and end. start and end don't have to be in order.

gtk.TextBuffer.apply_tag_by_name

 def apply_tag_by_name(name, start, end)

name : the name of a gtk.TextTag
start : the start of the range
end : the end of the range
The apply_tag_by_name() method calls the gtk.TextTagTable.lookup() method on the
textbuffer's tag table to find the gtk.TextTag with the specified name, then calls the apply_tag()
method to apply that tag to the text in the range between start and end. start and end don't have to be
in order.

gtk.TextBuffer.remove_tag_by_name

 def remove_tag_by_name(name, start, end)

name : the name of a gtk.TextTag
start : the start of the range
end : the end of the range
The delete_tag_by_name() method calls the gtk.TextTagTable.lookup() method on the
textbuffer's tag table to find the gtk.TextTag, then calls the remove_tag() method to remove that that
tag from the text in the range between start and end. start and end don't have to be in order.

gtk.TextBuffer.remove_all_tags

 def remove_all_tags(start, end)

start : the start of the range
end : the end of the range
The remove_all_tags() method removes all tags in the text in the range between start and end. Be
careful with this function; it could remove tags added in code unrelated to the code you're currently writing.
That is, using this function is probably a bad idea if you have two or more unrelated code sections that add
tags. start and end don't have to be in order.

gtk.TextBuffer.create_tag

 def create_tag(tag_name=None, ...)

tag_name : the name of the new tag, or None if the tag is anonymous
... : one or more property_name= value pairs
Returns : a new tag
The create_tag() method creates a tag with the name specified by tag_name and adds it to the tag table
for the textbuffer. If one or more property_name=value pairs are available they are used to set the

PyGTK 2.0 Reference Manual

gtk.TextBuffer.remove_tag 587

properties of the tag. Note the property_name must be specified using underscores instead of dashes e.g.
use pixels_above_lines=10 instead of pixels−above−lines=10. This method is equivalent to calling the
gtk.TextTag() constructor and then adding the tag to the buffer's tag table with the
gtk.TextTagTable.add() method. If tag_name is None, the tag is anonymous. If tag_name is
non−None, a tag called tag_name must not already exist in the tag table for this buffer.

gtk.TextBuffer.get_iter_at_line_offset

 def get_iter_at_line_offset(line_number, char_offset)

line_number : the line number counting from 0
char_offset : the char offset from start of line
Returns : an iterator
The get_iter_at_line_offset() returns an iterator pointing to the position specified by
char_offset within the line specified by line_number. The char_offset must exist, offsets off the
end of the line are not allowed. Note specify characters, not bytes; UTF−8 may encode one character as
multiple bytes.

gtk.TextBuffer.get_iter_at_line_index

 def get_iter_at_line_index(line_number, byte_index)

line_number : the line number counting from 0
byte_index : the byte index from start of line
Returns : an iterator
The get_iter_at_line_index() method returns an iterator pointing to the position specified by
byte_index within the line specified by line_number. byte_index must be the start of a UTF−8
character, and must not be beyond the end of the line. Note specify bytes, not characters; UTF−8 may encode
one character as multiple bytes.

gtk.TextBuffer.get_iter_at_offset

 def get_iter_at_offset(char_offset)

char_offset : the char offset from start of buffer, counting from 0
Returns : an iterator
The get_iter_at_offset() method returns an iterator pointing to the location specified by
char_offset characters from the start of the entire buffer.

gtk.TextBuffer.get_iter_at_line

 def get_iter_at_line(line_number)

line_number : line number counting from 0
Returns : an iterator
The get_iter_at_line() method returns an iterator pointing to the start of the line specified by
line_number.

PyGTK 2.0 Reference Manual

gtk.TextBuffer.create_tag 588

gtk.TextBuffer.get_start_iter

 def get_start_iter()

Returns : an iterator
The get_start_iter() method returns an iterator pointing at the location of the first position in the text
buffer. This is the same as using the get_iter_at_offset() with an argument of 0.

gtk.TextBuffer.get_end_iter

 def get_end_iter()

Returns : an iterator
The get_end_iter() method returns an iterator pointing at the "end iterator," one past the last valid
character in the text buffer. If passed to the gtk.TextIter.get_char() method, the end iterator has a
character value of 0. The entire buffer lies in the range from the first position in the buffer (call the
get_start_iter() method to get character position 0) to the end iterator.

gtk.TextBuffer.get_bounds

 def get_bounds()

Returns : a tuple containing iterators that point at the first and last positions in the buffer
The get_bounds() method returns a tuple containing the first and last iterators in the buffer, i.e. the entire
buffer lies within the range.

gtk.TextBuffer.get_iter_at_mark

 def get_iter_at_mark(mark)

mark : a gtk.TextMark in the textbuffer
The get_iter_at_mark() method returns an iterator that points at the current position of mark.

gtk.TextBuffer.get_iter_at_child_anchor

 def get_iter_at_child_anchor(iter, anchor)

anchor : a child anchor that appears in the textbuffer
The get_iter_at_child_anchor() method returns an iterator that points at the location of anchor within the
textbuffer.

gtk.TextBuffer.get_modified

 def get_modified()

Returns : TRUE if the buffer has been modified
The get_modified() method returns TRUE if the buffer has been modified since the last call to the
set_modified() method set the modification flag to FALSE. Used for example to enable a "save" function
in a text editor.

PyGTK 2.0 Reference Manual

gtk.TextBuffer.get_start_iter 589

gtk.TextBuffer.set_modified

 def set_modified(setting)

setting : the modification flag setting
The set_modified() method sets the modification flag of the textbuffer to the value specified by
setting. The modification flag is used to keep track of whether the buffer has been modified since the last
time it was saved. Whenever the buffer is saved to disk, call this method with a setting of FALSE. When
the buffer is modified, it will automatically set the modification flag to TRUE and emit a "modified_changed"
signal.

gtk.TextBuffer.add_selection_clipboard

 def add_selection_clipboard(clipboard)

clipboard : a gtk.Clipboard

Note

This method is available in PyGTK 2.2 and above.

The add_selection_clipboard() method adds the gtk.Clipboard specified by clipboard to
the list of clipboards in which the selection contents of the buffer are available. In most cases, clipboard
will be the gtk.gdk.SELECTION_PRIMARY clipboard

gtk.TextBuffer.remove_selection_clipboard

 def remove_selection_clipboard(clipboard)

clipboard : a gtk.Clipboard added to the buffer by the
add_selection_clipboard() method.

Note

This method is available in PyGTK 2.2 and above.

The remove_selection_clipboard() method removes the gtk.Clipboard added with the
add_selection_clipboard() method.

gtk.TextBuffer.cut_clipboard

 def cut_clipboard(clipboard, default_editable)

clipboard : the gtk.Clipboard object to cut to.
default_editable : the default editability of the buffer

Note

This method is available in PyGTK 2.2 and above.

The cut_clipboard() method copies the currently−selected text to the gtk.Clipboard specified by
clipboard, then deletes said text if it's editable as specified by default_editable. Typically the result
of the gtk.TextView.get_editable() method is appropriate here.

PyGTK 2.0 Reference Manual

gtk.TextBuffer.set_modified 590

gtk.TextBuffer.copy_clipboard

 def copy_clipboard(clipboard)

clipboard : the gtk.Clipboard object to copy to.

Note

This method is available in PyGTK 2.2 and above.

The copy_clipboard() method copies the currently−selected text to the gtk.ClipBoard specified by
clipboard.

gtk.TextBuffer.paste_clipboard

 def paste_clipboard(clipboard, override_location, default_editable)

clipboard : the gtk.Clipboard to paste from

override_location : the gtk.TextIter specifying the location to insert pasted text, or
None for at the cursor

default_editable : the default editability of the buffer

Note

This method is available in PyGTK 2.2 and above.

The paste_clipboard() method pastes the contents of the gtk.ClipBoard specified by clipboard
at the insertion point, or at the location specified by override_location (if not None). (Note: pasting is
asynchronous, that is, we'll ask for the paste data and return, and at some point later after the main loop runs,
the paste data will be inserted.)

gtk.TextBuffer.get_selection_bounds

 def get_selection_bounds()

Returns : a tuple containing iterators pointing to the selection start and end or an empty tuple if there is
no selection

The get_selection_bounds() method returns a tuple containing iterators that point at the start and end
of the selection, if any. If there is no selection an empty tuple is returned.

gtk.TextBuffer.delete_selection

 def delete_selection(interactive, default_editable)

interactive : if TRUE the deletion is caused by user interaction
default_editable : if TRUE the buffer is editable by default
Returns : TRUE if there was a non−empty selection to delete
The delete_selection() method deletes the text in the range between the "insert" and "selection_bound"
marks, i.e. the currently−selected text. If interactive is TRUE, the editability of the selection will be
considered (users can't delete uneditable text) and default_editable is used to determine the default editability
of the textbuffer usually as a result of a call to the gtk.TextView.get_editable() method.

PyGTK 2.0 Reference Manual

gtk.TextBuffer.copy_clipboard 591

gtk.TextBuffer.begin_user_action

 def begin_user_action()

The begin_user_action() method is called to indicate that the textbuffer operations until a call to the
end_user_action() method are part of a single user−visible operation. The operations between the
begin_user_action() and end_user_action() methods can then be grouped when creating an undo
stack. gtk.TextBuffer maintains a count of calls to the begin_user_action() method that have not
been closed with a call to the end_user_action() method, and emits the "begin_user_action" and
"end_user_action" signals only for the outermost pair of calls. This allows you to chain user actions.

The "interactive" textbuffer mutation methods, such as the insert_interactive() method,
automatically call the begin and end user action methods around the textbuffer operations they perform, so
there's no need to add extra calls if you user action consists solely of a single call to one of those methods.

gtk.TextBuffer.end_user_action

 def end_user_action()

The end_user_action() method should be paired with a call to the begin_user_action() method.

gtk.TextBuffer.backspace

 def backspace(iter, interactive, default_editable)

iter : a gtk.TextIter
interactive : if TRUE the deletion is caused by user interaction
default_editable : if TRUE the buffer is editable by default
Returns : TRUE if the buffer was modified

Note

This method is available in PyGTK 2.6 and above.

The backspace() method performs the appropriate action as if the user hit the delete key with the cursor at
the position specified by iter. In the normal case a single character will be deleted, but when combining
accents are involved, more than one character can be deleted, and when precomposed character and accent
combinations are involved, less than one character will be deleted.

Because the buffer is modified, all outstanding iterators become invalid after calling this function; however,
iter will be re−initialized to point to the location where text was deleted.

Signals

The "apply−tag" gtk.TextBuffer Signal

 def callback(textbuffer, texttag, start, end, user_param1, ...)

textbuffer : the textbuffer that received the signal
texttag : the gtk.TextTag being applied
start : an iterator pointing to the start of the range of text
end : an iterator pointing to the end of the range of text

PyGTK 2.0 Reference Manual

gtk.TextBuffer.begin_user_action 592

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "apply−tag" signal is emitted when texttag is applied to the text in textbuffer in the range
specified by start and end.

The "begin−user−action" gtk.TextBuffer Signal

 def callback(textbuffer, user_param1, ...)

textbuffer : the textbuffer that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "begin−user−action" signal is emitted on the first call to the begin_user_action() method.

The "changed" gtk.TextBuffer Signal

 def callback(textbuffer, user_param1, ...)

textbuffer : the textbuffer that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "changed" signal is emitted when text is inserted in textbuffer.

The "delete−range" gtk.TextBuffer Signal

 def callback(textbuffer, start, end, user_param1, ...)

textbuffer : the textbuffer that received the signal
start : an iterator pointing to the start of the range of text
end : an iterator pointing to the end of the range of text
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "delete−range" signal is emitted when the text in the range specified by start and end is to be deleted.

The "end−user−action" gtk.TextBuffer Signal

 def callback(textbuffer, user_param1, ...)

textbuffer : the textbuffer that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "end−user−action" signal is emitted when the call to the end_user_action() method reduces the user
action count to zero i.e. undoes the first call to the begin_user_action() method.

The "insert−child−anchor" gtk.TextBuffer Signal

 def callback(textbuffer, iter, anchor, user_param1, ...)

textbuffer : the textbuffer that received the signal

PyGTK 2.0 Reference Manual

The "apply−tag" gtk.TextBuffer Signal 593

iter : a gtk.TextIter
anchor : a gtk.TextChildAnchor
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "insert−child−anchor" signal is emitted when anchor is inserted into textbuffer at the location
specified by iter.

The "insert−pixbuf" gtk.TextBuffer Signal

 def callback(textbuffer, iter, pixbuf, user_param1, ...)

textbuffer : the textbuffer that received the signal
iter : a gtk.TextIter
pixbuf : a gtk.gdk.Pixbuf
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "insert−pixbuf" signal is emitted when pixbuf is inserted into textbuffer at the location specified
by iter.

The "insert−text" gtk.TextBuffer Signal

 def callback(textbuffer, iter, text, length, user_param1, ...)

textbuffer : the textbuffer that received the signal
iter : a gtk.TextIter
text : the text inserted in textbuffer
length : the length of the text inserted in textbuffer
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "insert−text" signal is emitted when text of the size specified by length is inserted into
textbuffer at the location specified by iter.

The "mark−deleted" gtk.TextBuffer Signal

 def callback(textbuffer, textmark, user_param1, ...)

textbuffer : the textbuffer that received the signal
textmark : the gtk.TextMark that is being deleted
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "mark−deleted" signal is emitted when textmark is being deleted from textbuffer.

The "mark−set" gtk.TextBuffer Signal

 def callback(textbuffer, user_param1, ...)

textbuffer : the textbuffer that received the signal
iter : an iterator pointing at the location where textmark will be set.
textmark : the gtk.TextMark that is being set

PyGTK 2.0 Reference Manual

The "insert−child−anchor" gtk.TextBuffer Signal 594

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "mark−set" signal is emitted when textmark is being set at the location specified by iter in
textbuffer.

The "modified−changed" gtk.TextBuffer Signal

 def callback(textbuffer, user_param1, ...)

textbuffer : the textbuffer that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "modified−changed" signal is emitted when the modification flag is changed.

The "remove−tag" gtk.TextBuffer Signal

 def callback(textbuffer, texttag, start, end, user_param1, ...)

textbuffer : the textbuffer that received the signal
texttag : the gtk.TextTag being removed
start : an iterator pointing to the start of the range of text
end : an iterator pointing to the end of the range of text
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "remove−tag" signal is emitted when texttag is being removed from the textbuffer text in the
range specified by start and end.

Prev Up Next
gtk.TextAttributes Home gtk.TextChildAnchor

gtk.TextChildAnchor
Prev The gtk Class Reference Next

gtk.TextChildAnchor

gtk.TextChildAnchor � a location in a textbuffer for placing widgets

Synopsis

class gtk.TextChildAnchor(gobject.GObject):
gtk.TextChildAnchor()

 def get_widgets()
 def get_deleted()

Ancestry

+−− gobject.GObject
 +−− gtk.TextChildAnchor

PyGTK 2.0 Reference Manual

The "mark−set" gtk.TextBuffer Signal 595

Description

A gtk.TextChildAnchor provides a location in a gtk.TextBuffer for placing child widgets in a
gtk.TextView. Since a gtk.TextBuffer can be associated with more than one gtk.TextView a
gtk.TextChildAnchor can have a different child widget inserted for each textview it is displayed in.

Constructor

gtk.TextChildAnchor()

Returns : a new gtk.TextChildAnchor object
Creates a new gtk.TextChildAnchor. Usually you would then insert it into a gtk.TextBuffer with
the gtk.TextBuffer.insert_child_anchor() method. To perform the creation and insertion in one
step, use the convenience method gtk.TextBuffer.create_child_anchor() method.

Methods

gtk.TextChildAnchor.get_widgets

 def get_widgets()

Returns : a list of widgets anchored at the child anchor
The get_widgets() method returns a list of all widgets anchored at this child anchor from all the
associated textviews.

gtk.TextChildAnchor.get_deleted

 def get_deleted()

Returns : TRUE if the child anchor has been deleted from its textbuffer
The get_deleted() method returns TRUE if the child anchor has been deleted from its textbuffer.

Prev Up Next
gtk.TextBuffer Home gtk.TextIter

gtk.TextIter
Prev The gtk Class Reference Next

gtk.TextIter

gtk.TextIter � an object pointing at a location in a gtk.TextBuffer

Synopsis

class gtk.TextIter(gobject.GBoxed):
 def get_buffer()
 def copy()
 def get_offset()
 def get_line()
 def get_line_offset()

PyGTK 2.0 Reference Manual

Description 596

 def get_line_index()
 def get_visible_line_offset()
 def get_visible_line_index()
 def get_char()
 def get_slice(end)
 def get_text(end)
 def get_visible_slice(end)
 def get_visible_text(end)
 def get_pixbuf()
 def get_marks()
 def get_child_anchor()
 def get_toggled_tags(toggled_on)
 def begins_tag(tag=None)
 def ends_tag(tag=None)
 def toggles_tag(tag=None)
 def has_tag(tag)
 def get_tags()
 def editable(default_setting)
 def can_insert(default_editability)
 def starts_word()
 def ends_word()
 def inside_word()
 def starts_sentence()
 def ends_sentence()
 def inside_sentence()
 def starts_line()
 def ends_line()
 def is_cursor_position()
 def get_chars_in_line()
 def get_bytes_in_line()
 def get_attributes(values)
 def get_language()
 def is_end()
 def is_start()
 def forward_char()
 def backward_char()
 def forward_chars(count)
 def backward_chars(count)
 def forward_line()
 def backward_line()
 def forward_lines(count)
 def backward_lines(count)
 def forward_word_end()
 def backward_word_start()
 def forward_word_ends(count)
 def backward_word_starts(count)
 def forward_visible_word_end()
 def backward_visible_word_start()
 def forward_visible_word_ends(count)
 def backward_visible_word_starts(count)
 def forward_sentence_end()
 def backward_sentence_start()
 def forward_sentence_ends(count)
 def backward_sentence_starts(count)
 def forward_cursor_position()
 def backward_cursor_position()
 def forward_cursor_positions(count)
 def backward_cursor_positions(count)
 def set_offset(char_offset)
 def set_line(line_number)
 def set_line_offset(char_on_line)
 def set_line_index(byte_on_line)
 def forward_to_end()
 def forward_to_line_end()
 def set_visible_line_offset(char_on_line)

PyGTK 2.0 Reference Manual

Synopsis 597

 def set_visible_line_index(byte_on_line)
 def forward_to_tag_toggle(tag)
 def backward_to_tag_toggle(tag)
 def forward_find_char(pred, user_data, limit)
 def backward_find_char(pred, user_data, limit)
 def forward_search(str, flags, limit=None)
 def backward_search(str, flags, limit=None)
 def equal(rhs)
 def compare(rhs)
 def in_range(start, end)
 def order(second)

Description

A gtk.TextIter points to a position between two characters in a gtk.TextBuffer. A
gtk.TextIter is usually created using a gtk.TextBuffer method and are invalidated when the
number of characters in the gtk.TextBuffer changes (with some exceptions when inserting or deleting)
including inserting or deleting pixbufs or child anchors. There are a huge number of gtk.TextIter
methods mostly dealing with moving the textiter location in the textbuffer, checking the location or retrieving
text or objects at a location.

Methods

gtk.TextIter.get_buffer

 def get_buffer()

Returns : the textbuffer
The get_buffer() method returns the gtk.TextBuffer object this iterator is associated with.

gtk.TextIter.copy

 def copy()

Returns : a copy of the textiter
The copy() method creates a copy of the textiter.

gtk.TextIter.get_offset

 def get_offset()

Returns : a character offset
The get_offset() method returns the character offset of the textiter. Each character in a
gtk.TextBuffer has an offset, starting with 0 for the first character in the textbuffer. Use
gtk.TextBuffer.get_iter_at_offset() to convert an offset back into a textiter.

gtk.TextIter.get_line

 def get_line()

Returns : a line number
The get_line() method returns the line number containing the textiter. Lines in a gtk.TextBuffer are

PyGTK 2.0 Reference Manual

Description 598

numbered beginning with 0 for the first line.

gtk.TextIter.get_line_offset

 def get_line_offset()

Returns : the offset from the start of the line
The get_line_offset() method returns the character offset of the textiter location, counting from the
start of the line containing the textiter location. The first character on the line has offset 0.

gtk.TextIter.get_line_index

 def get_line_index()

Returns : the number of bytes from the start of the line
The get_line_offset() method returns the byte index of the textiter location, counting from the start of
the line containing the textiter location. Remember that gtk.TextBuffer encodes text in UTF−8, and that
characters can require a variable number of bytes to represent.

gtk.TextIter.get_visible_line_offset

 def get_visible_line_offset()

Returns : the offset in visible characters from the start of the line
The get_visible_line_offset() method returns the offset in characters of the textiter location from
the start of the line containing the textiter location, not counting characters that are invisible due to tags with
the "invisible" attribute set.

gtk.TextIter.get_visible_line_index

 def get_visible_line_index()

Returns : a byte index from the start of the line
The get_visible_line_index() method returns the byte index of the textiter location from the start of
the line, not counting bytes that are invisible due to tags with the "invisible" attribute set.

gtk.TextIter.get_char

 def get_char()

Returns : a Unicode character, or 0 if the textiter is not dereferenceable
The get_char() method returns the Unicode character at this textiter location. If the textiter points at a
non−character element, such as an image embedded in the buffer, the Unicode "unknown" character 0xFFFC
is returned. If invoked on the end textiter, zero is returned; zero is not a valid Unicode character. So you can
write a loop which ends when the get_char() method returns 0.

gtk.TextIter.get_slice

 def get_slice(end)

end : the textiter at the end of a range

PyGTK 2.0 Reference Manual

gtk.TextIter.get_line 599

Returns : a slice of text from the textbuffer
The get_slice() method returns the text in the range between the locations specified by the textiter and
end. A "slice" is an array of characters encoded in UTF−8 format, including the Unicode "unknown"
character 0xFFFC for iterable non−character elements in the textbuffer, such as images. Because images are
encoded in the slice, byte and character offsets in the returned array will correspond to byte offsets in the
textbuffer. Note that 0xFFFC can occur in normal text as well, so it is not a reliable indicator that a pixbuf or
widget is in the textbuffer.

gtk.TextIter.get_text

 def get_text(end)

end : textiter at end of a range
Returns : array of characters from the buffer
The get_text() method returns the text in the range between the locations specified by the textiter and
end. If the range contains non−text elements such as images, the character and byte offsets in the returned
string will not correspond to character and byte offsets in the textbuffer. If you want the offsets to correspond,
use the get_slice() method.

gtk.TextIter.get_visible_slice

 def get_visible_slice(end)

end : textiter at end of range
Returns : a slice of visible text from the textbuffer
The get_visible_slice() method is similar to the get_slice() method, but invisible text is excluded.
Invisible text is text with the "invisible" attribute set on it.

gtk.TextIter.get_visible_text

 def get_visible_text(end)

end : textiter at end of range
Returns : a string containing visible text from the textbuffer
The get_visible_text() method is similar to the get_text(), but invisible text is excluded. Invisible
text is text with the "invisible" attribute set on it.

gtk.TextIter.get_pixbuf

 def get_pixbuf()

Returns : a pixbuf or None
The get_pixbuf() method returns the gtk.gdk.Pixbuf object at the textiter location, if any; otherwise,
None is returned.

gtk.TextIter.get_marks

 def get_marks()

Returns : a list of gtk.TextMark objects

PyGTK 2.0 Reference Manual

gtk.TextIter.get_slice 600

The get_marks() method returns a list of all gtk.TextMark objects at the textiter location. Because
marks don't take up any "space" in the buffer, multiple marks can exist in the same location. The returned list
is not in any meaningful order.

gtk.TextIter.get_child_anchor

 def get_child_anchor()

Returns : a child anchor or None
The get_child_anchor() method returns the gtk.TextChildAnchor at the textiter location, if any;
otherwise, None is returned.

gtk.TextIter.get_toggled_tags

 def get_toggled_tags(toggled_on)

toggled_on : if TRUE get toggled−on tags; otherwise get toggle−off tags
Returns : a list of tags toggled at this point
The get_toggled_tags() method returns a list of gtk.TextTag objects that are toggled on or off at
this point. If toggled_on is TRUE, the list contains tags that are toggled on. If a tag is toggled on at the
textiter location, some non−empty range of characters following the textiter has that tag applied to it. If a tag
is toggled off, then some non−empty range following the textiter location does not have the tag applied to it.

gtk.TextIter.begins_tag

 def begins_tag(tag=None)

tag : a gtk.TextTag, or None
Returns : TRUE if the textiter is the start of a range tagged with tag
The begins_tag() method returns TRUE if tag is toggled on at exactly this point. If tag is None, this
method returns TRUE if any tag is toggled on at this point. Note that the begins_tag() method returns
TRUE only if the textiter location is the start of the tagged range; the has_tag() indicates if a textiter
location is within a tagged range.

gtk.TextIter.ends_tag

 def ends_tag(tag=None)

tag : a gtk.TextTag, or None
Returns : TRUE if the textiter is the end of a range tagged with tag
The ends_tag() method returns TRUE if tag is toggled off at the location the textiter points to. If tag is
None, this method returns TRUE if any tag is toggled off at this point. Note that the ends_tag() returns
TRUE only if the textiter location is the end of the tagged range; the has_tag() indicates if a textiter location
is within a tagged range.

gtk.TextIter.toggles_tag

 def toggles_tag(tag=None)

tag : a gtk.TextTag, or None
Returns : TRUE if tag is toggled on or off at the textiter location

PyGTK 2.0 Reference Manual

gtk.TextIter.get_marks 601

The toggles_tag() method returns TRUE if a range of text with tag applied to it begins or ends at the
textiter location. If tag is None this method returns TRUE if any tag begins or ends at the textiter location.

gtk.TextIter.has_tag

 def has_tag(tag)

tag : a gtk.TextTag
Returns : TRUE if the textiter location is tagged with tag
The has_tag() method returns TRUE if the textiter location is within a range of text tagged with tag.

gtk.TextIter.get_tags

 def get_tags()

Returns : a list of gtk.TextTag objects
The get_tags() method returns a list of tags that apply to the textiter location, in ascending order of priority
(highest−priority tags are last).

gtk.TextIter.editable

 def editable(default_setting)

default_setting : if TRUE the text is editable by default
Returns : TRUE if the textiter location is inside an editable range or text
The editable() method returns TRUE if the character at the textiter location is within an editable range of
text. Non−editable text is "locked" and can't be changed by the user via a gtk.TextView. This method is a
convenience wrapper around the get_attributes() method. If no tags applied to this text location affect
editability, the value of default_setting will be returned.

Do not use this method to determine if text can be inserted at the textiter location. For insertion you don't want
to know if the char at the textiter location is inside an editable range of text, you want to know whether a new
character inserted at the textiter location would be inside an editable range of text. Use the can_insert()
method to determine if text can be inserted.

gtk.TextIter.can_insert

 def can_insert(default_editability)

default_editability : if TRUE the text is editable by default
Returns : TRUE if text inserted at iter would be editable
The can_insert() method considers the default editability of the buffer, and the tags that affect editability,
to determine if text inserted at the textiter location would be editable. If so, the user should be allowed to
insert text at the textiter location. The gtk.TextBuffer.insert_interactive() uses this function to
determine if insertions are allowed at a given position.

gtk.TextIter.starts_word

 def starts_word()

Returns : TRUE if the textiter location is at the start of a word

PyGTK 2.0 Reference Manual

gtk.TextIter.toggles_tag 602

The starts_word() method returns TRUE if the textiter location begins a natural−language word. Word
breaks are determined by Pango and should be correct for nearly any language (if not, the correct fix would be
to the Pango word break algorithms).

gtk.TextIter.ends_word

 def ends_word()

Returns : TRUE if the textiter location is at the end of a word
The ends_word() method returns TRUE if the textiter location ends a natural−language word. Word breaks
are determined by Pango and should be correct for nearly any language (if not, the correct fix would be to the
Pango word break algorithms).

gtk.TextIter.inside_word

 def inside_word()

Returns : TRUE if the textiter location is inside a word
The inside_word() method returns TRUE if the textiter location is inside a natural−language word (as
opposed to say inside some whitespace). Word breaks are determined by Pango and should be correct for
nearly any language (if not, the correct fix would be to the Pango word break algorithms).

gtk.TextIter.starts_sentence

 def starts_sentence()

Returns : TRUE if the textiter location is at the start of a sentence.
The starts_sentence() method returns TRUE if the textiter location begins a sentence. Sentence
boundaries are determined by Pango and should be correct for nearly any language (if not, the correct fix
would be to the Pango text boundary algorithms).

gtk.TextIter.ends_sentence

 def ends_sentence()

Returns : TRUE if the textiter location is at the end of a sentence.
The ends_sentence() method returns TRUE if the textiter location ends a sentence. Sentence boundaries
are determined by Pango and should be correct for nearly any language (if not, the correct fix would be to the
Pango text boundary algorithms).

gtk.TextIter.inside_sentence

 def inside_sentence()

Returns : TRUE if the textiter location is inside a sentence.
The inside_sentence() method returns TRUE if the textiter location is inside a sentence (as opposed to
in between two sentences, e.g. after a period and before the first letter of the next sentence). Sentence
boundaries are determined by Pango and should be correct for nearly any language (if not, the correct fix
would be to the Pango text boundary algorithms).

PyGTK 2.0 Reference Manual

gtk.TextIter.starts_word 603

gtk.TextIter.starts_line

 def starts_line()

Returns : TRUE if the textiter location begins a line
The starts_line() method returns TRUE if the textiter location begins a paragraph, i.e. if the
.get_line_offset() method would return 0.

gtk.TextIter.ends_line

 def ends_line()

Returns : TRUE if the textiter location is at the end of a line
The ends_line() method returns TRUE if the textiter location points to the start of the paragraph delimiter
characters for a line (delimiters will be either a newline, a carriage return, a carriage return followed by a
newline, or a Unicode paragraph separator character). Note that an textiter pointing to the \n of a \r\n pair will
not be counted as the end of a line, the line ends before the \r. The end textiter is considered to be at the end of
a line, even though there are no paragraph delimiter chars there.

gtk.TextIter.is_cursor_position

 def is_cursor_position()

Returns : TRUE if the cursor can be placed at the textiter location
The is_cursor_position() method returns TRUE if the cursor can be placed at the textiter location. See
the forward_cursor_position() method for details on what a cursor position is.

gtk.TextIter.get_chars_in_line

 def get_chars_in_line()

Returns : the number of characters in the line
The get_chars_in_line() method returns the number of characters in the line containing the textiter
location, including the paragraph delimiters.

gtk.TextIter.get_bytes_in_line

 def get_bytes_in_line()

Returns : the number of bytes in the line
The get_bytes_in_line() method returns the number of bytes in the line containing the textiter location,
including the paragraph delimiters.

gtk.TextIter.get_attributes

 def get_attributes(values)

values : a gtk.TextAttributes object to be filled in
Returns : TRUE if values was modified
The get_attributes() method computes the effect of any tags applied to the textiter location and applies
those attributes to the gtk.TextAttributes object specified by values (which should be initialized to
the default settings you wish to use if no tags are in effect). Typically the default attributes are obtained from

PyGTK 2.0 Reference Manual

gtk.TextIter.starts_line 604

the gtk.TextView.get_default_attributes() method. If any tags affected values, the method
returns TRUE.

gtk.TextIter.get_language

 def get_language()

Returns : the pango language in effect at the textiter location
The get_language() method is a convenience wrapper around the get_attributes() method, that
returns the language in effect at the textiter location. If no tags affecting language apply to the textiter
location, the return value is identical to that of the gtk.get_default_language() function.

gtk.TextIter.is_end

 def is_end()

Returns : TRUE if the textiter is the end textiter
The is_end() method returns TRUE if the textiter is the end textiter, i.e. one past the last dereferenceable
textiter in the buffer. The is_end() method is the most efficient way to check whether an textiter is the end
textiter.

gtk.TextIter.is_start

 def is_start()

Returns : TRUE if the textiter location is at the start of the textbuffer
The is_start() method returns TRUE if the textiter location is at the start of the textbuffer, that is if the
textiter location has a character offset of 0.

gtk.TextIter.forward_char

 def forward_char()

Returns : TRUE if the textiter location moved and is dereferenceable
The forward_char() method moves the textiter location forward by one character offset and returns TRUE
if the textiter location moved and the new location is dereferenceable. Note that images embedded in the
buffer occupy 1 character slot, so the forward_char() method may actually move onto an image instead of
a character, if you have images in your buffer. If the textiter location is the end textiter or one character before
it, the textiter location will now point at the end textiter, and the forward_char() method returns FALSE.

gtk.TextIter.backward_char

 def backward_char()

Returns : TRUE if the textiter location moved and is not the start textiter
The backward_char() method moves the textiter location backward by one character offset and returns
TRUE if the textiter location moved. If the old textiter location was the first in the buffer (character offset 0),
the backward_char() method returns FALSE.

PyGTK 2.0 Reference Manual

gtk.TextIter.get_attributes 605

gtk.TextIter.forward_chars

 def forward_chars(count)

count : the number of characters to move, may be negative
Returns : TRUE if the textiter location moved and is dereferenceable
The forward_chars() method moves the textiter location forward count characters if possible. If the
textiter location would move past the start or end of the buffer, the location moves to the start or end of the
textbuffer. The forward_chars() method returns TRUE if the new position of the resulting textiter location
is different from its original position, and is dereferenceable (the last textiter in the buffer is not
dereferenceable). If count is 0, the function does nothing and returns FALSE.

gtk.TextIter.backward_chars

 def backward_chars(count)

count : the number of characters to move, may be negative
Returns : TRUE if the textiter location moved and is dereferenceable
The backward_chars() method moves the textiter location backward forward count characters, if
possible. If the textiter location would move past the start or end of the buffer, the location moves to the start
or end of the textbuffer. The backward_chars() method returns TRUE if the new position of the resulting
textiter location is different from its original position, and is dereferenceable (the last textiter in the buffer is
not dereferenceable). If count is 0, the function does nothing and returns FALSE.

gtk.TextIter.forward_line

 def forward_line()

Returns : TRUE if the textiter location can be dereferenced
The forward_line() method moves the textiter location to the start of the next line and returns TRUE if the
textiter location moved to a dereferenceable position, and FALSE if the textiter location moved to the end of
the buffer, or if the textiter location was originally at the end of the buffer.

gtk.TextIter.backward_line

 def backward_line()

Returns : TRUE if the textiter location moved
The backward_line() method moves the textiter location to the start of the previous line and returns TRUE
if the textiter location was moved. If the textiter location was at the textbuffer start, this method returns
FALSE. For example if the textiter location was already on line 0, but not at the start of the line, the textiter
location is snapped to the start of the line and the method returns TRUE.

gtk.TextIter.forward_lines

 def forward_lines(count)

count : the number of lines to move forward, may be negative
Returns : TRUE if the textiter location moved and is dereferenceable
The forward_lines() method moves the textiter location forward count lines, if possible. If the textiter
location would move past the start or end of the buffer, the location moves to the start or end of the textbuffer.
The method returns:

PyGTK 2.0 Reference Manual

gtk.TextIter.forward_chars 606

TRUE if the textiter moved to a dereferenceable position; or,•
FALSE if the textiter location didn't move, or moved onto the end textiter or if count was 0.•

If count is negative, the textiter location moves backward by count lines.

gtk.TextIter.backward_lines

 def backward_lines(count)

count : the number of lines to move backward, may be negative
Returns : TRUE if the textiter location moved to a dereferenceable position
The backward_lines() method moves the textiter location backward by count lines, if possible. If the textiter
location would move past the start or end of the buffer, the location moves to the start or end of the textbuffer.
The method returns:

TRUE if the textiter moved to a dereferenceable position; or,•
FALSE if the textiter location didn't move, or moved onto the end textiter or if count was 0.•

If count is negative, the textiter location moves forward by count lines.

gtk.TextIter.forward_word_end

 def forward_word_end()

Returns : TRUE if the textiter location moved to a dereferenceable position
The forward_word_end() method moves the textiter location forward to the next word end. If the textiter
location is currently on a word end, the location moves forward to the next one after that. Word breaks are
determined by Pango and should be correct for nearly any language (if not, the correct fix would be to the
Pango word break algorithms). The method returns TRUE if the textiter location moved to a dereferenceable
position

gtk.TextIter.backward_word_start

 def backward_word_start()

Returns : TRUE if the textiter location moved
The backward_word_start() method moves the textiter location backward to the previous word start. If
the textiter location is currently on a word start, the location moves backward to the next one before that.
Word breaks are determined by Pango and should be correct for nearly any language (if not, the correct fix
would be to the Pango word break algorithms). The method returns TRUE if the textiter location moved.

gtk.TextIter.forward_word_ends

 def forward_word_ends(count)

count : the number of times to move
Returns : TRUE if the textiter location moved and is not the end textiter
The forward_word_ends() method calls the forward_word_end() method up to count times or the
backward_word_starts() method if count is negative. The method returns TRUE if the textiter
location changed and the resulting location is not at the end of the textbuffer.

PyGTK 2.0 Reference Manual

gtk.TextIter.forward_lines 607

gtk.TextIter.backward_word_starts

 def backward_word_starts(count)

count : the number of times to move
Returns : TRUE if the textiter location moved and is not the end textiter
The backward_word_starts() method calls the backward_word_start() method up to count
times or the forward_word_ends() method if count is negative. The method returns TRUE if the textiter
location changed and the resulting location is not at the end of the textbuffer.

gtk.TextIter.forward_visible_word_end

 def forward_visible_word_end()

Returns : TRUE if the textiter moved and is not the end iterator

Note

This method is available in PyGTK 2.4 and above.

The forward_visible_word_end() method moves the textiter forward to the next visible word end. (If
the textiter is currently on a word end, it moves forward to the next one after that.) Word breaks are
determined by Pango and should be correct for nearly any language (if not, the correct fix would be to the
Pango word break algorithms).

gtk.TextIter.backward_visible_word_start

 def backward_visible_word_start()

Returns : TRUE if the textiter moved and is not the end iterator

Note

This method is available in PyGTK 2.4 and above.

The backward_visible_word_start() method moves the textiter backward to the previous visible
word start. (If textiter is currently on a word start, it moves backward to the next one after that.) Word breaks
are determined by Pango and should be correct for nearly any language (if not, the correct fix would be to the
Pango word break algorithms).

gtk.TextIter.forward_visible_word_ends

 def forward_visible_word_ends(count)

count : the number of times to move
Returns : TRUE if the textiter moved and is not the end iterator

Note

This method is available in PyGTK 2.4 and above.

The forward_visible_word_ends() method calls the forward_visible_word_end() method
the number of times specified by count.

PyGTK 2.0 Reference Manual

gtk.TextIter.backward_word_starts 608

gtk.TextIter.backward_visible_word_starts

 def backward_visible_word_starts(count)

count : the number of times to move
Returns : TRUE if the textiter moved and is not the end iterator

Note

This method is available in PyGTK 2.4 and above.

The backward_visible_word_starts() method calls the backward_visible_word_start()
method the number of times specified by count.

gtk.TextIter.forward_sentence_end

 def forward_sentence_end()

Returns : TRUE if the textiter location moved and is not the end textiter
The forward_sentence_end() method moves the textiter location forward to the next sentence end. (If
the textiter location is at the end of a sentence, the location moves to the next end of sentence.) Sentence
boundaries are determined by Pango and should be correct for nearly any language (if not, the correct fix
would be to the Pango text boundary algorithms). The method returns TRUE if the textiter location changed
and the resulting location is not at the end of the textbuffer.

gtk.TextIter.backward_sentence_start

 def backward_sentence_start()

Returns : TRUE if the textiter location moved
The backward_sentence_start() method moves the textiter location backward to the previous
sentence start. If the textiter location is already at the start of a sentence, the location moves backward to the
next one. Sentence boundaries are determined by Pango and should be correct for nearly any language (if not,
the correct fix would be to the Pango text boundary algorithms).

gtk.TextIter.forward_sentence_ends

 def forward_sentence_ends(count)

count : the number of sentences to move
Returns : TRUE if the textiter location moved and is not the end textiter
The forward_sentence_ends() method calls the forward_sentence_end() method count times
(or until the forward_sentence_end() method returns FALSE). If count is negative, the location
moves backward instead of forward. The method returns TRUE if the textiter location changed and the
resulting location is not at the end of the textbuffer.

gtk.TextIter.backward_sentence_starts

 def backward_sentence_starts(count)

count : the number of sentences to move
Returns : TRUE if the textiter location moved and is not the end textiter

PyGTK 2.0 Reference Manual

gtk.TextIter.backward_visible_word_starts 609

The backward_sentence_starts() method calls the backward_sentence_start() method (or
the forward_sentence_end()() method if count is negative) up to count times, or until it returns
FALSE. If count is negative, the location moves forward instead of backward. The method returns TRUE if
the textiter location changed and the resulting location is not at the end of the textbuffer.

gtk.TextIter.forward_cursor_position

 def forward_cursor_position()

Returns : TRUE if we moved and the new position is dereferenceable
The forward_cursor_position() method moves the textiter location forward by a single cursor
position. Cursor positions are (unsurprisingly) positions where the cursor can appear. Surprisingly, there may
not be a cursor position between all characters. The most common example for European languages would be
a carriage return/newline sequence. For some Unicode characters, the equivalent of say the letter "a" with an
accent mark will be represented as two characters, first the letter then a "combining mark" that causes the
accent to be rendered; so the cursor can't go between those two characters. The method returns TRUE if the
textiter location changed and the resulting location is not at the end of the textbuffer.

gtk.TextIter.backward_cursor_position

 def backward_cursor_position()

Returns : TRUE if we moved and the new position is dereferenceable
The backward_cursor_position() method is similar to the forward_cursor_position()
method, except the location moves backward.

gtk.TextIter.forward_cursor_positions

 def forward_cursor_positions(count)

count : the number of positions to move
Returns : TRUE if the textiter location moved and the new position is dereferenceable
The forward_cursor_positions() method moves up to count cursor positions. See the
forward_cursor_position() method for more details. The method returns TRUE if the textiter moved
to a dereferenceable location.

gtk.TextIter.backward_cursor_positions

 def backward_cursor_positions(count)

count : the number of positions to move
Returns : TRUE if the textiter location moved and the new position is dereferenceable
The backward_cursor_positions() method moves the textiter location up to count cursor positions.
See the forward_cursor_position() method for details.

gtk.TextIter.set_offset

 def set_offset(char_offset)

char_offset : a character number
The set_offset() method sets the textiter location to point to the location that is char_offset counts
from the start of the textbuffer (starting with 0).

PyGTK 2.0 Reference Manual

gtk.TextIter.backward_sentence_starts 610

gtk.TextIter.set_line

 def set_line(line_number)

line_number : a line number (counted from 0)
The set_line() method sets the textiter location to the start of the line specified by line_number. If
line_number is negative or larger than the number of lines in the textbuffer, the method moves the textiter
location to the start of the last line in the buffer.

gtk.TextIter.set_line_offset

 def set_line_offset(char_on_line)

char_on_line : a character offset relative to the start of the textiter location's current line
The set_line_offset() method moves the textiter location within a line, to the new character (not byte)
offset specified by char_on_line. The character offset must be less than or equal to the number of
characters in the line; if equal, the textiter location moves to the start of the next line. See the
set_line_index() method if you have a byte index rather than a character offset.

gtk.TextIter.set_line_index

 def set_line_index(byte_on_line)

byte_on_line : a byte index relative to the start of the textiter location's current line
The set_line_index() method is similar to the set_line_offset(), but works with a byte index
instead of a character index. The given byte index must be at the start of a character, it can't be in the middle
of a UTF−8 encoded character.

gtk.TextIter.forward_to_end

 def forward_to_end()

The forward_to_end() method moves the textiter location forward to the "end textiter," that points one
past the last valid character in the buffer. The get_char() method called on the end textiter returns 0, which
is convenient for writing loops.

gtk.TextIter.forward_to_line_end

 def forward_to_line_end()

Returns : TRUE if we moved and the new location is not the end textiter
The forward_to_line_end() method moves the textiter to point to the paragraph delimiter characters at
the end of the current line. The paragraph delimiter characters are a newline, a carriage return, a carriage
return−newline in sequence, or the Unicode paragraph separator character. If the textiter is already at the
paragraph delimiter characters, moves to the paragraph delimiter characters for the next line. If the textiter
location is on the last line in the buffer, which does not end in paragraph delimiters, moves to the end textiter
(end of the last line), and returns FALSE.

gtk.TextIter.set_visible_line_offset

 def set_visible_line_offset(char_on_line)

char_on_line : a character offset

PyGTK 2.0 Reference Manual

gtk.TextIter.set_line 611

The set_visible_char_offset() method is similar to the set_line_offset() method, but the
offset is in visible characters, i.e. text with the invisible attribute set is not counted in the offset.

gtk.TextIter.set_visible_line_index

 def set_visible_line_index(byte_on_line)

byte_on_line : a byte index
The set_visible_line_index() method is similar to the set_line_index() method, but the index
is in visible bytes, i.e. text with the attribute set is not counted in the index.

gtk.TextIter.forward_to_tag_toggle

 def forward_to_tag_toggle(tag)

tag : a gtk.TextTag, or None
Returns : TRUE if a tag toggle was found after the textiter location
The forward_to_tag_toggle() method moves the textiter location forward to the next toggle (on or off)
of the gtk.TextTag specified by tag, or to the next toggle of any tag if tag is None. If no matching tag
toggles are found, this method returns FALSE and sets the textiter location to the end of the textbuffer;
otherwise, returns TRUE. The forward_to_tag_toggle() method does not recognize toggles located at
the textiter location, only toggles after the textiter location.

gtk.TextIter.backward_to_tag_toggle

 def backward_to_tag_toggle(tag)

tag : a gtk.TextTag, or None
Returns : TRUE if a tag toggle was found before the textiter location
The backward_to_tag_toggle() method moves the textiter location backward to the next toggle (on or
off) of the gtk.TextTag specified by tag, or to the next toggle of any tag if tag is None. If no matching
tag toggles are found, this method returns FALSE and sets the textiter location to the start of the textbuffer;
otherwise, returns TRUE. The backward_to_tag_toggle() method does not recognize toggles located at
the textiter location, only toggles before the textiter location.

gtk.TextIter.forward_find_char

 def forward_find_char(pred, user_data, limit)

pred : a function to be called on each character
user_data : user data for pred

limit : a gtk.TextIter pointing at a position to end the search, or None for the end of
the buffer.

Returns : TRUE if a match was found

Note

This method is available in PyGTK 2.4 and above.

The forward_find_char() method advances the textiter, calling the function specified by pred on each
character. If pred returns TRUE, forward_find_char stops scanning and returns TRUE. If pred never
returns TRUE, the textiter location is set to limit or the end textiter, if limit is None.

PyGTK 2.0 Reference Manual

gtk.TextIter.set_visible_line_offset 612

Warning

This method is likely to be very slow since the Python function pred is called for every character.

gtk.TextIter.backward_find_char

 def backward_find_char(pred, user_data, limit)

pred : a function to be called on each character
user_data : user data for pred

limit : a gtk.TextIter pointing at a position to end the search, or None for the beginning of the
buffer.

Returns : TRUE if a match was found

Note

This method is available in PyGTK 2.4 and above.

The backward_find_char() method is similar to the forward_find_char() method, but goes
backward from the textiter location.

Warning

This method is likely to be very slow since the Python function pred is called for every character.

gtk.TextIter.forward_search

 def forward_search(str, flags, limit=None)

str : a search string
flags : the flags affecting how the search is done
limit : a bound for the search, or None to set the bound to the end of the buffer
Returns : a tuple containing gtk.TextIter objects pointing at the start and end locations of the match
The forward_search() method searches forward for the text string specified by str and returns a tuple
containing gtk.TextIter objects that point at the start and end locations of the match. The search will
stop at the location specified by limit or the end of the textbuffer if limit is None or is not specified.
Note that a search is a linear or O(n) operation, so you may wish to use limit to avoid locking up your UI
when searching large buffers.

If the gtk.TEXT_SEARCH_VISIBLE_ONLY flag is present, the match may have invisible text interspersed
in str (i.e. str will be a possibly−noncontiguous subsequence of the matched range). Likewise, if
gtk.TEXT_SEARCH_TEXT_ONLY is present, the match may have pixbufs or child anchors mixed inside
the matched range. If these flags are not given, the match must be exact i.e. the special 0xFFFC character in
str will match embedded pixbufs or child widgets.

gtk.TextIter.backward_search

 def backward_search(str, flags, limit=None)

str : a search string
flags : the flags affecting the search
limit : a bound for the search, or None to set the bound to the end of the buffer

PyGTK 2.0 Reference Manual

Warning 613

Returns : start of match and end of match
The backward_search() method is the same as the forward_search() method, except searches
backward.

gtk.TextIter.equal

 def equal(rhs)

rhs : another gtk.TextIter object
Returns : TRUE if the textiters point to the same place in the buffer
The equal() method tests if the textiter specified by rhs points to the same location in the textbuffer as the
textiter.

gtk.TextIter.compare

 def compare(rhs)

rhs : another gtk.TextIter object

Returns : −1 if the textiter location is less than the rhs location, 1 if the textiter location is greater, 0
if they are equal

The compare() method returns:

−1 if the textiter location is less than the location of the textiter specified by rhs;•
1 if the textiter location is greater than the location of the textiter specified by rhs; and,•
0 if the textiter location is equal to the location of the textiter specified by rhs.•

Ordering is in character offset order, i.e. the first character in the buffer is less than the second character in the
buffer.

gtk.TextIter.in_range

 def in_range(start, end)

start : the start of the text range
end : the end of the text range
Returns : TRUE if the textiter location is in the text range
The in_range() method returns TRUE if the textiter location is in the text range specified by the
gtk.TextIter objects start and end. start and end must be in ascending order.

gtk.TextIter.order

 def order(second)

second : another gtk.TextIter object
The order() method swaps the locations of first and second if second comes before first in the
buffer. This method can be used to ensure that first and second are in sequence. Most text buffer
methods that take a range call this automatically, so there's no real reason to call it yourself in those cases.
There are some exceptions, such as the in_range(), that expect a pre−sorted range.

Prev Up Next
gtk.TextChildAnchor Home gtk.TextMark

PyGTK 2.0 Reference Manual

gtk.TextIter.backward_search 614

gtk.TextMark
Prev The gtk Class Reference Next

gtk.TextMark

gtk.TextMark � a position in a textbuffer that is preserved across textbuffer modifications

Synopsis

class gtk.TextMark(gobject.GObject):
 def set_visible(setting)
 def get_visible()
 def get_name()
 def get_deleted()
 def get_buffer()
 def get_left_gravity()

Ancestry

+−− gobject.GObject
 +−− gtk.TextMark

Description

A gtk.TextMark is like a bookmark in a textbuffer − it preserves a position in the text. You can get an
iterator corresponding to a textmark by using the gtk.TextBuffer.get_iter_at_mark() method.
Unlike iterators, textmarks remain valid across buffer modifications (e.g. when text is inserted or deleted).
When text containing a textmark is deleted, the textmark remains in the position originally occupied by the
deleted text. When text is inserted at a textmark, a textmark with left gravity will be moved to the beginning
of the newly−inserted text, and a textmark with right gravity will be moved to the end. Textmarks optionally
have names that can be used to avoid passing the gtk.TextMark object around. Textmarks are typically
created using the gtk.TextBuffer.create_mark() method. A gtk.TextBuffer has two built−in
gtk.TextMark objects named: insert and selection_bound which refer to the insertion point and
the boundary of the selection (these may refer to the same location).

Methods

gtk.TextMark.set_visible

 def set_visible(setting)

setting : if TRUE the textmark is visible
The set_visible() method sets the visibility of the textmark to the value specified by setting. If
setting is TRUE the textmark will be visible as a vertical bar. The insertion point is normally visible but
most textmarks are not visible by default. The text widget uses a visible textmark to indicate where a drop will
occur when dragging−and−dropping text.

PyGTK 2.0 Reference Manual

gtk.TextIter.order 615

gtk.TextMark.get_visible

 def get_visible()

Returns : TRUE if the textmark is visible
The get_visible() method returns TRUE if the textmark is visible (i.e. a vertical bar is displayed for it)

gtk.TextMark.get_name

 def get_name()

Returns : the textmark name or None
The get_name() method returns the textmark name or None if the textmark is anonymous.

gtk.TextMark.get_deleted

 def get_deleted()

Returns : TRUE if the textmark is deleted
The get_deleted() method returns TRUE if the textmark has been removed from its textbuffer with
gtk.TextBuffer.delete_mark(). Textmarks can't be used once deleted.

gtk.TextMark.get_buffer

 def get_buffer()

Returns : the textmark's gtk.TextBuffer
The get_buffer() method returns the gtk.TextBuffer object the textmark is located inside, or None
if the textmark is deleted.

gtk.TextMark.get_left_gravity

 def get_left_gravity()

Returns : TRUE if the textmark has left gravity
The get_left_gravity() method returns TRUE if the textmark has left gravity.

Prev Up Next
gtk.TextIter Home gtk.TextTag

gtk.TextTag
Prev The gtk Class Reference Next

gtk.TextTag

gtk.TextTag � an object used to apply attributes to text in a gtk.TextBuffer

Synopsis

class gtk.TextTag(gobject.GObject):
gtk.TextTag(name=None)

 def get_priority()

PyGTK 2.0 Reference Manual

gtk.TextMark.get_visible 616

 def set_priority(priority)
 def event(event_object, event, iter)

Ancestry

+−− gobject.GObject
 +−− gtk.TextTag

Properties

"name" Read−Write The name of the texttag or None if anonymous
"background" Write The background color as a string
"foreground" Write The foreground color as a string
"background−gdk" Read−Write The background color as a (possibly unallocated)

gtk.gdk.Color

"foreground−gdk" Read−Write The foreground color as a (possibly unallocated)
gtk.gdk.Color

"background−stipple" Read−Write The bitmap to use as a mask when drawing the
text background

"foreground−stipple" Read−Write The bitmap to use as a mask when drawing the
text foreground

"font" Read−Write The font description as a string, e.g. "Sans Italic
12"

"font−desc" Read−Write The font description as a pango.FontDescription
object

"family" Read−Write The name of the font family, e.g. Sans, Helvetica,
Times, Monospace

"style" Read−Write The font style − one of:
pango.STYLE_NORMAL,
pango.STYLE_OBLIQUE or
pango.STYLE_ITALIC.

"variant" Read−Write The font variant − either
pango.VARIANT_NORMAL or
pango.VARIANT_SMALL_CAPS.

"weight" Read−Write The font weight as an integer:
pango.WEIGHT_ULTRALIGHT = 200,
pango.WEIGHT_LIGHT = 300,
pango.WEIGHT_NORMAL = 400,
pango.WEIGHT_BOLD = 700,
pango.WEIGHT_ULTRABOLD = 800,
pango.WEIGHT_HEAVY = 900.

"stretch" Read−Write The font stretch − one of:
pango.STRETCH_ULTRA_CONDENSED,
pango.STRETCH_EXTRA_CONDENSED,
pango.STRETCH_CONDENSED,
pango.STRETCH_SEMI_CONDENSED,
pango.STRETCH_NORMAL,
pango.STRETCH_SEMI_EXPANDED,
pango.STRETCH_EXPANDED,
pango.STRETCH_EXTRA_EXPANDED,
pango.STRETCH_ULTRA_EXPANDED

PyGTK 2.0 Reference Manual

Synopsis 617

"size" Read−Write The font size in Pango units.
"size−points" Read−Write The font size in points
"scale" Read−Write The font size as a scale factor relative to the

default font size. This properly adapts to theme
changes etc. so is recommended. Pango predefines
some scales such as
pango.SCALE_XX_SMALL,
pango.SCALE_X_SMALL,
pango.SCALE_SMALL,
pango.SCALE_MEDIUM,
pango.SCALE_LARGE,
pango.SCALE_X_LARGE,
pango.SCALE_XX_LARGE.

"pixels−above−lines" Read−Write The number of pixels of blank space above
paragraphs

"pixels−below−lines" Read−Write The number of pixels of blank space below
paragraphs

"pixels−inside−wrap" Read−Write The number of pixels of blank space between
wrapped lines in a paragraph

"editable" Read−Write It TRUE the text can be modified by the user
"wrap−mode" Read−Write The wrap mode of the text: gtk.WRAP_NONE,

gtk.WRAP_CHAR or gtk.WRAP_WORD
"justification" Read−Write The text justification: gtk.JUSTIFY_LEFT,

gtk.JUSTIFY_RIGHT,
gtk.JUSTIFY_CENTER or
gtk.JUSTIFY_FILL

"direction" Read−Write The text direction: gtk.TEXT_DIR_NONE,
gtk.TEXT_DIR_LTR or
gtk.TEXT_DIR_RTL

"left−margin" Read−Write The width of the left margin in pixels
"indent" Read−Write The amount to indent the paragraph, in pixels
"strikethrough" Read−Write If TRUE, strike through the text
"right−margin" Read−Write The width of the right margin in pixels
"underline" Read−Write The style of underline for this text:

pango.UNDERLINE_NONE,
pango.UNDERLINE_SINGLE,
pango.UNDERLINE_DOUBLE or
pango.UNDERLINE_LOW

"rise" Read−Write The offset of text above the baseline (below the
baseline if rise is negative) in pixels

"background−full−height" Read−Write If TRUE, the background color fills the entire line
height

"language" Read−Write The language this text is in, as an ISO code.
Pango can use this as a hint when rendering the
text. If you don't understand this parameter, you
probably don't need it.

"tabs" Read−Write The custom tabs for this text
"invisible" Read−Write If TRUE, this text is hidden
"background−set" Read−Write If TRUE, this tag affects the background color
"foreground−set" Read−Write If TRUE, this tag affects the foreground color

PyGTK 2.0 Reference Manual

Properties 618

"background−stipple−set" Read−Write If TRUE, this tag affects the background stipple
"foreground−stipple−set" Read−Write If TRUE, this tag affects the foreground stipple
"family−set" Read−Write If TRUE, this tag affects the font family
"style−set" Read−Write If TRUE, this tag affects the font style
"variant−set" Read−Write If TRUE, this tag affects the font variant
"weight−set" Read−Write If TRUE, this tag affects the font weight
"stretch−set" Read−Write If TRUE, this tag affects the font stretch
"size−set" Read−Write If TRUE, this tag affects the font size
"scale−set" Read−Write If TRUE, this tag scales the font size by a factor
"pixels−above−lines−set" Read−Write If TRUE, this tag affects the number of pixels

above lines
"pixels−below−lines−set" Read−Write If TRUE, this tag affects the number of pixels

above lines
"pixels−inside−wrap−set" Read−Write If TRUE, this tag affects the number of pixels

between wrapped lines
"editable−set" Read−Write If TRUE, this tag affects text editability
"wrap−mode−set" Read−Write If TRUE, this tag affects line wrap mode
"justification−set" Read−Write If TRUE, this tag affects paragraph justification
"left−margin−set" Read−Write If TRUE, this tag affects the left margin
"indent−set" Read−Write If TRUE, this tag affects indentation
"strikethrough−set" Read−Write If TRUE, this tag affects strikethrough
"right−margin−set" Read−Write If TRUE, this tag affects the right margin
"underline−set" Read−Write If TRUE, this tag affects underlining
"rise−set" Read−Write If TRUE, this tag affects the rise
"background−full−height−set" Read−Write If TRUE, this tag affects background height
"language−set" Read−Write If TRUE, this tag affects the language the text is

rendered as
"tabs−set" Read−Write If TRUE, this tag affects tabs
"invisible−set" Read−Write If TRUE, this tag affects text visibility

Signal Prototypes

"event" def callback(texttag, widget, event, iter, user_param1, ...)

Description

A gtk.TextTag object holds attributes that can be applied to a range of text in a gtk.TextBuffer. A
texttag can be associated with more than one gtk.TextBuffer by adding it to the gtk.TextTagTable
objects of the textbuffers. The attributes of a texttag can be set using the GObject.set_property()
method or as part of texttag creation using the gtk.TextBuffer.create_tag() method. Since not
every attribute property of a gtk.TextTag may be set each attribute property has a boolean property that
indicates whether the attribute property is set by this texttag. Therefore before retrieving an attribute value
from a texttag you have to check if the associated boolean property of the attribute property is TRUE.

PyGTK 2.0 Reference Manual

Signal Prototypes 619

Constructor

gtk.TextTag(name=None)

name : tag name, or None if the texttag is anonymous
Returns : a new gtk.TextTag
Creates a gtk.TextTag with the name specified by name. If name is None the texttag will be anonymous.
The texttag attributes are configured using the GObject.set_property() method.

Methods

gtk.TextTag.get_priority

 def get_priority()

Returns : the texttag's priority.
The get_priority() method returns the priority or the texttag.

gtk.TextTag.set_priority

 def set_priority(priority)

priority : the new priority
The set_priority() method sets the priority of a gtk.TextTag to the value specified by priority.
Valid priorities start at 0 and go to one less than the value returned by the
gtk.TextTagTable.get_size() method. Each texttag in a table has a unique priority; setting the
priority of one texttag shifts the priorities of all the other texttags in the table to maintain a unique priority for
each texttag. Higher priority tags "win" if two texttags both set the same text attribute for a range of text.
When adding a texttag to a gtk.TextTagTable, it will be assigned the highest priority in the table by
default; so normally the precedence of a set of texttags is the order in which they were added to the table, or
created with the gtk.TextBuffer.create_tag() method, that adds the texttag to the buffer's table
automatically.

gtk.TextTag.event

 def event(event_object, event, iter)

event_object : the object that received the event, such as a widget
event : the event
iter : the location where the event was received
Returns : the result of signal emission (whether the event was handled)
The event() method emits the "event" signal on the gtk.TextTag for the widget specified by
event_object with the event specified by event at the textbuffer location specified by iter. This
method returns TRUE if the event was handled.

Signals

PyGTK 2.0 Reference Manual

Constructor 620

The "event" gtk.TextTag Signal

 def callback(texttag, widget, event, iter, user_param1, ...)

texttag : the texttag that received the signal
widget : the widget that received event
event : the event
iter : the gtk.TextIter pointing to the location where the event was received
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "event" signal is emitted when an event occurs in a range of text that is enclosed in the texttag. The
widget that the event occurred in is specified by widget. iter holds the location that the event occurred at
and event describes the event.

Prev Up Next
gtk.TextMark Home gtk.TextTagTable

gtk.TextTagTable
Prev The gtk Class Reference Next

gtk.TextTagTable

gtk.TextTagTable � A collection of gtk.TextTag objects that can be used together

Synopsis

class gtk.TextTagTable(gobject.GObject):
gtk.TextTagTable()

 def add(tag)
 def remove(tag)
 def lookup(name)
 def foreach(func, data=None)
 def get_size()

Ancestry

+−− gobject.GObject
 +−− gtk.TextTagTable

Signal Prototypes

"tag−added" def callback(texttagtable, texttag, user_param1, ...)

"tag−changed" def callback(texttagtable, texttag, size_changed, user_param1,
...)

"tag−removed" def callback(texttagtable, texttag, user_param1, ...)

Description

A gtk.TextTagTable object holds a set of gtk.TextTag objects for use with a gtk.TextBuffer.
Usually a gtk.TextTagTable is created automatically when a gtk.TextBuffer is created but a
standalone gtk.TextTagTable can be created using the gtk.TextTagTable() constructor. A

PyGTK 2.0 Reference Manual

The "event" gtk.TextTag Signal 621

gtk.TextTagTable can be passed as an argument to the gtk.TextBuffer() constructor to associate an
existing gtk.TextTagTable rather than creating a new one. This is useful when several textbuffers need
to use the same texttags.

Constructor

gtk.TextTagTable()

Returns : a new gtk.TextTagTable
Creates a new gtk.TextTagTable. The table contains no tags by default.

Methods

gtk.TextTagTable.add

 def add(tag)

tag : a gtk.TextTag
The add() method adds a texttag to the texttagtable. The texttag is assigned the highest priority in the
texttagtable. A ValueError exception is raised if tag is in a texttag table already, or has the same name as
another texttag in the texttagtable.

gtk.TextTagTable.remove

 def remove(tag)

tag : a gtk.TextTag
The remove() method removes a texttag from the texttagtable.

gtk.TextTagTable.lookup

 def lookup(name)

name : the name of a texttag
Returns : The texttag, or None if none by that name is in the texttagtable.
The lookup() method looks in the texttagtable for a gtk.TextTag with the name specified by name and
returns it if found. This method returns None if name does not identify a gtk.TextTag in the texttagtable.

gtk.TextTagTable.foreach

 def foreach(func, data=None)

func : a function to call on each texttag
data : user data to pass to func or None

Note

This method is available in PyGTK 2.4 and above.

The foreach() method calls the function specified by func on each texttag in the text tag table passing the
user data specified by data. The signature of func is:

PyGTK 2.0 Reference Manual

Description 622

 def func(texttag, user_data):

where texttag is a gtk.TextTag in the text tag table and user_data is data.

gtk.TextTagTable.get_size

 def get_size()

Returns : the number of texttags in the texttagtable
The get_size() method returns the size of the texttagtable (number of texttags).

Signals

The "tag−added" gtk.TextTagTable Signal

 def callback(texttagtable, texttag, user_param1, ...)

texttagtable : the texttagtable that received the signal
texttag : a gtk.TextTag
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "tag−added" signal is emitted when the gtk.TextTag specified by texttag is added to
texttagtable.

The "tag−changed" gtk.TextTagTable Signal

 def callback(texttagtable, texttag, size_changed, user_param1, ...)

texttagtable : the texttagtable that received the signal
texttag : a gtk.TextTag

size_changed : if TRUE a texttag property has changed that may affect the size of the text enclosed
by the texttag

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "tag−changed" signal is emitted when a property of the gtk.TextTag specified by texttag is
changed. If size_changed is TRUE the text enclosed by texttag will change size.

The "tag−removed" gtk.TextTagTable Signal

 def callback(texttagtable, texttag, user_param1, ...)

texttagtable : the texttagtable that received the signal
texttag : a gtk.TextTag
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "tag−removed" signal is emitted when the gtk.TextTag specified by texttag is removed from
texttagtable

Prev Up Next

PyGTK 2.0 Reference Manual

Note 623

gtk.TextTag Home gtk.TextView
gtk.TextView

Prev The gtk Class Reference Next

gtk.TextView

gtk.TextView � a widget that displays the contents of a gtk.TextBuffer

Synopsis

class gtk.TextView(gtk.Container):
gtk.TextView(buffer=None)

 def set_buffer(buffer)
 def get_buffer()
 def scroll_to_iter(iter, within_margin, use_align=FALSE, xalign=0.5, yalign=0.5)
 def scroll_to_mark(mark, within_margin, use_align=FALSE, xalign=0.5, yalign=0.5)
 def scroll_mark_onscreen(mark)
 def move_mark_onscreen(mark)
 def place_cursor_onscreen()
 def get_visible_rect()
 def set_cursor_visible(setting)
 def get_cursor_visible()
 def get_iter_location(iter)
 def get_iter_at_location(iter, x, y)
 def get_line_yrange(iter)
 def get_line_at_y(target_iter)
 def buffer_to_window_coords(win, buffer_x, buffer_y)
 def window_to_buffer_coords(win, window_x, window_y)
 def get_window(win)
 def get_window_type(window)
 def set_border_window_size(type, size)
 def get_border_window_size(type)
 def forward_display_line(iter)
 def backward_display_line(iter)
 def forward_display_line_end(iter)
 def backward_display_line_start(iter)
 def starts_display_line(iter)
 def move_visually(iter, count)
 def add_child_at_anchor(child, anchor)
 def add_child_in_window(child, which_window, xpos, ypos)
 def move_child(child, xpos, ypos)
 def set_wrap_mode(wrap_mode)
 def get_wrap_mode()
 def set_editable(setting)
 def get_editable()
 def set_overwrite(overwrite)
 def get_overwrite()
 def set_accepts_tab(accepts_tab)
 def get_accepts_tab()
 def set_pixels_above_lines(pixels_above_lines)
 def get_pixels_above_lines()
 def set_pixels_below_lines(pixels_below_lines)
 def get_pixels_below_lines()
 def set_pixels_inside_wrap(pixels_inside_wrap)
 def get_pixels_inside_wrap()
 def set_justification(justification)
 def get_justification()
 def set_left_margin(left_margin)
 def get_left_margin()
 def set_right_margin(right_margin)

PyGTK 2.0 Reference Manual

The "tag−removed" gtk.TextTagTable Signal 624

 def get_right_margin()
 def set_indent(indent)
 def get_indent()
 def set_tabs(tabs)
 def get_tabs()
 def get_default_attributes()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.TextView

Properties

"accepts−tab" Read−Write If TRUE, pressing Tab will result in a tab character being entered;
otherwise the focus will be moved. Available in GTK+ 2.4 and above.

"buffer" Read−Write The buffer that is displayed. Available in GTK+ 2.4 and above.
"cursor−visible" Read−Write If TRUE, the insertion cursor is shown
"editable" Read−Write If TRUE, the text can be modified by the user by default
"indent" Read−Write The default amount to indent the paragraph, in pixels
"justification" Read−Write The default text justification: gtk.JUSTIFY_LEFT,

gtk.JUSTIFY_RIGHT, gtk.JUSTIFY_CENTER or
gtk.JUSTIFY_FILL

"left−margin" Read−Write The default width of the left margin in pixels
"overwrite" Read−Write If TRUE, the entered text overwrites existing contents. Available in

GTK+ 2.4 and above.
"pixels−above−lines" Read−Write The default number of pixels of blank space above paragraphs
"pixels−below−lines" Read−Write The default number of pixels of blank space below paragraphs
"pixels−inside−wrap" Read−Write The default number of pixels of blank space between wrapped lines in a

paragraph
"right−margin" Read−Write The default width of the right margin in pixels
"tabs" Read−Write The default custom tabs
"wrap−mode" Read−Write The default wrap mode: gtk.WRAP_NONE, gtk.WRAP_CHAR or

gtk.WRAP_WORD

Style Properties

"error−underline−color" Read−Write The gtk.gdk.Color with which to draw error−indication
underlines. Available in GTK+ 2.4 and above.

Signal Prototypes

"copy−clipboard" def callback(textview, user_param1, ...)

"cut−clipboard" def callback(textview, user_param1, ...)

"delete−from−cursor" def callback(textview, delete_type, count,
user_param1, ...)

"insert−at−cursor" def callback(textview, string, user_param1, ...)

PyGTK 2.0 Reference Manual

Synopsis 625

"move−cursor" def callback(textview, step_size, count,
extend_selection, user_param1, ...)

"move−focus" def callback(textview, direction, user_param1,
...)

"move−viewport" def callback(textview, scrollstep, count,
user_param1, ...)

"page−horizontally" def callback(textview, count, extend_selection,
user_param1, ...)

"paste−clipboard" def callback(textview, user_param1, ...)

"populate−popup" def callback(textview, menu, user_param1, ...)

"select−all" def callback(textview, select, user_param1, ...)

"set−anchor" def callback(textview, user_param1, ...)

"set−scroll−adjustments" def callback(textview, hadjustment, vadjustment,
user_param1, ...)

"toggle−overwrite" def callback(textview, user_param1, ...)

Description

A gtk.TextView widget provides the display for the contents of a gtk.TextBuffer object. A textview
provides a set of attributes for the default display of text from a textbuffer. The attributes set by
gtk.TextTag objects override the attributes set on a gtk.TextView widget. Since a
gtk.TextBuffer can be associated with multiple gtk.TextView widgets each having a different set of
default attributes, the display of the same text in different textview widgets can be quite different except for
those attributes that are overridden by texttags.

A gtk.TextView widget has several gtk.gdk.Window widgets most of which are not displayed by
default:

gtk.TEXT_WINDOW_WIDGET The widget window
gtk.TEXT_WINDOW_TEXT The window that holds the text
gtk.TEXT_WINDOW_LEFT The left border window − not displayed by default
gtk.TEXT_WINDOW_RIGHT The right border window − not displayed by default
gtk.TEXT_WINDOW_TOP The top border window − not displayed by default
gtk.TEXT_WINDOW_BOTTOM The bottom border window − not displayed by default
gtk.TEXT_WINDOW_PRIVATE An internal inaccessible gtk.gdk.Window
The border windows are not created until they are given a size by using the set_border_window_size()
method.

Depending on the wrap mode of the textview a textbuffer line may be displayed as more than one screen
display line. The textview has methods to navigate through the display lines.

A gtk.TextChildAnchor in a gtk.TextBuffer provides a place for a PyGTK widget to be placed in
a gtk.TextView. Each textview displaying the same textbuffer with a child anchor must have a different
widget placed at that child anchor. In addition, a widget can be placed at a specific location in one of the
above gtk.TextView windows using the add_child_in_window() method. The widget will be
clipped to the window boundaries if it is larger than the window or located where it extends beyond the
window boundaries.

A gtk.TextView has a default popup menu that includes the usual cut, copy and paste capabilities. In
PyGTK 2.2 gtk.Clipboard objects are supported so your program can access the contents of the cut, copy

PyGTK 2.0 Reference Manual

Signal Prototypes 626

and paste clipboard through the gdk.SELECTION_CLIPBOARD clipboard. Also the selected text in a
gtk.TextView is available on the gdk.SELECTION_PRIMARY clipboard.

Constructor

gtk.TextView(buffer=None)

buffer : a gtk.TextBuffer or None
Returns : a new gtk.TextView.
Creates a new gtk.TextView widget displaying the gtk.TextBuffer specified by buffer. If
buffer is None, a new gtk.TextBuffer will be created. One textbuffer can be shared among many
widgets.

Methods

gtk.TextView.set_buffer

 def set_buffer(buffer)

buffer : a gtk.TextBuffer
The set_buffer() method sets the gtk.TextBuffer specified by buffer as the textbuffer being
displayed by the textview.

gtk.TextView.get_buffer

 def get_buffer()

Returns : a gtk.TextBuffer
The get_buffer() method returns the gtk.TextBuffer being displayed by this textview.

gtk.TextView.scroll_to_iter

 def scroll_to_iter(iter, within_margin, use_align=FALSE, xalign=0.5, yalign=0.5)

iter : a gtk.TextIter object
within_margin : the margin as a [0.0,0.5) fraction of screen size
use_align : if TRUE use the alignment arguments; if FALSE, just get iter on screen
xalign : the horizontal alignment of iter within visible area.
yalign : the vertical alignment of iter within visible area
Returns : TRUE if scrolling occurred
The scroll_to_iter() method scrolls the textview so that the gtk.TextIter location specified by
iter is on the screen in the position indicated by xalign and yalign. If use_align is TRUE the
alignments specify the fraction of screen space to the left of or above the location of iter. If use_align is
FALSE, the text scrolls the minimal distance to get iter on screen, possibly not scrolling at all. The effective
screen for purposes of this method is reduced by a margin of size specified by within_margin.

Note

This method uses the currently−computed height of the lines in the text buffer. The line heights are computed

PyGTK 2.0 Reference Manual

Description 627

in an idle handler so this method may not have the desired effect if it's called before the height computations
are complete. To avoid oddness, consider using the scroll_to_mark() method that saves a point to be
scrolled to after line validation.

gtk.TextView.scroll_to_mark

 def scroll_to_mark(mark, within_margin, use_align=FALSE, xalign=0.5, yalign=0.5)

mark : a gtk.TextMark object
within_margin : the margin as a [0.0,0.5) fraction of screen size
use_align : if TRUE use the alignment arguments; if FALSE, just get mark on screen
xalign : the horizontal alignment of mark within the visible area.
yalign : the vertical alignment of mark within the visible area
The scroll_to_mark() method scrolls the textview so that the gtk.TextMark location specified by
mark is on the screen in the position specified by xalign and yalign. If use_align is TRUE the
alignments specify the fraction of screen space to the left of or above the location of mark. If use_align is
FALSE, the text scrolls the minimal distance to get mark on screen, possibly not scrolling at all. The effective
screen for purposes of this function is reduced by a margin of size specified by within_margin.

gtk.TextView.scroll_mark_onscreen

 def scroll_mark_onscreen(mark)

mark : a gtk.TextMark in the textbuffer for textview
The scroll_mark_onscreen() method scrolls the textview the minimum distance to place the
gtk.TextMark location specified by mark within the visible area of the widget.

gtk.TextView.move_mark_onscreen

 def move_mark_onscreen(mark)

mark : a gtk.TextMark object
Returns : TRUE if mark moved (wasn't already on screen)
The move_mark_onscreen() moves the gtk.TextMark location specified by mark to a location
within the currently−visible text area of the textview.

gtk.TextView.place_cursor_onscreen

 def place_cursor_onscreen()

Returns : TRUE if the cursor had to be moved.
The place_cursor_onscreen() method moves the cursor to a new location within the currently visible
region of the buffer, if it isn't there already.

gtk.TextView.get_visible_rect

 def get_visible_rect()

Returns : a gtk.gdk.Rectangle
The get_visible_rect() method returns a gtk.gdk.Rectangle containing the coordinates of the
currently−visible region of the buffer. The rectangle is in buffer coordinates that can be converted to window

PyGTK 2.0 Reference Manual

Note 628

coordinates with the buffer_to_window_coords() method.

gtk.TextView.set_cursor_visible

 def set_cursor_visible(setting)

setting : if TRUE show the insertion cursor
The set_cursor_visible() method sets the "cursor−visible" property to the value of setting. If
setting is TRUE the cursor is visible; if FALSE, it is not. A buffer with no editable text probably shouldn't
have a visible cursor, so you may want to turn the cursor off.

gtk.TextView.get_cursor_visible

 def get_cursor_visible()

Returns : TRUE if the insertion mark is visible
The get_cursor_visible() method returns the value of the "cursor−visible" property that determines if
the insertion point is visible.

gtk.TextView.get_iter_location

 def get_iter_location(iter)

iter : a gtk.TextIter
Returns : a gtk.gdk.Rectangle containing the bounds of the character at iter
The get_iter_location() method returns a gtk.gdk.Rectangle that contains the character at the
location specified by iter. The rectangle position is in buffer coordinates that can be converted to window
coordinates with the buffer_to_window_coords() method.

gtk.TextView.get_iter_at_location

 def get_iter_at_location(x, y)

x : x position, in buffer coordinates
y : y position, in buffer coordinates
Returns : a gtk.TextIter
The get_iter_at_location() method returns a gtk.TextIter that points at the location specified
by the buffer coordinates x and y. Buffer coordinates are coordinates for the entire buffer, not just the
currently−displayed portion. Window coordinates from an event, must be converted to buffer coordinates with
the window_to_buffer_coords() method before using them with this method.

gtk.TextView.get_line_yrange

 def get_line_yrange(iter)

iter : a gtk.TextIter
Returns : a tuple containing a y coordinate and a height
The get_line_yrange() method locates the line containing the gtk.TextIter specified by iter and
returns a tuple containing the y coordinate of the top of the line and the height of the line. The coordinate is a
buffer coordinate that can be converted to window coordinates with the buffer_to_window_coords()
method.

PyGTK 2.0 Reference Manual

gtk.TextView.get_visible_rect 629

gtk.TextView.get_line_at_y

 def get_line_at_y(y)

y : a y coordinate

Returns : a tuple containing a gtk.TextIter pointing at the line start and the top coordinate of
the line

The get_line_at_y() method returns a tuple containing:

a gtk.TextIter pointing at the start of the line with the vertical coordinate specified by y and,•
the vertical coordinate of the top edge of the line.•

y is in buffer coordinates that can be converted from window coordinates with the
window_to_buffer_coords() method.

gtk.TextView.buffer_to_window_coords

 def buffer_to_window_coords(win, buffer_x, buffer_y)

win : one of the textview windows except gtk.TEXT_WINDOW_PRIVATE
buffer_x : buffer x coordinate
buffer_y : buffer y coordinate
Returns : a tuple containing the window x and y coordinates
The buffer_to_window_coords() method returns a tuple containing the x and y coordinates for the
window specified by win that correspond to the textbuffer coordinates specified by buffer_x and
buffer_y. See the above description for more details on textview window types.

Note

You can't convert coordinates for a non−existing window (see the set_border_window_size() method).

gtk.TextView.window_to_buffer_coords

 def window_to_buffer_coords(win, window_x, window_y)

win : a textview window except gtk.TEXT_WINDOW_PRIVATE
window_x : window x coordinate
window_y : window y coordinate
Returns : a tuple containing the textbuffer x and y coordinates
The window_to_buffer_coords() method returns a tuple containing the textbuffer x and y coordinates
corresponding to the window_x and window_y coordinates in the window specified by win, See the above
description for more details on textview window types.

Note

You can't convert coordinates for a non−existing window (see the set_border_window_size()) method.

gtk.TextView.get_window

 def get_window(win)

win : a textview window type

PyGTK 2.0 Reference Manual

gtk.TextView.get_line_at_y 630

Returns : a gtk.gdk.Window, or None
The get_window() method returns the gtk.gdk.Window corresponding to an area of the textview
specified by win:

gtk.TEXT_WINDOW_WIDGET The widget window
gtk.TEXT_WINDOW_TEXT The window that holds the text
gtk.TEXT_WINDOW_LEFT The left border window − not displayed by default
gtk.TEXT_WINDOW_RIGHT The right border window − not displayed by default
gtk.TEXT_WINDOW_TOP The top border window − not displayed by default
gtk.TEXT_WINDOW_BOTTOM The bottom border window − not displayed by default
gtk.TEXT_WINDOW_PRIVATE An internal inaccessible gtk.gdk.Window
This method returns None if the window is nonexistent i.e. if its width or height is 0.

gtk.TextView.get_window_type

 def get_window_type(window)

window : a window type
Returns : the window type.
The get_window_type() method returns the type of the gtk.gdk.Window specified by window. This
method is used to find out what window type an event corresponds to. If you connect to an event signal on the
textview, this method can be called on event.window to see what window type it was. See the
get_window() method for more details on window types.

gtk.TextView.set_border_window_size

 def set_border_window_size(type, size)

type : a textview border window type
size : the width or height of the window
The set_border_window_size() method sets the width of a gtk.TEXT_WINDOW_LEFT or
gtk.TEXT_WINDOW_RIGHT window, or the height of a gtk.TEXT_WINDOW_TOP or
gtk.TEXT_WINDOW_BOTTOM window. This method automatically destroys the corresponding window if
the size is set to 0, and creates the window if the size is set to non−zero. This method can only be used for the
"border windows", it doesn't work with the gtk.TEXT_WINDOW_WIDGET, gtk.TEXT_WINDOW_TEXT,
or gtk.TEXT_WINDOW_PRIVATE windows.

gtk.TextView.get_border_window_size

 def get_border_window_size(type)

type : a textview border window type
Returns : the width or height of the textview border window
The get_border_window_size() method returns the width or height of the border window of the type
specified by type. See the set_border_window_size() method for more details.

gtk.TextView.forward_display_line

 def forward_display_line(iter)

PyGTK 2.0 Reference Manual

gtk.TextView.get_window 631

iter : a gtk.TextIter
Returns : TRUE if iter was moved and is not on the end iterator
The forward_display_line() method moves the location of iter forward by one display line. A
textview display line is different from a textbuffer line. Textbuffer lines are paragraphs and are separated by
newlines or other paragraph separator characters. Display lines are created by line−wrapping a textbuffer line.
If wrapping is turned off, display lines and textbuffer lines will be the same. Display lines are divided
differently for each textview, since they depend on the textview's width and the textview's default wrap mode.
Paragraphs are the same in all views, since they depend on the contents of the gtk.TextBuffer. This
method returns TRUE if the location of iter moves to a dereferenceable position (i.e. not the end position).

gtk.TextView.backward_display_line

 def backward_display_line(iter)

iter : a gtk.TextIter
Returns : TRUE if iter was moved
The backward_display_line() method moves the location of iter backward by one display line. A
textview display line is different from a textbuffer line. Textview lines are paragraphs and are separated by
newlines or other paragraph separator characters. Display lines are created by line−wrapping a textbuffer line.
If wrapping is turned off, display lines and textbuffer lines will be the same. Display lines are divided
differently for each textview, since they depend on the textview's width and the textview's default wrap mode.
Paragraphs are the same in all views, since they depend on the contents of the gtk.TextBuffer. This
method returns TRUE if the location of iter moves to a dereferenceable position (i.e. not the end position).

gtk.TextView.forward_display_line_end

 def forward_display_line_end(iter)

iter : a gtk.TextIter
Returns : TRUE if iter was moved and is not on the end iterator
The forward_display_line_end() method moves the location of iter forward to the next display
line end. A textview display line is different from a textbuffer line. Textbuffer lines are paragraphs and are
separated by newlines or other paragraph separator characters. Display lines are created by line−wrapping a
textbuffer line. If wrapping is turned off, display lines and textbuffer lines will be the same. Display lines are
divided differently for each textview, since they depend on the textview's width and the textview's default
wrap mode. Paragraphs are the same in all views, since they depend on the contents of the
gtk.TextBuffer. This method returns TRUE if the location of iter moves to a dereferenceable position
(i.e. not the end position).

gtk.TextView.backward_display_line_start

 def backward_display_line_start(iter)

iter : a gtk.TextIter
Returns : TRUE if iter was moved
The backward_display_line_start() method moves the location of iter backward to the next
display line start. A textview display line is different from a textbuffer line. Textbuffer lines are paragraphs
and are separated by newlines or other paragraph separator characters. Display lines are created by
line−wrapping a textbuffer line. If wrapping is turned off, display lines and textbuffer lines will be the same.
Display lines are divided differently for each textview, since they depend on the textview's width and the
textview's default wrap mode. Paragraphs are the same in all views, since they depend on the contents of the
gtk.TextBuffer. This method returns TRUE if the location of iter moves to a dereferenceable position

PyGTK 2.0 Reference Manual

gtk.TextView.forward_display_line 632

(i.e. not the end position).

gtk.TextView.starts_display_line

 def starts_display_line(iter)

iter : a gtk.TextIter
Returns : TRUE if the location of iter is at the beginning of a display line
The starts_display_line() method returns TRUE if the location of iter is at the start of a display
line. See the forward_display_line() method for an explanation of display lines vs. textbuffer lines
(paragraphs).

gtk.TextView.move_visually

 def move_visually(iter, count)

iter : a gtk.TextIter
count : the number of characters to move (may be negative)
Returns : TRUE if iter moved and is not on the end iterator
The move_visually() method moves the location of iter by count cursor positions. If count is
negative the location moves against the normal text direction. Note a cursor position move may move over
multiple characters when multiple characters combine to form one grapheme.

gtk.TextView.add_child_at_anchor

 def add_child_at_anchor(child, anchor)

child : a gtk.Widget
anchor : a gtk.TextChildAnchor in the textview's gtk.TextBuffer
The add_child_at_anchor() method adds the widget specified by child in the textview, at the
gtk.TextChildAnchor specified by anchor.

gtk.TextView.add_child_in_window

 def add_child_in_window(child, which_window, xpos, ypos)

child : a gtk.Widget
which_window : the textview window child should appear in
xpos : the X position of child in window coordinates
ypos : the Y position of child in window coordinates
The add_child_in_window() method adds the widget specified by child at the fixed coordinates
specified by xpos and ypos in one of the text widget's windows specified by which_window. The
window must have nonzero size (see the set_border_window_size() method).

Note

The child coordinates are given relative to the gtk.gdk.Window specified by which_window, and
these coordinates have no sane relationship to scrolling. When placing child in a
gtk.TEXT_WINDOW_WIDGET window, scrolling is irrelevant, child floats above all scrollable areas.
However, placing child in one of the scrollable windows (a border windows or the text window), you'll
need to compute the correct position of child in textbuffer coordinates any time scrolling occurs or

PyGTK 2.0 Reference Manual

gtk.TextView.backward_display_line_start 633

textbuffer changes occur, and then call the move_child() method to update the child's position.
Unfortunately there's no good way to detect that scrolling has occurred, using the current API; a possible hack
would be to update all child positions when the scroll adjustments change or the text buffer changes.

gtk.TextView.move_child

 def move_child(child, xpos, ypos)

child : a child widget in the textview
xpos : the new X position in window coordinates
ypos : the new Y position in window coordinates
The move_child() method moves the position of child to the location (in its current window) specified
by xpos and ypos.

gtk.TextView.set_wrap_mode

 def set_wrap_mode(wrap_mode)

wrap_mode : a wrap mode value
The set_wrap_mode() method sets the "wrap−mode" property of the textview to the value specified by
wrap_mode. The value of wrap_mode can be one of: gtk.WRAP_NONE, gtk.WRAP_CHAR or
gtk.WRAP_WORD. The "wrap−mode" property defines the wrap mode for text that is not influenced by a
gtk.TextTag that sets its "wrap_mode" attribute.

gtk.TextView.get_wrap_mode

 def get_wrap_mode()

Returns : the line wrap setting
The get_wrap_mode() method returns the value of the "wrap−mode" property. The value of "wrap−mode"
can be one of: gtk.WRAP_NONE, gtk.WRAP_CHAR or gtk.WRAP_WORD. The "wrap−mode" property
defines the wrap mode for text that is not influenced by a gtk.TextTag that sets its "wrap_mode" attribute.

gtk.TextView.set_editable

 def set_editable(setting)

setting : if TRUE the text is editable by default
The set_editable() method sets the "editable" property to the value of setting. If setting is TRUE
the text in textview is editable by default. The "editable" property determines the editability of the
gtk.TextView text that is not influenced by a gtk.TextTag that sets its "editable" attribute.

gtk.TextView.get_editable

 def get_editable()

Returns : TRUE if text is editable by default
The get_editable() method returns the value of the "editable" property. The "editable" property
determines the editability of the gtk.TextView text that is not influenced by a gtk.TextTag that sets its
"editable" attribute.

PyGTK 2.0 Reference Manual

Note 634

gtk.TextView.set_overwrite

 def set_overwrite(overwrite)

overwrite : if TRUE turn on overwrite mode; if FALSE turn it off

Note

This method is available in PyGTK 2.4 and above.

The set_overwrite() method sets the "overwrite" property to the value of overwrite. If overwrite
is TRUE, inserted text overwrites the existing text.

gtk.TextView.get_overwrite

 def get_overwrite()

Returns : TRUE if the textview is in overwrite mode

Note

This method is available in PyGTK 2.4 and above.

The get_overwrite() method returns the value of the "overwrite" property. see the set_overwrite()
method for more information.

gtk.TextView.set_accepts_tab

 def set_accepts_tab(accepts_tab)

accepts_tab : if TRUE pressing the Tab key should insert a tab character; if FALSE, pressing the Tab
key should move the keyboard focus.

Note

This method is available in PyGTK 2.4 and above.

The set_accepts_tab() method sets the "accepts_tab" property to the value of accepts_tab. If
accepts_tab is TRUE a tab character is inserted. If accepts_tab is FALSE the keyboard focus is
moved to the next widget in the focus chain.

gtk.TextView.get_accepts_tab

 def get_accepts_tab()

Returns : TRUE if pressing the Tab key inserts a tab character, FALSE if pressing the Tab key moves
the keyboard focus.

Note

This method is available in PyGTK 2.4 and above.

The get_accepts_tab() method returns the value of the "accepts_tab" property. See the
set_accepts_tab() method for more information.

PyGTK 2.0 Reference Manual

gtk.TextView.set_overwrite 635

gtk.TextView.set_pixels_above_lines

 def set_pixels_above_lines(pixels_above_lines)

pixels_above_lines : the number of pixels above paragraphs
The set_pixels_above_lines() method sets the "pixels−above−lines" property to the value of
pixels_above_lines. The "pixels−above−lines" property determines the number of blank pixels to
place above textbuffer lines (paragraphs) in the textview for text that is not influenced by a gtk.TextTag
that sets its "pixels−above−lines" attribute.

gtk.TextView.get_pixels_above_lines

 def get_pixels_above_lines()

Returns : the default number of pixels above paragraphs
The get_pixels_above_lines() method returns the value of the "pixels−above−lines" property. The
"pixels−above−lines" property determines the number of pixels to put above textbuffer lines (paragraphs) in
the textview for text that is not influenced by a gtk.TextTag that sets its "pixels−above−lines" attribute.

gtk.TextView.set_pixels_below_lines

 def set_pixels_below_lines(pixels_below_lines)

pixels_below_lines : the default number of pixels below paragraphs
The set_pixels_below_lines() method sets the "pixels−below−lines" property to the value of
pixels_below_lines. The "pixels−below−lines" property determines the number of blank pixels to
place below textbuffer lines (paragraphs) in the textview for text that is not influenced by a gtk.TextTag
that sets its "pixels−below−lines" attribute.

gtk.TextView.get_pixels_below_lines

 def get_pixels_below_lines()

Returns : the default number of blank pixels below paragraphs
The get_pixels_below_lines() method returns the value of the "pixels−below−lines" property. The
"pixels−below−lines" property determines the number of pixels to put below textbuffer lines (paragraphs) in
the textview for text that is not influenced by a gtk.TextTag that sets its "pixels−below−lines" attribute.

gtk.TextView.set_pixels_inside_wrap

 def set_pixels_inside_wrap(pixels_inside_wrap)

pixels_inside_wrap : the default number of pixels between wrapped lines
The set_pixels_inside_wrap() method sets the "pixels−inside_wrap" property to the value of
pixels_inside_wrap. The "pixels−inside_wrap" property determines the number of blank pixels to
place between wrapped textbuffer lines (inside paragraphs) for text that is not influenced by a
gtk.TextTag that sets its "pixels−inside_wrap" attribute.

gtk.TextView.get_pixels_inside_wrap

 def get_pixels_inside_wrap()

Returns : the default number of pixels of blank space between wrapped lines

PyGTK 2.0 Reference Manual

gtk.TextView.set_pixels_above_lines 636

The get_pixels_inside_wrap() method returns the value of the "pixels−inside−wrap" property. The
"pixels−inside−wrap" property determines the number of pixels to put between wrapped textbuffer lines
(inside paragraphs) for text that is not influenced by a gtk.TextTag that sets its "pixels−inside−wrap"
attribute.

gtk.TextView.set_justification

 def set_justification(justification)

justification : the text justification
The set_justification() method sets the "justification" property to the value of justification.
The value of justification must be one of: gtk.JUSTIFY_LEFT, gtk.JUSTIFY_RIGHT,
gtk.JUSTIFY_CENTER or gtk.JUSTIFY_FILL. The "justification" property determines the
justification of text in the textview that is not influenced by a gtk.TextTag that set its "justification"
attribute.

gtk.TextView.get_justification

 def get_justification()

Returns : the default justification
The get_justification() method returns the value of the "justification" property. the default
justification of paragraphs in text_view. The value of "justification" must be one of:
gtk.JUSTIFY_LEFT, gtk.JUSTIFY_RIGHT, gtk.JUSTIFY_CENTER or gtk.JUSTIFY_FILL.
The "justification" property determines the justification of text in the textview that is not influenced by a
gtk.TextTag that set its "justification" attribute.

gtk.TextView.set_left_margin

 def set_left_margin(left_margin)

left_margin : the default left margin in pixels
The set_left_margin() method sets the "left−margin" property to the value of left_margin. The
"left−margin"property determines the number of pixels of space for the left margin of text that is not
influenced by a gtk.TextTag that sets its "left_margin" attribute.

gtk.TextView.get_left_margin

 def get_left_margin()

Returns : the default left margin in pixels
The get_left_margin() method returns the value of the "left_margin" property. The
"left−margin"property determines the number of pixels of space for the left margin of text that is not
influenced by a gtk.TextTag that sets its "left_margin" attribute.

gtk.TextView.set_right_margin

 def set_right_margin(right_margin)

right_margin : the default right margin in pixels
The set_right_margin() method sets the "right−margin" property to the value of right_margin. The
"right−margin"property determines the number of pixels of space for the right margin of text that is not

PyGTK 2.0 Reference Manual

gtk.TextView.get_pixels_inside_wrap 637

influenced by a gtk.TextTag that sets its "right_margin" attribute.

gtk.TextView.get_right_margin

 def get_right_margin()

Returns : the default right margin in pixels
The get_right_margin() method returns the value of the "right_margin" property. The
"right−margin"property determines the number of pixels of space for the right margin of text that is not
influenced by a gtk.TextTag that sets its "right_margin" attribute.

gtk.TextView.set_indent

 def set_indent(indent)

indent : the default indentation in pixels
The set_indent() method sets the "indent" property to the value of indent. The "indent" property
determines the indentation for textview paragraphs that are not influenced by a gtk.TextTag that sets its
"indent" attribute. The indentation may be negative.

gtk.TextView.get_indent

 def get_indent()

Returns : the default number of pixels of indentation
The get_indent() method returns the value of the "indent" property. The "indent" property determines the
indentation for textview paragraphs that are not influenced by a gtk.TextTag that sets its "indent"
attribute. The indentation may be negative.

gtk.TextView.set_tabs

 def set_tabs(tabs)

tabs : the default tabs as a pango.TabArray
The set_tabs() method sets the "tabs" property to a copy of the value of tabs. The "tabs" property
contains the custom tab stops for the textview paragraphs that are not influenced by a gtk.TextTag that
sets its "tabs" attribute.

gtk.TextView.get_tabs

 def get_tabs()

Returns : a copy of default tab array, or None if "standard" tabs are used
The get_tabs() method returns the value of the "tabs" property. The "tabs" property contains the custom
tab stops for the textview paragraphs that are not influenced by a gtk.TextTag that sets its "tabs" attribute.
The returned value will be None if "standard" (8−space) tabs are used.

gtk.TextView.get_default_attributes

 def get_default_attributes()

Returns : a new gtk.TextAttributes

PyGTK 2.0 Reference Manual

gtk.TextView.set_right_margin 638

The get_default_attributes() method returns a copy of the default gtk.TextAttributes.
These attributes are used for text unless the text is influenced by a gtk.TextTag. You'd typically pass the
default attributes in to the gtk.TextIter.get_attributes() method to get the attributes in effect at a
given text position.

Signals

The "copy−clipboard" gtk.TextView Signal

 def callback(textview, user_param1, ...)

textview : the textview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "copy−clipboard" signal is emitted when a selection is copied to the clipboard from textview.

The "cut−clipboard" gtk.TextView Signal

 def callback(textview, user_param1, ...)

textview : the textview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "cut−clipboard" signal is emitted when a selection is cut from textview to the clipboard.

The "delete−from−cursor" gtk.TextView Signal

 def callback(textview, delete_type, count, user_param1, ...)

textview : the textview that received the signal
delete_type : the type of deletion
count : the number of deletions to do
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "delete−from−cursor" signal is emitted when a deletion of the type specified by delete_type is
initiated by user action (e.g. pressing the Delete or Backspace keys). The value of delete_type must be
one of:

gtk.DELETE_CHARS•
gtk.DELETE_WORD_ENDS•
gtk.DELETE_WORDS•
gtk.DELETE_DISPLAY_LINES•
gtk.DELETE_DISPLAY_LINE_ENDS•
gtk.DELETE_PARAGRAPH_ENDS•
gtk.DELETE_PARAGRAPHS•
gtk.DELETE_WHITESPACE•

count specifies the number of times that deletion should be applied.

PyGTK 2.0 Reference Manual

gtk.TextView.get_default_attributes 639

The "insert−at−cursor" gtk.TextView Signal

 def callback(textview, string, user_param1, ...)

textview : the textview that received the signal
string : the text to be inserted
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "insert−at−cursor" signal is emitted when string is being inserted in textview.

The "move−cursor" gtk.TextView Signal

 def callback(textview, step_size, count, extend_selection, user_param1, ...)

textview : the textview that received the signal
step_size : the step size to move
count : the number of steps to move
extend_selection : if TRUE extend the selection
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−cursor" signal is emitted when the cursor is moved by count steps of step_size. If
extend_selection is TRUE the selection is extended by the cursor movement. The value of step_size
must be one of:

gtk.MOVEMENT_LOGICAL_POSITIONS move by graphemes
gtk.MOVEMENT_VISUAL_POSITIONS move by graphemes
gtk.MOVEMENT_WORDS move by words
gtk.MOVEMENT_DISPLAY_LINES move by lines(wrapped lines)
gtk.MOVEMENT_DISPLAY_LINE_ENDS move to line ends(wrapped lines)
gtk.MOVEMENT_PARAGRAPHS move by paragraphs(newline−ended lines)
gtk.MOVEMENT_PARAGRAPH_ENDS move to ends of a paragraph
gtk.MOVEMENT_PAGES move by pages
gtk.MOVEMENT_BUFFER_ENDS move to ends of the buffer

The "move−focus" gtk.TextView Signal

 def callback(textview, direction, user_param1, ...)

textview : the textview that received the signal
direction : the direction to move the focus
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−focus" signal is emitted when the focus moves from textview in the direction specified by
direction that must be one of: gtk.DIR_TAB_FORWARD, gtk.DIR_TAB_BACKWARD,
gtk.DIR_UP, gtk.DIR_DOWN, gtk.DIR_LEFT or gtk.DIR_RIGHT

PyGTK 2.0 Reference Manual

The "insert−at−cursor" gtk.TextView Signal 640

The "move−viewport" gtk.TextView Signal

 def callback(textview, scrollstep, count, user_param1, ...)

textview : the textview that received the signal

scrollstep :
the size of the scroll step: gtk.SCROLL_STEPS, gtk.SCROLL_PAGES,
gtk.SCROLL_ENDS, gtk.SCROLL_HORIZONTAL_STEPS,
gtk.SCROLL_HORIZONTAL_PAGES or gtk.SCROLL_HORIZONTAL_ENDS

count : the number of scroll steps of size scrollstep to take
user_param1 :the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "move−viewport" signal is emitted when the viewport is being moved usually as the result of user action
in moving the cursor or using the scrollbars.

The "page−horizontally" gtk.TextView Signal

 def callback(textview, count, extend_selection, user_param1, ...)

textview : the textview that received the signal
count : the number of pages to move
extend_selection : if TRUE extend the selection
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "page−horizontally" signal is emitted when user initiates horizontal paging by pressing one of the key
combinations:

Control+Page Up Page horizontally with extend_selection set to FALSE
Shift+Control+Page Up Page horizontally with extend_selection set to TRUE

The "paste−clipboard" gtk.TextView Signal

 def callback(textview, user_param1, ...)

textview : the textview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "paste−clipboard" signal is emitted when the contents of the clipboard are pasted into textview.

The "populate−popup" gtk.TextView Signal

 def callback(textview, menu, user_param1, ...)

textview : the textview that received the signal
menu : the menu to populate
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

PyGTK 2.0 Reference Manual

The "move−viewport" gtk.TextView Signal 641

The "populate−popup" signal is emitted when the popup menu (specified by menu) associated with
textview needs to be populated.

The "select−all" gtk.TextView Signal

 def callback(textview, select, user_param1, ...)

textview : the textview that received the signal
select : if TRUE select the buffer contents; otherwise deselect the buffer contents
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.2 and above.

The "select−all" signal is emitted when the user presses one of:

Control+a or Control+/ to select all text in a buffer•
Control+\ to deselect all text in a buffer•

The "set−anchor" gtk.TextView Signal

 def callback(textview, user_param1, ...)

textview : the textview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "set−anchor" signal is emitted when an application calls the GObject.emit()() method on textview
with "set−anchor" as the signal.

The "set−scroll−adjustments" gtk.TextView Signal

 def callback(textview, hadjustment, vadjustment, user_param1, ...)

textview : the textview that received the signal
hadjustment : the horizontal adjustment
vadjustment : the vertical adjustment
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "set−scroll−adjustments" signal is emitted when one or both adjustments (specified by hadjustment
and vadjustment) are set on textview.

The "toggle−overwrite" gtk.TextView Signal

 def callback(textview, user_param1, ...)

textview : the textview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "toggle−overwrite" signal is emitted when the user presses the Insert key.

PyGTK 2.0 Reference Manual

The "populate−popup" gtk.TextView Signal 642

Prev Up Next
gtk.TextTagTable Home gtk.ToggleAction

gtk.ToggleAction
Prev The gtk Class Reference Next

gtk.ToggleAction

gtk.ToggleAction � an action which can be toggled between two states (new in PyGTK 2.4)

Synopsis

class gtk.ToggleAction(gtk.Action):
gtk.ToggleAction(name, label, tooltip, stock_id)

 def toggled()
 def set_active(is_active)
 def get_active()
 def set_draw_as_radio(draw_as_radio)
 def get_draw_as_radio()

Ancestry

+−− gobject.GObject
 +−− gtk.Action
 +−− gtk.ToggleAction

Properties

"draw−as−radio" Read−Write If TRUE, the proxies for this action look like radio action proxies. Available
in GTK+ 2.4 and above.

Signal Prototypes

"toggled" def callback(toggleaction, user_param1, ...)

Description

Note

This object is available in PyGTK 2.4 and above.

A gtk.ToggleAction which is a subclass of gtk.Action corresponds roughly to a
gtk.CheckMenuItem. It has an "active" state specifying whether the action has been checked or not.

Constructor

gtk.ToggleAction(name, label, tooltip, stock_id)

name : a unique name for the action

PyGTK 2.0 Reference Manual

The "toggle−overwrite" gtk.TextView Signal 643

label : the label displayed in menu items and on buttons
tooltip : a tooltip for the action
stock_id : the stock icon to display in widgets representing the action
Returns : a new gtk.ToggleAction

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.ToggleAction object. To add the action to a gtk.ActionGroup and set the
accelerator for the action, call the gtk.ActionGroup.add_action_with_accel() method.

Methods

gtk.ToggleAction.toggled

 def toggled()

Note

This method is available in PyGTK 2.4 and above.

The toggled() method emits the "toggled" signal on the toggle action.

gtk.ToggleAction.set_active

 def set_active(is_active)

is_active : if TRUE the action should be checked

Note

This method is available in PyGTK 2.4 and above.

The set_active() method sets the checked state on the toggle action.

gtk.ToggleAction.get_active

 def get_active()

Returns : TRUE if the toggle action is checked

Note

This method is available in PyGTK 2.4 and above.

The get_active() method returns TRUE if the toggle action is checked.

gtk.ToggleAction.set_draw_as_radio

 def set_draw_as_radio(draw_as_radio)

draw_as_radio : if TRUE the action should have proxies like a radio action

PyGTK 2.0 Reference Manual

Constructor 644

Note

This method is available in PyGTK 2.4 and above.

The set_draw_as_radio() method sets the "draw−as−radio" property to the value of draw_as_radio.
If draw_as_radio is TRUE the action should have proxies like a radio action.

gtk.ToggleAction.get_draw_as_radio

 def get_draw_as_radio()

Returns : TRUE if the action should have proxies like a radio action.

Note

This method is available in PyGTK 2.4 and above.

The get_draw_as_radio() method returns the value of the "draw−as−radio" property. If
"draw−as−radio" is TRUE the action should have proxies like a radio action.

Signals

The "toggled" gtk.ToggleAction Signal

 def callback(toggleaction, user_param1, ...)

toggleaction : the toggleaction that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "toggled" signal is emitted when the toggle action changes its active state.

Prev Up Next
gtk.TextView Home gtk.ToggleButton

gtk.ToggleButton
Prev The gtk Class Reference Next

gtk.ToggleButton

gtk.ToggleButton � a button that retains its state

Synopsis

class gtk.ToggleButton(gtk.Button):
gtk.ToggleButton(label=None, use_underline=TRUE)

 def set_mode(draw_indicator)
 def get_mode()

PyGTK 2.0 Reference Manual

Note 645

 def set_active(is_active)
 def get_active()
 def toggled()
 def set_inconsistent(setting)
 def get_inconsistent()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Button
 +−− gtk.ToggleButton

Properties

"active" Read−Write If TRUE, the toggle button should be pressed in.
"inconsistent" Read−Write If TRUE, the toggle button is in an "in between" state.
"draw−indicator" Read−Write If TRUE, the toggle part of the button is displayed.

Attributes

"draw_indicator" Read If TRUE, the toggle part of the button is displayed.

Signal Prototypes

"toggled" def callback(togglebutton, user_param1, ...)

Description

A gtk.ToggleButton is a gtk.Button that has two stable states: 'pressed−in' ("on" or "active") and
"normal" ("off" or "inactive"). The state changes to the alternate state each time the togglebutton is clicked.
The state of a gtk.ToggleButton can be set specifically using the set_active() method, and retrieved
using the get_active() method. To simply switch the state of a toggle button, use the toggled() method.

Constructor

gtk.ToggleButton(label=None, use_underline=TRUE)

label : the text to be displayed by the button label including an underscore to indicate the
mnemonic character if desired or None if no label is required.

use_underline :
if TRUE, an underscore in the label text indicates the next character should be underlined
and used for the mnemonic accelerator key if it is the first character so marked.
Available in PyGTK 2.4 and above.

Returns : a new gtk.ToggleButton widget
Creates a new gtk.ToggleButton widget with the text label specified by label. label will be parsed
for underscore characters that indicate mnemonic accelerators. If label is None or not specified, no label
will be created.

PyGTK 2.0 Reference Manual

Synopsis 646

In PyGTK 2.4 and above the use_underline parameter is available and defaults to TRUE. If
use_underline is set to FALSE the label text will not be parsed for mnemonic characters.

Methods

gtk.ToggleButton.set_mode

 def set_mode(draw_indicator)

draw_indicator : if TRUE display the button as an indicator with a label; if FALSE just display as a
normal button

The set_mode() method sets the "draw−indicator" property to the value of draw_indicator. If
draw_indicator is TRUE the button is displayed as an indicator with a label; otherwise, the button is
displayed as a normal button.

This method only affects subclasses of gtk.ToggleButton like gtk.CheckButton and
gtk.RadioButton.

gtk.ToggleButton.get_mode

 def get_mode()

Returns : TRUE if the button is displayed as an indicator with a label; FALSE if displayed as a normal button.
The get_mode() method returns the value of the "draw−indicator" property. If "draw−indicator" is TRUE the
button is displayed as an indicator with a label; if FALSE, the button is displayed as a normal button. See the
set_mode() method.

gtk.ToggleButton.set_active

 def set_active(is_active)

is_active : if TRUE the togglebutton state is active ("on")
The set_active() method sets the "active" property to the value of is_active. If is_active is TRUE
the gtk.ToggleButton is 'pressed in', and if FALSE it's 'normal'. This method causes the "toggled" signal
to be emitted.

gtk.ToggleButton.get_active

 def get_active()

Returns : TRUE if the togglebutton is active
The get_active() method returns the value of the "active" property. If "active" is TRUE the togglebutton is
'pressed in'; if FALSE, it's 'normal'.

gtk.ToggleButton.toggled

 def toggled()

The toggled() method emits the "toggled" signal on the togglebutton.

PyGTK 2.0 Reference Manual

Constructor 647

gtk.ToggleButton.set_inconsistent

 def set_inconsistent(setting)

setting : if TRUE the state is inconsistent
The set_inconsistent() method sets the "inconsistent" property to the value of setting. If setting
is TRUE the togglebutton is displayed in the inconsistent state − an "in between" state. This method is useful if
the user has selected a range of elements (such as some text or spreadsheet cells) that are affected by a toggle
button, and the current values in that range are inconsistent and you want to indicate that by setting the toggle
button to an "in between" display. Normally you would turn off the inconsistent state again if the user clicks
the toggle button.

gtk.ToggleButton.get_inconsistent

 def get_inconsistent()

Returns : TRUE if the state is inconsistent
The get_inconsistent() method returns the value of the "inconsistent" property. If "inconsistent" is
TRUE the togglebutton is displayed in an 'in between' state. See the set_inconsistent() method for
more details.

Signals

The "toggled" gtk.ToggleButton Signal

 def callback(togglebutton, user_param1, ...)

togglebutton : the togglebutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "toggled" signal is emitted when the togglebutton state changes either programmatically or by user action.

Prev Up Next
gtk.ToggleAction Home gtk.ToggleToolButton

gtk.ToggleToolButton
Prev The gtk Class Reference Next

gtk.ToggleToolButton

gtk.ToggleToolButton � A gtk.ToolItem containing a toggle button (new in PyGTK 2.4)

Synopsis

class gtk.ToggleToolButton(gtk.ToolButton):
gtk.ToggleToolButton(stock_id=None)

 def set_active(is_active)
 def get_active()

PyGTK 2.0 Reference Manual

gtk.ToggleButton.set_inconsistent 648

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ToolItem
 +−− gtk.ToolButton
 +−− gtk.ToggleToolButton

Signal Prototypes

"toggled" def callback(toggletoolbutton, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.4 and above.

A gtk.ToggleToolButton is a gtk.ToolItem that contains a toggle button. Use the
gtk.ToggleToolButton() constructor to create a new gtk.ToggleToolButton.

Constructor

gtk.ToggleToolButton(stock_id=None)

stock_id : the name of a stock item
Returns : a newly created gtk.ToggleToolButton

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.ToggleToolButton. If stock_id is not None the toggle tool button contains the
image and text from the specified stock item.

Methods

gtk.ToggleToolButton.set_active

 def set_active(is_active)

is_active : if TRUE the toggle tool button is active

Note

This method is available in PyGTK 2.4 and above.

The set_active() method sets the status of the toggle tool button to the value specified by is_active. If
is_active is TRUE the gtk.ToggleButton is 'pressed in' (active). This method causes the toggled
signal to be emitted.

PyGTK 2.0 Reference Manual

Ancestry 649

gtk.ToggleToolButton.get_active

 def get_active()

Returns : TRUE if the toggle tool button is pressed in (active)

Note

This method is available in PyGTK 2.4 and above.

The get_active() method returns TRUE if the toggle tool button is pressed in (active) and FALSE if it is
raised.

Signals

The "toggled" gtk.ToggleToolButton Signal

 def callback(toggletoolbutton, user_param1, ...)

toggletoolbutton : the toggletoolbutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "toggled" signal is emitted when the toggle tool button changes state.

Prev Up Next
gtk.ToggleButton Home gtk.Toolbar

gtk.Toolbar
Prev The gtk Class Reference Next

gtk.Toolbar

gtk.Toolbar � a bar holding buttons and other widgets.

Synopsis

class gtk.Toolbar(gtk.Container):
gtk.Toolbar()

 def insert(item, pos)
 def get_item_index(item)
 def get_n_items()
 def get_nth_item(n)
 def get_drop_index(x, y)
 def set_drop_highlight_item(tool_item, index)
 def set_show_arrow(show_arrow)
 def get_show_arrow()
 def get_relief_style()
 def append_item(text, tooltip_text, tooltip_private_text, icon, callback, user_data=None)
 def prepend_item(text, tooltip_text, tooltip_private_text, icon, callback, user_data)

PyGTK 2.0 Reference Manual

gtk.ToggleToolButton.get_active 650

 def insert_item(text, tooltip_text, tooltip_private_text, icon, callback, user_data, position)
 def insert_stock(stock_id, tooltip_text, tooltip_private_text, callback, user_data, position)
 def append_space()
 def prepend_space()
 def insert_space(position)
 def remove_space(position)
 def append_element(type, widget, text, tooltip_text, tooltip_private_text, icon, callback, user_data)
 def prepend_element(type, widget, text, tooltip_text, tooltip_private_text, icon, callback, user_data)
 def insert_element(type, widget, text, tooltip_text, tooltip_private_text, icon, callback, user_data, position)
 def append_widget(widget, tooltip_text, tooltip_private_text)
 def prepend_widget(widget, tooltip_text, tooltip_private_text)
 def insert_widget(widget, tooltip_text, tooltip_private_text, position)
 def set_orientation(orientation)
 def set_style(style)
 def set_icon_size(icon_size)
 def set_tooltips(enable)
 def unset_style()
 def unset_icon_size()
 def get_orientation()
 def get_style()
 def get_icon_size()
 def get_tooltips()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Toolbar

Properties

"orientation" Read−Write The orientation of the toolbar: gtk.ORIENTATION_HORIZONTAL or
gtk.ORIENTATION_VERTICAL

"show−arrow" Read−Write If TRUE an arrow should be shown if the toolbar doesn't fit. Available in GTK+
2.4 and above.

"toolbar−style" Read−Write The toolbar style: gtk.TOOLBAR_ICONS, gtk.TOOLBAR_TEXT,
gtk.TOOLBAR_BOTH or gtk.TOOLBAR_BOTH_HORIZ

Child Properties

"expand" Read−Write If TRUE, the item should receive extra space when the toolbar grows. Available in
GTK+ 2.4 and above.

Style Properties

"button−relief" Read The type of bevel around toolbar buttons:
gtk.RELIEF_NORMAL, gtk.RELIEF_HALF or
gtk.RELIEF_NONE

"internal−padding" Read The amount of border space between the toolbar shadow
and the buttons

"shadow−type" Read The style of bevel around the toolbar:
gtk.SHADOW_NONE, gtk.SHADOW_IN,
gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN or

PyGTK 2.0 Reference Manual

Synopsis 651

gtk.SHADOW_ETCHED_OUT

"space−size" Read The size of spacers
"space−style" Read The spacer style: gtk.TOOLBAR_SPACE_EMPTY or

gtk.TOOLBAR_SPACE_LINE

Signal Prototypes

"orientation−changed" def callback(toolbar, orientation, user_param1,
...)

"popup−context−menu" def callback(toolbar, x, y, button, user_param1,
...)

"style−changed" def callback(toolbar, style, user_param1, ...)

Description

A gtk.Toolbar is a subclass of gtk.Container that holds and manages a set of buttons and widgets in
a horizontal or vertical bar. A gtk.Toolbar is usually used in an application as an alternative to a menu to
provide a more direct means to activate dialogs or set options. Items in the toolbar can be visibly grouped by
adding space between the elements. The toolbar style can be set to display only icons, only text or both icons
and text. Each toolbar item has an associated gtk.Tooltips to provide a brief description of the items
purpose.

In PyGTK 2.4 the interface of the gtk.Toolbar has changed to take advantage of the new
gtk.ToolItem widgets. The following describes the new features.

A toolbar can contain instances of a subclass of gtk.ToolItem (gtk.ToolButton,
gtk.RadioToolButton, gtk.ToggleToolButton and gtk.SeparatorToolItem). To add a
gtk.ToolItem to the a toolbar, use the insert() method. To remove an item from the toolbar use the
gtk.Container.remove() method. To add a button to the toolbar, add an instance of
gtk.ToolButton. Toolbar items can be visually grouped by adding instances of
gtk.SeparatorToolItem to the toolbar. If a gtk.SeparatorToolItem has the "expand" property
set to TRUE and the "draw" property set to FALSE the effect is to force all following items to the end of the
toolbar. Creating a context menu for the toolbar can be done by connecting to the "popup−context−menu"
signal.

Constructor

gtk.Toolbar()

Returns : a new gtk.Toolbar widget
Creates a new gtk.Toolbar widget.

Methods

gtk.Toolbar.insert

 def insert(item, pos)

item : a gtk.ToolItem

PyGTK 2.0 Reference Manual

Style Properties 652

pos : the position of the new item

Note

This method is available in PyGTK 2.4 and above

The insert() method inserts the gtk.ToolItem specified by item into the toolbar at the position
specified by pos. If pos is 0 item is prepended to the start of the toolbar. If pos is negative, item is
appended to the end of the toolbar.

gtk.Toolbar.get_item_index

 def get_item_index(item)

item : a gtk.ToolItem that is a child of the toolbar
Returns : the position of item on the toolbar.

Note

This method is available in PyGTK 2.4 and above

The get_item_index() method returns the position (starting from 0) on the toolbar of the
gtk.ToolItem specified by item. It is an error if item is not a child of the toolbar.

gtk.Toolbar.get_n_items

 def get_n_items()

Returns : the number of items on the toolbar

Note

This method is available in PyGTK 2.4 and above

The get_n_items() method returns the number of items on the toolbar.

gtk.Toolbar.get_nth_item

 def get_nth_item(n)

n : a position on the toolbar
Returns : The gtk.ToolItem on the toolbar at position n, or None if there isn't an item at position n

Note

This method is available in PyGTK 2.4 and above

The get_nth_item() method returns the toolbar gtk.ToolItem at the position specified by n, or None
if the toolbar does not contain an item at position n.

gtk.Toolbar.get_drop_index

 def get_drop_index(x, y)

x : the x coordinate of a point on the toolbar

PyGTK 2.0 Reference Manual

gtk.Toolbar.insert 653

y : the y coordinate of a point on the toolbar
Returns : The toolbar position corresponding to the point (x, y).

Note

This method is available in PyGTK 2.4 and above

The get_drop_index() method returns the position on the toolbar corresponding to the point specified by
x and y. This is useful when dragging items to the toolbar. This method returns the position index where a
new item should be inserted.

The x and y coordinates are relative to the toolbar.

gtk.Toolbar.set_drop_highlight_item

 def set_drop_highlight_item(tool_item, index)

tool_item : a gtk.ToolItem, or None to turn off highlighting
index : a position index on the toolbar

Note

This method is available in PyGTK 2.4 and above

The set_drop_highlight_item() method highlights the toolbar to give an idea of what it would look
like if the gtk.ToolItem specified by tool_item was added at the position specified by index. If
tool_item is None, highlighting is turned off and index is ignored.

The tool_item passed to this method must not be part of any widget hierarchy. When an item is set as drop
highlight item it can not added to any widget hierarchy or used as highlight item for another toolbar.

gtk.Toolbar.set_show_arrow

 def set_show_arrow(show_arrow)

show_arrow : if TRUE, show an arrow to indicate menu overflow

Note

This method is available in PyGTK 2.4 and above

The set_show_arrow() method sets the "show−arrow" property to the value of show_arrow. If
show_arrow is TRUE an arrow is displayed (for an overflow menu) when the toolbar doesn't have room for
all items on it. Items that are not displayed due to a lack of room are available through the overflow menu.

gtk.Toolbar.get_show_arrow

 def get_show_arrow()

Returns : TRUE if an overflow menu can be used

Note

This method is available in PyGTK 2.4 and above

PyGTK 2.0 Reference Manual

gtk.Toolbar.get_drop_index 654

The get_show_arrow() method returns the value of the "show−arrow" property. If "show−arrow" is TRUE
the toolbar has an overflow menu. See the set_show_arrow() method for more information.

gtk.Toolbar.get_relief_style

 def get_relief_style()

Returns : the relief style of buttons on the toolbar

Note

This method is available in PyGTK 2.4 and above

The get_relief_style() method returns the relief style of buttons on the toolbar. See the
gtk.Button.set_relief() method for more information. The return value will be one of:

gtk.RELIEF_NORMAL•
gtk.RELIEF_HALF•
gtk.RELIEF_NONE•

gtk.Toolbar.append_item

 def append_item(text, tooltip_text, tooltip_private_text, icon, callback, user_data=None)

text : the text label or None
tooltip_text : the tooltip text or None
tooltip_private_text : the private tooltip text or None
icon : a gtk.Widget or None
callback : a callback function or method or None
user_data : a user data object or None
Returns : a gtk.Button widget

Warning

This method is deprecated in PyGTK 2.4 and above

The append_item() method adds a new gtk.Button to the end (right or bottom) of the toolbar with:

the label specified by text,•
the gtk.Tooltips text and private text specified by tooltip_text and
tooltip_private_text respectively and

•

an icon (or any gtk.Widget) specified by icon.•

A reference to the new button is returned. When the button is clicked the function or method specified by
callback will be called with the user data specified by user_data. All or any of the arguments can have
the value None.

gtk.Toolbar.prepend_item

 def prepend_item(text, tooltip_text, tooltip_private_text, icon, callback, user_data)

text : the text label or None
tooltip_text : the tooltip text or None

PyGTK 2.0 Reference Manual

Note 655

tooltip_private_text : the private tooltip text or None
icon : a gtk.Widget or None
callback : a callback function or method or None
user_data : a user data object or None
Returns : a gtk.Button widget

Warning

This method is deprecated in PyGTK 2.4 and above

The prepend_item() method adds a new gtk.Button to the beginning (left or top) of the toolbar with:

the label specified by text,•
the gtk.Tooltips text and private text specified by tooltip_text and
tooltip_private_text respectively and

•

an icon (or any gtk.Widget) specified by icon.•

A reference to the new button is returned. When the button is clicked the function or method specified by
callback will be called with the user data specified by user_data. All or any of the arguments can have
the value None.

gtk.Toolbar.insert_item

 def insert_item(text, tooltip_text, tooltip_private_text, icon, callback, user_data, position)

text : the text label or None
tooltip_text : the tooltip text or None
tooltip_private_text : the private tooltip text or None
icon : a gtk.Widget or None
callback : a callback function or method or None
user_data : a user data object or None
position : The position to insert the button or −1 to append
Returns : a gtk.Button widget

Warning

This method is deprecated in PyGTK 2.4 and above

The insert_item() method inserts a new gtk.Button the toolbar at the position specified by
position with:

the label specified by text,•
the gtk.Tooltips text and private text specified by tooltip_text and
tooltip_private_text respectively and

•

an icon (or any gtk.Widget) specified by icon.•

A reference to the new button is returned. When the button is clicked the function or method specified by
callback will be called with the user data specified by user_data. All or any of the arguments (except
position) can have the value None. If position is negative the button will be appended to the toolbar.

PyGTK 2.0 Reference Manual

gtk.Toolbar.prepend_item 656

gtk.Toolbar.insert_stock

 def insert_stock(stock_id, tooltip_text, tooltip_private_text, callback, user_data, position)

stock_id : the ID of the stock item to use as the button label and icon
tooltip_text : the tooltip text or None
tooltip_private_text : the private tooltip text or None
callback : a callback function or method or None
user_data : a user data object or None
position : The position to insert the button or −1 to append
Returns : a gtk.Button widget

Warning

This method is deprecated in PyGTK 2.4 and above

The insert_stock() method inserts a new gtk.Button the toolbar at the position specified by
position with:

the stock item specified by stock_id used for the label text and icon,•
the gtk.Tooltips text and private text specified by tooltip_text and
tooltip_private_text respectively.

•

A reference to the new button is returned. When the button is clicked the function or method specified by
callback will be called with the user data specified by user_data. All or any of the arguments (except
position) can have the value None. If position is negative the button will be appended to the toolbar.
If stock_id is not a known stock item ID, it's inserted verbatim, except that underscores are used to mark
mnemonic accelerators.

gtk.Toolbar.append_space

 def append_space()

Warning

This method is deprecated in PyGTK 2.4 and above

The append_space() method appends a space to the end of the toolbar.

gtk.Toolbar.prepend_space

 def prepend_space()

Warning

This method is deprecated in PyGTK 2.4 and above

The prepend_space() method prepends a space to the beginning of the toolbar.

gtk.Toolbar.insert_space

 def insert_space(position)

PyGTK 2.0 Reference Manual

gtk.Toolbar.insert_stock 657

position : The position to insert the space or −1 to append

Warning

This method is deprecated in PyGTK 2.4 and above

The insert_space() method inserts a space at the specified position in the toolbar.

gtk.Toolbar.remove_space

 def remove_space(position)

position : the index of the space to remove.

Warning

This method is deprecated in PyGTK 2.4 and above

The remove_space() method removes a space from the specified position.

gtk.Toolbar.append_element

 def append_element(type, widget, text, tooltip_text, tooltip_private_text, icon, callback, user_data)

type :

the type of widget − one of: gtk.TOOLBAR_CHILD_SPACE,
gtk.TOOLBAR_CHILD_BUTTON,
gtk.TOOLBAR_CHILD_TOGGLEBUTTON,
gtk.TOOLBAR_CHILD_RADIOBUTTON or
gtk.TOOLBAR_CHILD_WIDGET

widget : a widget or None
text : the text label or None
tooltip_text : the tooltip text or None
tooltip_private_text :the private tooltip text or None
icon : a gtk.Widget or None
callback : a callback function or method or None
user_data : a user data object or None
Returns : the new toolbar element as a gtk.Widget.

Warning

This method is deprecated in PyGTK 2.4 and above

The append_element() method adds a new element of the specified type to the end (right or bottom) of
the toolbar with the gtk.Tooltips text and private text specified by tooltip_text and
tooltip_private_text respectively. The behavior of the method depends on the type of element being
added:

gtk.TOOLBAR_CHILD_WIDGET
The specified widget is the element added to the toolbar. The
text, icon, callback and user_data arguments are
ignored.

gtk.TOOLBAR_CHILD_BUTTON The string specified by text and the gtk.Widget specified
by icon are used to create the label for a gtk.Button to add
to the toolbar. The function or method specified by callback
and the object specified by user_data are connected to the

PyGTK 2.0 Reference Manual

gtk.Toolbar.insert_space 658

button's "clicked" signal. The widget argument must have the
value None.

gtk.TOOLBAR_CHILD_TOGGLEBUTTON

The string specified by text and the gtk.Widget specified
by icon are used to create the label for a
gtk.ToggleButton to add to the toolbar. The function or
method specified by callback and the object specified by
user_data are connected to the button's "clicked" signal. The
widget argument must have the value None.

gtk.TOOLBAR_CHILD_RADIOBUTTON

The string specified by text and the gtk.Widget specified
by icon are used to create the label for a
gtk.RadioButton to add to the toolbar. The
gtk.RadioButton specified by widget is used to set the
group for the radiobutton. If widget is None a new
radiobutton group is created. The function or method specified
by callback and the object specified by user_data are
connected to the button's "clicked" signal.

gtk.TOOLBAR_CHILD_SPACE

A space element is added to the toolbar. The widget argument
must have the value None. The text, icon,
tooltip_text, tooltip_private_text, callback
and user_data arguments are ignored.

The text, icon, callback, user_data, tooltip_text and tooltip_private_text
arguments may have the value None.

gtk.Toolbar.prepend_element

 def prepend_element(type, widget, text, tooltip_text, tooltip_private_text, icon, callback, user_data)

type :

the type of widget − one of: gtk.TOOLBAR_CHILD_SPACE,
gtk.TOOLBAR_CHILD_BUTTON,
gtk.TOOLBAR_CHILD_TOGGLEBUTTON,
gtk.TOOLBAR_CHILD_RADIOBUTTON or
gtk.TOOLBAR_CHILD_WIDGET

widget : a widget or None
text : the text label or None
tooltip_text : the tooltip text or None
tooltip_private_text :the private tooltip text or None
icon : a gtk.Widget or None
callback : a callback function or method or None
user_data : a user data object or None
Returns : the new toolbar element as a gtk.Widget.

Warning

This method is deprecated in PyGTK 2.4 and above

The prepend_element() method adds a new element of the specified type to the beginning (left or top)
of the toolbar with the gtk.Tooltips text and private text specified by tooltip_text and
tooltip_private_text respectively. The behavior of the method depends on the type of element being
added:

gtk.TOOLBAR_CHILD_WIDGET The widget specified by widget is the element added to the
toolbar, otherwise widget should be None. The text, icon,

PyGTK 2.0 Reference Manual

Warning 659

callback and user_data arguments are ignored.

gtk.TOOLBAR_CHILD_BUTTON

The string specified by text and the gtk.Widget specified
by icon are used to create the label for a gtk.Button to add
to the toolbar. The function or method specified by callback
and the object specified by user_data are connected to the
button's "clicked" signal. The widget argument must have the
value None.

gtk.TOOLBAR_CHILD_TOGGLEBUTTON

The string specified by text and the gtk.Widget specified
by icon are used to create the label for a
gtk.ToggleButton to add to the toolbar. The function or
method specified by callback and the object specified by
user_data are connected to the button's "clicked" signal. The
widget argument must have the value None.

gtk.TOOLBAR_CHILD_RADIOBUTTON

The string specified by text and the gtk.Widget specified
by icon are used to create the label for a
gtk.RadioButton to add to the toolbar. The
gtk.RadioButton specified by widget is used to set the
group for the radiobutton. If widget is None a new
radiobutton group is created. The function or method specified
by callback and the object specified by user_data are
connected to the button's "clicked" signal.

gtk.TOOLBAR_CHILD_SPACE

A space element is added to the toolbar. The widget argument
must have the value None. The text, icon,
tooltip_text, tooltip_private_text, callback
and user_data arguments are ignored.

The text, icon, callback, user_data, tooltip_text and tooltip_private_text
arguments may have the value None.

gtk.Toolbar.insert_element

 def insert_element(type, widget, text, tooltip_text, tooltip_private_text, icon, callback, user_data, position)

type :

the type of widget − one of: gtk.TOOLBAR_CHILD_SPACE,
gtk.TOOLBAR_CHILD_BUTTON,
gtk.TOOLBAR_CHILD_TOGGLEBUTTON,
gtk.TOOLBAR_CHILD_RADIOBUTTON or
gtk.TOOLBAR_CHILD_WIDGET

widget : a widget or None
text : the text label or None
tooltip_text : the tooltip text or None
tooltip_private_text :the private tooltip text or None
icon : a gtk.Widget or None
callback : a callback function or method or None
user_data : a user data object or None
position : the position to insert the new element at.
Returns : the new toolbar element as a gtk.Widget.

Warning

This method is deprecated in PyGTK 2.4 and above

PyGTK 2.0 Reference Manual

Warning 660

The insert_element() method adds a new element of the specified type at the specified position in
the toolbar with the gtk.Tooltips text and private text specified by tooltip_text and
tooltip_private_text respectively. The behavior of the method depends on the type of element being
added:

gtk.TOOLBAR_CHILD_WIDGET
The widget specified by widget is the element added to the
toolbar, otherwise widget should be None. The text, icon,
callback and user_data arguments are ignored.

gtk.TOOLBAR_CHILD_BUTTON

The string specified by text and the gtk.Widget specified
by icon are used to create the label for a gtk.Button to add
to the toolbar. The function or method specified by callback
and the object specified by user_data are connected to the
button's "clicked" signal. The widget argument must have the
value None.

gtk.TOOLBAR_CHILD_TOGGLEBUTTON

The string specified by text and the gtk.Widget specified
by icon are used to create the label for a
gtk.ToggleButton to add to the toolbar. The function or
method specified by callback and the object specified by
user_data are connected to the button's "clicked" signal. The
widget argument must have the value None.

gtk.TOOLBAR_CHILD_RADIOBUTTON

The string specified by text and the gtk.Widget specified
by icon are used to create the label for a
gtk.RadioButton to add to the toolbar. The
gtk.RadioButton specified by widget is used to set the
group for the radiobutton. If widget is None a new
radiobutton group is created. The function or method specified
by callback and the object specified by user_data are
connected to the button's "clicked" signal.

gtk.TOOLBAR_CHILD_SPACE

A space element is added to the toolbar. The widget argument
must have the value None. The text, icon,
tooltip_text, tooltip_private_text, callback
and user_data arguments are ignored.

The text, icon, callback, user_data, tooltip_text and tooltip_private_text
arguments may have the value None.

gtk.Toolbar.append_widget

 def append_widget(widget, tooltip_text, tooltip_private_text)

widget : a gtk.Widget to add to the toolbar.
tooltip_text : the tooltip text or None
tooltip_private_text : the private tooltip text or None

Warning

This method is deprecated in PyGTK 2.4 and above

The append_widget() method adds the specified widget to the end (right or bottom) of the toolbar.
tooltip_text and tooltip_private_text specify the tooltip text and private text respectively.

PyGTK 2.0 Reference Manual

Warning 661

gtk.Toolbar.prepend_widget

 def prepend_widget(widget, tooltip_text, tooltip_private_text)

widget : a gtk.Widget to add to the toolbar.
tooltip_text : the tooltip text or None
tooltip_private_text : the private tooltip text or None

Warning

This method is deprecated in PyGTK 2.4 and above

The prepend_widget() method adds the specified widget to the start (left or top) of the toolbar.
tooltip_text and tooltip_private_text specify the tooltip text and private text respectively.

gtk.Toolbar.insert_widget

 def insert_widget(widget, tooltip_text, tooltip_private_text, position)

widget : a gtk.Widget to add to the toolbar.
tooltip_text : the tooltip text or None
tooltip_private_text : the private tooltip text or None
position : the position to insert this widget at.

Warning

This method is deprecated in PyGTK 2.4 and above

The insert_widget() method adds the specified widget at the specified position in the toolbar.
tooltip_text and tooltip_private_text specify the tooltip text and private text respectively.

gtk.Toolbar.set_orientation

 def set_orientation(orientation)

orientation : the new orientation either gtk.ORIENTATION_HORIZONTAL or
gtk.ORIENTATION_VERTICAL

The set_orientation() method sets the "orientation" property to the value of orientation. The
value of orientation is either gtk.ORIENTATION_HORIZONTAL or gtk.ORIENTATION_VERTICAL

gtk.Toolbar.set_style

 def set_style(style)

style : the new style − one of: gtk.TOOLBAR_ICONS, gtk.TOOLBAR_TEXT, gtk.TOOLBAR_BOTH
or gtk.TOOLBAR_BOTH_HORIZ

The set_style() method sets the "toolbar−style" property to the value of style. The value of style
must be one of the GTK Toolbar Style Constants. Setting the style overrides the user preferences for the
toolbar style.

Note

A gtk.ToolItem label will not be displayed if the toolbar style is gtk.TOOLBAR_BOTH_HORIZ and the
gtk.ToolItem "is−important" property is FALSE (the default). See the

PyGTK 2.0 Reference Manual

gtk.Toolbar.prepend_widget 662

gtk.ToolItem.set_is_important() method for more information.

gtk.Toolbar.set_icon_size

 def set_icon_size(icon_size)

icon_size :
The size of stock icons in the toolbar − one of: gtk.ICON_SIZE_MENU,
gtk.ICON_SIZE_SMALL_TOOLBAR, gtk.ICON_SIZE_LARGE_TOOLBAR,
gtk.ICON_SIZE_BUTTON, gtk.ICON_SIZE_DND or gtk.ICON_SIZE_DIALOG

Warning

This method is deprecated in PyGTK 2.4 and above

The set_icon_size() method sets the size of stock icons in the toolbar to the value specified by
icon_size. The value of icon_size must be one of:

gtk.ICON_SIZE_MENU•
gtk.ICON_SIZE_SMALL_TOOLBAR•
gtk.ICON_SIZE_LARGE_TOOLBAR•
gtk.ICON_SIZE_BUTTON•
gtk.ICON_SIZE_DND, or•
gtk.ICON_SIZE_DIALOG•

This method can be called both before and after adding the icons. Setting the icon size will override the user
preferences for the default icon size.

gtk.Toolbar.set_tooltips

 def set_tooltips(enable)

enable : if TRUE tooltips should be used
The set_tooltips() method enables or disables tooltips for the toolbar depending on the value of
enable. If enable is TRUE, tooltips will be used.

gtk.Toolbar.unset_style

 def unset_style()

The unset_style() method unsets a toolbar style set with the set_style() method, allowing the user
preferences to determine the toolbar style.

gtk.Toolbar.unset_icon_size

 def unset_icon_size()

Warning

This method is deprecated in PyGTK 2.4 and above

The unset_icon_size() method unsets toolbar icon size set with the set_icon_size(), allowing the
user preferences to determine the icon size.

PyGTK 2.0 Reference Manual

Note 663

gtk.Toolbar.get_orientation

 def get_orientation()

Returns : the orientation
The get_orientation() method returns the value of the "orientation" property that determines the current
orientation of the toolbar. See the set_orientation() method for more details.

gtk.Toolbar.get_style

 def get_style()

Returns : the current toolbar style
The get_style() method returns the value of the "toolbar−style" property. See the set_style() method
for more details.

gtk.Toolbar.get_icon_size

 def get_icon_size()

Returns : the current icon size for the icons on the toolbar.
The get_icon_size() method returns the current icon size for the toolbar. See the set_icon_size()
method for more details.

gtk.Toolbar.get_tooltips

 def get_tooltips()

Returns : TRUE if tooltips are enabled
The get_tooltips() method returns TRUE if tooltips are enabled. See the set_tooltips() method for
more details.

Signals

The "orientation−changed" gtk.Toolbar Signal

 def callback(toolbar, orientation, user_param1, ...)

toolbar : the toolbar that received the signal
orientation : the new orientation
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "orientation−changed" signal is emitted when the orientation of toolbar is changed.

The "popup−context−menu" gtk.Toolbar Signal

 def callback(toolbar, x, y, button, user_param1, ...)

toolbar : the toolbar that received the signal
x : the x coordinate of the mouse event

PyGTK 2.0 Reference Manual

gtk.Toolbar.get_orientation 664

y : the u coordinate of the mouse event
button : the number of the mouse button
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled

Note

This signal is available in GTK+ 2.4 and above.

The "popup−context−menu" signal is emitted when the user right−clicks the toolbar or uses the keybinding to
display a popup menu. Application developers should handle this signal if they want to display a context
menu on the toolbar. The context−menu should appear at the coordinates given by x and y. The mouse button
number is given by the button parameter. If the menu was popped up using the keyboard, button is −1.

The "style−changed" gtk.Toolbar Signal

 def callback(toolbar, style, user_param1, ...)

toolbar : the toolbar that received the signal
style : the new style
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "style−changed" signal is emitted when the style of toolbar is changed.

Prev Up Next
gtk.ToggleToolButton Home gtk.ToolButton

gtk.ToolButton
Prev The gtk Class Reference Next

gtk.ToolButton

gtk.ToolButton � a gtk.ToolItem subclass that displays buttons (new in PyGTK 2.4)

Synopsis

class gtk.ToolButton(gtk.ToolItem):
gtk.ToolButton(icon_widget=None, label=None)
gtk.ToolButton(stock_id)

 def set_label(label)
 def get_label()
 def set_use_underline(use_underline)
 def get_use_underline()
 def set_stock_id(stock_id)
 def get_stock_id()
 def set_icon_widget(icon_widget)
 def get_icon_widget()
 def set_label_widget(label_widget)
 def get_label_widget()

PyGTK 2.0 Reference Manual

The "popup−context−menu" gtk.Toolbar Signal 665

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ToolItem
 +−− gtk.ToolButton

Properties

"icon−widget" Read−Write The icon widget to display in the item.
"label" Read−Write The text to show in the item.
"label−widget" Read−Write The widget to use as the item label instead of "label".
"stock−id" Read−Write The stock icon displayed on the item if "label" and "label−widget" are None.
"use−underline" Read−Write If TRUE, an underline in the "label" property indicates that the next character

should be used for the mnemonic accelerator key in the overflow menu.

Signal Prototypes

"clicked" def callback(toolbutton, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.4 and above.

A gtk.ToolButton is a sub class of gtk.ToolItem that contains a button. Use the gtk.ToolButton()
constructor to create a new gtk.ToolButton specifying a widget to use as the icon and a label for the text.
Alternatively use the other gtk.ToolButton() constructor to create a gtk.ToolButton from a stock item.

The label of a gtk.ToolButton is determined by the properties "label_widget", "label", and "stock_id". If
"label_widget" specifies a gtk.Widget, that widget is used as the label. If "label−widget" is None, then the
string in "label" is used as the label. If both "label−widget" and "label" are None, the label is determined by
the stock item specified by "stock−id". Finally, if "label−widget", "label" and "stock−id" are all None, the
button does not have a label.

The icon of a gtk.ToolButton is determined by the properties "icon−widget" and "stock−id". If
"icon−widget" specifies a gtk.Widget, that widget is used as the icon. If "icon−widget" is None, the icon
is determined by the stock item specified by "stock−id". If both "icon−widget" and "stock−id" are None, the
button does not have an icon.

Constructor

gtk.ToolButton

gtk.ToolButton(icon_widget=None, label=None)

PyGTK 2.0 Reference Manual

Ancestry 666

icon_widget : a gtk.Widget that will be used as the icon widget, or None
label : a string that will be used as the label, or None
Returns : A new gtk.ToolButton

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.ToolButton optionally using the icon specified by icon_widget and the label text
specified by label. If both icon_widget and label are None, the tool button will be empty.

gtk.ToolButton

gtk.ToolButton(stock_id)

stock_id : a string that specifies a stock item
Returns : A new gtk.ToolButton

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.ToolButton using the stock item specified by stock_id to determine the icon and
label text. It is an error if stock_id is not a name of a stock item.

Methods

gtk.ToolButton.set_label

 def set_label(label)

label : a string that will be used as label, or None.

Note

This method is available in PyGTK 2.4 and above.

The set_label() method sets the "label" property to the value of label. If the "label_widget" property is
None, label will be used as the label of the tool button.

gtk.ToolButton.get_label

 def get_label()

Returns : The label, or None

Note

This method is available in PyGTK 2.4 and above.

The get_label() method returns the value of the "label" property that is used as the label of the tool button
if the "label−widget" property is None.

PyGTK 2.0 Reference Manual

gtk.ToolButton 667

gtk.ToolButton.set_use_underline

 def set_use_underline(use_underline)

use_underline : if TRUE, an underline in the label string specifies a mnemonic key for the overflow
menu

Note

This method is available in PyGTK 2.4 and above.

The set_use_underline() method sets the "use−underline" property to the value of use_underline.
If use_underline is TRUE, an underline in the "label" property indicates that the next character should be
used for the mnemonic accelerator key in the overflow menu. For example, if the label property is "_Open"
and use_underline is TRUE, the label on the tool button will be "Open" and the item on the overflow
menu will have an underlined 'O'. Labels shown on tool buttons never have mnemonics on them; this property
only affects the menu item on the overflow menu.

gtk.ToolButton.get_use_underline

 def get_use_underline()

Returns : TRUE if underscores in the "label" property are used as mnemonics on menu items on the overflow
menu.

Note

This method is available in PyGTK 2.4 and above.

The get_use_underline() method returns the value of the "use−underline" property. If "use−underline"
is TRUE, underscores in the label property are used as mnemonics on menu items on the overflow menu. See
the set_use_underline() method for more information.

gtk.ToolButton.set_stock_id

 def set_stock_id(stock_id)

stock_id : a name of a stock item, or None

Note

This method is available in PyGTK 2.4 and above.

The set_stock_id() method sets the "stock_id" property to the value of stock_id. The stock item
specified by stock_id is used to determine the icon and label if not overridden by the "label" and
"icon_widget" properties. See the gtk.ToolButton() constructor for more information.

gtk.ToolButton.get_stock_id

 def get_stock_id()

Returns : the name of the stock item.

PyGTK 2.0 Reference Manual

gtk.ToolButton.set_use_underline 668

Note

This method is available in PyGTK 2.4 and above.

The get_stock_id() method returns the value of the "stock−id" property that contains the name of a stock
item or None. See the gtk.ToolButton() constructor for more information.

gtk.ToolButton.set_icon_widget

 def set_icon_widget(icon_widget)

icon_widget : the widget used as icon, or None

Note

This method is available in PyGTK 2.4 and above.

The set_icon_widget() method sets the "icon−widget" property to the value of icon_widget. If
icon_widget specifies a gtk.Widget, it is used as the icon of the tool button. If icon_widget is
None the icon is determined by the "stock_id" property. If the "stock_id" property is also None, the tool
button will not have an icon.

gtk.ToolButton.get_icon_widget

 def get_icon_widget()

Returns : The widget used as icon on button, or None.

Note

This method is available in PyGTK 2.4 and above.

The get_icon_widget() method returns the value of the "icon−widget" property that contains the
gtk.Widget used as the icon on the tool button. See the set_icon_widget() method for more
information.

gtk.ToolButton.set_label_widget

 def set_label_widget(label_widget)

label_widget : the widget used as the label, or None

Note

This method is available in PyGTK 2.4 and above.

The set_label_widget() method sets the "label−widget" property to the gtk.Widget specified by
label_widget that will be used as the label for the tool button. If label_widget is None the "label"
property is used as label. If "label−widget" and "label" are both None, the label in the stock item determined
by the "stock_id" property is used as the label. If "label−widget", "label" and "stock_id" are all None, the tool
button will not have a label.

PyGTK 2.0 Reference Manual

Note 669

gtk.ToolButton.get_label_widget

 def get_label_widget()

Returns : The widget used as label on button, or None.

Note

This method is available in PyGTK 2.4 and above.

The get_label_widget() method returns the value of the "label−widget" property that is used as the label
on the tool button. See the gtk.ToolButton.set_label_widget() method for more information.

Signals

The "clicked" gtk.ToolButton Signal

 def callback(toolbutton, user_param1, ...)

toolbutton : the toolbutton that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "clicked" signal is emitted when the tool button is clicked with the mouse or activated with the keyboard.

Prev Up Next
gtk.Toolbar Home gtk.ToolItem

gtk.ToolItem
Prev The gtk Class Reference Next

gtk.ToolItem

gtk.ToolItem � the base class of widgets that can be added to gtk.Toolbar (new in PyGTK 2.4)

Synopsis

class gtk.ToolItem(gtk.Bin):
gtk.ToolItem()

 def set_homogeneous(homogeneous)
 def get_homogeneous()
 def set_expand(expand)
 def get_expand()
 def set_tooltip(tooltips, tip_text=None, tip_private=None)
 def set_use_drag_window(use_drag_window)
 def get_use_drag_window()
 def set_visible_horizontal(visible_horizontal)
 def get_visible_horizontal()
 def set_visible_vertical(visible_vertical)
 def get_visible_vertical()
 def set_is_important(is_important)
 def get_is_important()
 def get_icon_size()
 def get_orientation()
 def get_toolbar_style()
 def get_relief_style()

PyGTK 2.0 Reference Manual

gtk.ToolButton.get_label_widget 670

 def retrieve_proxy_menu_item()
 def set_proxy_menu_item(menu_item_id, menu_item)
 def get_proxy_menu_item(menu_item_id)
 def rebuild_menu()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.ToolItem

Properties

Note

These properties are available in GTK+ 2.4 and above.

"is−important" Read−Write If TRUE, the toolbar item is considered important and the toolbar buttons
show text in gtk.TOOLBAR_BOTH_HORIZ mode. Default value:
FALSE

"visible−horizontal" Read−Write If TRUE, the toolbar item is visible when the toolbar is in a horizontal
orientation. Default value: TRUE

"visible−vertical" Read−Write If TRUE, the toolbar item is visible when the toolbar is in a vertical
orientation. Default value: TRUE

Signal Prototypes

"create−menu−proxy" def callback(toolitem, user_param1, ...)

"set−tooltip" def callback(toolitem, tooltips, tip_text, tip_private,
user_param1, ...)

"toolbar−reconfigured" def callback(toolitem, user_param1, ...)

Description

Note

This widget is available in PyGTK 2.4 and above.

A gtk.ToolItem is a widget that can appear on a gtk.Toolbar. To create a toolbar item that contains
something else than a button, use the gtk.ToolItem() constructor then use the gtk.Container.add()
method to add a child widget to the tool item.

To create and use toolbar items that contain buttons, see the gtk.ToolButton,
gtk.ToggleToolButton and gtk.RadioToolButton classes. See the gtk.Toolbar class for a
description of the toolbar widget.

PyGTK 2.0 Reference Manual

Synopsis 671

Constructor

gtk.ToolItem()

Returns : the new gtk.ToolItem

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new empty gtk.ToolItem

Methods

gtk.ToolItem.set_homogeneous

 def set_homogeneous(homogeneous)

homogeneous : if TRUE the tool item is the same size as other homogeneous items

Note

This method is available in PyGTK 2.4 and above.

The set_homogeneous() method sets the homogeneous setting of the tool item to the value of
homogeneous. If homogeneous is TRUE the tool item is to be allocated the same size as other
homogeneous items. The effect is that all homogeneous items will have the same width as the widest of the
items.

gtk.ToolItem.get_homogeneous

 def get_homogeneous()

Returns : TRUE if the item is the same size as other homogeneous items.

Note

This method is available in PyGTK 2.4 and above.

The get_homogeneous() method returns the setting of the homogeneous setting of the tool item. If TRUE
the tool item is the same size as other homogeneous items. See the set_homogeneous() method for more
detail.

gtk.ToolItem.set_expand

 def set_expand(expand)

expand : If TRUE the tool item is allocated extra space when available

Note

This method is available in PyGTK 2.4 and above.

The set_expand() method sets the expand setting of the tool item to the value of expand. If expand is
TRUE the tool item is allocated extra space when there is more room on the toolbar than needed for the items.

PyGTK 2.0 Reference Manual

Constructor 672

The effect is that the item gets bigger when the toolbar gets bigger and smaller when the toolbar gets smaller.

gtk.ToolItem.get_expand

 def get_expand()

Returns : TRUE if the tool item is allocated extra space when available.

Note

This method is available in PyGTK 2.4 and above.

The get_expand() method returns the value of the expand setting of the tool item. If TRUE the tool item is
allocated extra space. See the gtk.ToolItem.set_expand() method for more detail.

gtk.ToolItem.set_tooltip

 def set_tooltip(tooltips, tip_text=None, tip_private=None)

tooltips : The gtk.Tooltips object to be used
tip_text : the text to be used as tooltip text for the tool item or None
tip_private : the text to be used as private tooltip text or None

Note

This method is available in PyGTK 2.4 and above.

The set_tooltip() method sets the gtk.Tooltips object specified by tooltips to be used for the
tool item with the tooltip text specified by tip_text and the private text specified by tip_private. See
the gtk.Tooltips.set_tip() method for more information.

gtk.ToolItem.set_use_drag_window

 def set_use_drag_window(use_drag_window)

use_drag_window : if TRUE the tool item has a drag window.

Note

This method is available in PyGTK 2.4 and above.

The set_use_drag_window() method determines whether the tool item has a drag window according to
the value of use_drag_window. If use_drag_window is TRUE the toolitem can be used as a drag
source through the gtk.Widget.drag_source_set() method. When the tool item has a drag window
it will intercept all events, even those that would otherwise be sent to a child of the tool item

gtk.ToolItem.get_use_drag_window

 def get_use_drag_window()

Returns : TRUE if the tool item uses a drag window.

PyGTK 2.0 Reference Manual

Note 673

Note

This method is available in PyGTK 2.4 and above.

The get_use_drag_window() returns the setting that determines if the tool item has a drag window. See
the set_use_drag_window() for more information.

gtk.ToolItem.set_visible_horizontal

 def set_visible_horizontal(visible_horizontal)

visible_horizontal : if TRUE the tool item is visible when in horizontal mode

Note

This method is available in PyGTK 2.4 and above.

The set_visible_horizontal() method sets the "visible−horizontal" property to the value of
visible_horizontal. If visible_horizontal is TRUE, the tool item is visible when the toolbar is
docked horizontally.

gtk.ToolItem.get_visible_horizontal

 def get_visible_horizontal()

Returns : TRUE if the tool item is visible on toolbars that are docked horizontally.

Note

This method is available in PyGTK 2.4 and above.

The get_visible_horizontal() method returns the value of the "visible−horizontal" property. If
"visible−horizontal" is TRUE, the tool item is visible on toolbars that are docked horizontally.

gtk.ToolItem.set_visible_vertical

 def set_visible_vertical(visible_vertical)

visible_vertical : if TRUE, the tool item is visible when the toolbar is in vertical mode

Note

This method is available in PyGTK 2.4 and above.

The set_visible_vertical() method sets the "visible−vertical" property to the value of
visible_vertical. If visible_vertical is TRUE, the tool item is visible when the toolbar is
docked vertically. Some tool items, such as text entries, are too wide to be useful on a vertically docked
toolbar. If visible_vertical is FALSE the tool item will not appear on toolbars that are docked
vertically.

gtk.ToolItem.get_visible_vertical

 def get_visible_vertical()

Returns : TRUE if the tool item is visible when the toolbar is docked vertically

PyGTK 2.0 Reference Manual

Note 674

Note

This method is available in PyGTK 2.4 and above.

The get_visible_vertical() method returns the value of the "visible−vertical" property. If
"visible−vertical" is TRUE, the tool item is visible when the toolbar is docked vertically. See the
set_visible_vertical() method for more information.

gtk.ToolItem.set_is_important

 def set_is_important(is_important)

is_important : if TRUE, the tool item should be considered important

Note

This method is available in PyGTK 2.4 and above.

The set_is_important() method sets the "is−important" property to the value of is_important. If
is_important is TRUE the tool item should be considered important. The gtk.ToolButton class uses
this property to determine whether to show its label when the toolbar style is
gtk.TOOLBAR_BOTH_HORIZ. The result is that only tool buttons with the "is_important" property set have
labels, an effect known as "priority text".

gtk.ToolItem.get_is_important

 def get_is_important()

Returns : TRUE if the tool item is considered important.

Note

This method is available in PyGTK 2.4 and above.

The get_is_important() method returns the value of the "is−important" property. If "is−important" is
TRUE, the tool item is considered important. See the set_is_important() method for more information.

gtk.ToolItem.get_icon_size

 def get_icon_size()

Returns : the icon size used for the tool item

Note

This method is available in PyGTK 2.4 and above.

The get_icon_size() method returns the icon size used for the tool item. Custom subclasses of
gtk.ToolItem should call this method to find out what size icons they should use. The return value should
be one of: gtk.ICON_SIZE_MENU, gtk.ICON_SIZE_SMALL_TOOLBAR,
gtk.ICON_SIZE_LARGE_TOOLBAR, gtk.ICON_SIZE_BUTTON, gtk.ICON_SIZE_DND,
gtk.ICON_SIZE_DIALOG or an integer value returned from the gtk.icon_size_register()
function.

PyGTK 2.0 Reference Manual

Note 675

gtk.ToolItem.get_orientation

 def get_orientation()

Returns : the orientation used for the tool item

Note

This method is available in PyGTK 2.4 and above.

The get_orientation() method returns the orientation used for the tool item. Custom subclasses of
gtk.ToolItem should call this method to find out what size icons they should use. The return value should
be either gtk.ORIENTATION_HORIZONTAL or gtk.ORIENTATION_VERTICAL.

gtk.ToolItem.get_toolbar_style

 def get_toolbar_style()

Returns : the toolbar style used for the tool item

Note

This method is available in PyGTK 2.4 and above.

The get_toolbar_style() method returns the toolbar style used for the tool item. Custom subclasses of
gtk.ToolItem should call this method in the "toolbar−reconfigured" signal handler to find out in what
style the toolbar is displayed and change themselves accordingly.

Possibilities are:

gtk.TOOLBAR_BOTH, meaning the tool item should show both an icon and a label, stacked
vertically

•

gtk.TOOLBAR_ICONS, meaning the toolbar shows only icons•
gtk.TOOLBAR_TEXT, meaning the tool item should only show text•
gtk.TOOLBAR_BOTH_HORIZ, meaning the tool item should show both an icon and a label,
arranged horizontally..

•

gtk.ToolItem.get_relief_style

 def get_relief_style()

Returns : the relief style used for the tool item

Note

This method is available in PyGTK 2.4 and above.

The get_relief_style() method returns the relief style of the tool item. See the
gtk.Button.set_relief() method for more information. Custom subclasses of gtk.ToolItem
should call this method in the handler of the gtk.ToolItem "toolbar−reconfigured" signal to find out the
relief style of buttons.

The return value should be one of: gtk.RELIEF_NORMAL, gtk.RELIEF_HALF or
gtk.RELIEF_NONE.

PyGTK 2.0 Reference Manual

gtk.ToolItem.get_orientation 676

gtk.ToolItem.retrieve_proxy_menu_item

 def retrieve_proxy_menu_item()

Returns : The gtk.MenuItem that is going to appear in the overflow menu for the tool item

Note

This method is available in PyGTK 2.4 and above.

The retrieve_proxy_menu_item() method returns the gtk.MenuItem that was last set by the
set_proxy_menu_item() method, i.e. the gtk.MenuItem that is going to appear in the overflow
menu.

gtk.ToolItem.set_proxy_menu_item

 def set_proxy_menu_item(menu_item_id, menu_item)

menu_item_id : a string used to identify menu_item
menu_item : a gtk.MenuItem to be used in the overflow menu or None

Note

This method is available in PyGTK 2.4 and above.

The set_proxy_menu_item() method sets the gtk.MenuItem specified by menu_item to be used in
the toolbar overflow menu. menu_item_id is used to identify the caller of this method and should also be
used with the get_proxy_menu_item() method. If menu_item is None the tool item will not appear
in the overflow menu.

gtk.ToolItem.get_proxy_menu_item

 def get_proxy_menu_item(menu_item_id)

menu_item_id : a string used to identify the menu item
Returns : The gtk.MenuItem matching menu_item_id.

Note

This method is available in PyGTK 2.4 and above.

The get_proxy_menu_item() method returns the gtk.MenuItem corresponding to the string specified
by menu_item_id as passed to the set_proxy_menu_item() method.

Custom subclasses of gtk.ToolItem should use this method to update their menu item when the
gtk.ToolItem changes. Forcing a match with menu_item_id ensures that a gtk.ToolItem will not
inadvertently change a menu item that they did not create.

gtk.ToolItem.rebuild_menu

 def rebuild_menu()

PyGTK 2.0 Reference Manual

gtk.ToolItem.retrieve_proxy_menu_item 677

Note

This method is available in PyGTK 2.6 and above.

The rebuild_menu() method ignals to the toolbar that the overflow menu item has changed. If the
overflow menu is visible when this method it called, the menu will be rebuilt. The method must be called
when the tool item changes what it will do in response to the "create_menu_proxy" signal.

Signals

The "create−menu−proxy" gtk.ToolItem Signal

 def callback(toolitem, user_param1, ...)

toolitem : the toolitem that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled

Note

This signal is available in GTK+ 2.4 and above.

The "create−menu−proxy" signal is emitted when the toolbar is displaying an overflow menu and is trying to
determine if toolitem should appear in the overflow menu. In response toolitem should either

call the set_proxy_menu_item() method specifying menu_item as None and return TRUE to
indicate that the item should not appear in the overflow menu

•

call the set_proxy_menu_item() method with a new menu item and return TRUE, or•
return FALSE to indicate that the signal was not handled by the item. This means that the item will
not appear in the overflow menu unless a later handler installs a menu item.

•

The toolbar may cache the result of this signal. When the tool item changes how it will respond to this signal
it must call the rebuild_menu()) method to invalidate the cache and ensure that the toolbar rebuilds its
overflow menu.

The "set−tooltip" gtk.ToolItem Signal

 def callback(toolitem, tooltips, tip_text, tip_private, user_param1, ...)

toolitem : the toolitem that received the signal
tooltips : the gtk.Tooltips
tip_text : the tooltip text
tip_private : the tooltip private text
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled

PyGTK 2.0 Reference Manual

Note 678

Note

This signal is available in GTK+ 2.4 and above.

The "set−tooltip" signal is emitted when the tool item's tooltip changes. Application developers can use the
set_tooltip() method to set the item's tooltip.

The "toolbar−reconfigured" gtk.ToolItem Signal

 def callback(toolitem, user_param1, ...)

toolitem : the toolitem that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "toolbar−reconfigured" signal is emitted when some property of the toolbar that the item is a child of
changes. For custom subclasses of gtk.ToolItem, the default handler of this signal uses the methods:

gtk.Toolbar.get_orientation()•
gtk.Toolbar.get_style()•
gtk.Toolbar.get_icon_size()•
gtk.Toolbar.get_relief_style()•

to find out what the toolbar should look like and change themselves accordingly.

Prev Up Next
gtk.ToolButton Home gtk.Tooltips

gtk.Tooltips
Prev The gtk Class Reference Next

gtk.Tooltips

gtk.Tooltips � add tips to your widgets.

Synopsis

class gtk.Tooltips(gtk.Object):
gtk.Tooltips()

 def enable()
 def disable()
 def set_tip(widget, tip_text, tip_private=None)
 def force_window()

Functions

 def gtk.tooltips_data_get(widget)

PyGTK 2.0 Reference Manual

Note 679

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Tooltips

Attributes

"tip_window" Read The window that the tooltip is displayed in.

"tip_label" Read The label that displays the tooltip text.

"active_tips_data" Read The data associated with the active tooltip.

"tips_data_list" Read A list containing the data associated with the tooltips in a tooltips group. For
each tooltip the data is a tuple containing: the tooltip object, the associated
widget, the tooltip text and the tooltip private text.

"delay" Read The delay between the mouse pausing over the widget and the display of the
tooltip in msec.

"enabled" Read If TRUE the tooltips are enabled

"use_sticky_delay" Read If TRUE shorten the delay for showing a tooltip on another widget is already
showing a tooltip.

"timer_tag" Read The tag of the timeout handler used for the delay.

Description

Tooltips are the messages that appear next to a widget when the mouse pointer is held over it for a short
amount of time. They are especially helpful for adding more verbose descriptions of things such as buttons in
a toolbar. An individual tooltip belongs to a group of tooltips. A group is created with a call to the
gtk.Tooltips() constructor. Every tooltip in the group can then be turned off with a call to the disable()
method and enabled with the enable() method. To assign a tip to a particular gtk.Widget, use the
set_tip() method.

Note

Tooltips can only be set on widgets which have their own X window. To check if a widget has its own
window use widget.flags()>k.NO_WINDOW. To add a tooltip to a widget that doesn't have its own
window, place the widget inside a gtk.EventBox and add a tooltip to the eventbox instead.

The default appearance of all tooltips in a program is determined by the current theme that the user has
selected. Information about the tooltip (if any) associated with an arbitrary widget can be retrieved using the
gtk.tooltips_data_get() function.

Constructor

gtk.Tooltips()

Returns : a new gtk.Tooltips object
Creates an empty gtk.Tooltips group.

PyGTK 2.0 Reference Manual

Ancestry 680

Methods

gtk.Tooltips.enable

 def enable()

The enable() method enables a group of tooltips. A tooltip will be displayed over its associated widget
when the mouse pointer pauses over the widget.

gtk.Tooltips.disable

 def disable()

The disable() method disables a group of tooltips. A tooltip will not be displayed over its associated widget
when the mouse pointer pauses over the widget.

gtk.Tooltips.set_tip

 def set_tip(widget, tip_text, tip_private=None)

widget : a gtk.Widget
tip_text : the tooltip text
tip_private : the tooltip private text for context sensitive display
The set_tips() method creates a tooltip for the specified widget. The text specified by tooltip_text
will be displayed when the mouse pointer pauses over widget if the tooltips are enabled..

gtk.Tooltips.force_window

 def force_window()

The force_window() method ensures that the window used for displaying the given tooltips is created.
Applications should never have to call this function, since PyGTK takes care of this.

Functions

gtk.tooltips_data_get

 def gtk.tooltips_data_get(widget)

widget : a widget
Returns : a tuple containing the tooltip data associated with widget or None
The gtk.tooltips_data_get() function returns a tuple containing the tooltip data associated with
widget. The tuple contains:

the gtk.Tooltips group containing the tooltip•
the widget•
the tooltip text string•
the tooltip private text string or None•

If widget does not have an associated tooltip this function returns None.

PyGTK 2.0 Reference Manual

Methods 681

Prev Up Next
gtk.ToolItem Home gtk.TreeDragDest

gtk.TreeDragDest
Prev The gtk Class Reference Next

gtk.TreeDragDest

gtk.TreeDragDest � an interface that manages the data transfer for a destination of a gtk.TreeView drag
and drop operation

Synopsis

class gtk.TreeDragDest(gobject.GInterface):
 def drag_data_received(dest, selection_data)
 def row_drop_possible(dest_path, selection_data)

Description

The gtk.TreeDragDest is an interface for checking and receiving the data for the destination of a
gtk.TreeView drag and drop operation.

Methods

gtk.TreeDragDest.drag_data_received

 def drag_data_received(dest, selection_data)

dest : the row to drop the data in front of
selection_data : the data to drop
Returns : TRUE if a new row was created before position dest
The drag_data_received() method asks the gtk.TreeDragDest to insert a row before the path
dest, deriving the contents of the row from selection_data. If dest is outside the tree so that inserting
before it is impossible, FALSE will be returned. Also, FALSE may be returned if the new row is not created
for some model−specific reason.

gtk.TreeDragDest.row_drop_possible

 def row_drop_possible(dest_path, selection_data)

dest_path : a destination row
selection_data : the data being dragged
Returns : TRUE if a drop is possible before dest_path
The row_drop_possible() method determines if a drop is possible before the tree path specified by
dest_path and at the same depth as dest_path. That is, can we drop the data specified by
selection_data at that location. dest_path does not have to exist but the return value will almost
certainly be FALSE if the parent of dest_path doesn't exist, though.

PyGTK 2.0 Reference Manual

gtk.tooltips_data_get 682

Prev Up Next
gtk.Tooltips Home gtk.TreeDragSource

gtk.TreeDragSource
Prev The gtk Class Reference Next

gtk.TreeDragSource

gtk.TreeDragSource � an interface that manages the source data transfer for a gtk.TreeView drag and
drop operation

Synopsis

class gtk.TreeDragSource(gobject.GInterface):
 def row_draggable(path)
 def drag_data_delete(path)
 def drag_data_get(path, selection_data)

Description

A gtk.TreeDragSource is an interface that provides for the management of the source data for a
gtk.TreeView drag and drop operation.

Methods

gtk.TreeDragSource.row_draggable

 def row_draggable(path)

path : the row from which the user is initiating a drag
Returns : TRUE if the row can be dragged
The row_draggable() method asks the gtk.TreeDragSource if the row specified by path can be
used as the source of a DND operation. If the gtk.TreeDragSource doesn't implement this interface, the
row is assumed draggable.

gtk.TreeDragSource.drag_data_delete

 def drag_data_delete(path)

path : the row that was being dragged
Returns : TRUE if the row was successfully deleted
The drag_data_delete() method asks the gtk.TreeDragSource to delete the row specified by
path, because it was moved somewhere else via drag−and−drop. This method returns FALSE if the deletion
fails because path no longer exists, or for some other model−specific reason.

gtk.TreeDragSource.drag_data_get

 def drag_data_get(path, selection_data)

PyGTK 2.0 Reference Manual

gtk.TreeDragDest.row_drop_possible 683

path : the row that was dragged
selection_data : a gtk.SelectionData to fill with data from the dragged row
Returns : TRUE if data of the required type was provided
The drag_data_get() method asks the gtk.TreeDragSource to fill in the selection data object
specified by selection_data with a representation of the row specified by path. The
selection_data target attribute gives the required type of the data.

Prev Up Next
gtk.TreeDragDest Home gtk.TreeIter

gtk.TreeIter
Prev The gtk Class Reference Next

gtk.TreeIter

gtk.TreeIter � An object that points at a path in a gtk.TreeModel.

Synopsis

class gtk.TreeIter(gobject.GBoxed):
 def copy()
 def free()

Description

A gtk.TreeIter is an object that points at a path in a gtk.TreeModel. A gtk.TreeIter is created
using one of the gtk.TreeModel or gtk.TreeModelSort methods:

gtk.TreeModel.get_iter()•
gtk.TreeModel.get_iter_from_string()•
gtk.TreeModel.get_iter_first()•
gtk.TreeModel.get_iter_root()•
gtk.TreeModel.iter_children()•
gtk.TreeModel.iter_parent()•
gtk.TreeModelSort.convert_child_iter_to_iter()•
gtk.TreeModelSort.convert_child_iter_to_child_iter()•

Methods

gtk.TreeIter.copy

 def copy()

Returns : a copy of the treeiter.
The copy() method returns a copy of the treeiter. This iter must be freed with the free() method.

PyGTK 2.0 Reference Manual

gtk.TreeDragSource.drag_data_get 684

gtk.TreeIter.free

 def free()

The free() method frees a gtk.TreeIter.

Prev Up Next
gtk.TreeDragSource Home gtk.TreeModel

gtk.TreeModel
Prev The gtk Class Reference Next

gtk.TreeModel

gtk.TreeModel � the tree interface used by gtk.TreeView

Synopsis

class gtk.TreeModel(gobject.GInterface):
 def get_flags()
 def get_n_columns()
 def get_column_type(index)
 def get_iter(path)
 def get_iter_from_string(path_string)
 def get_string_from_iter(iter)
 def get_iter_root()
 def get_iter_first()
 def get_path(iter)
 def get_value(iter, column)
 def iter_next(iter)
 def iter_children(parent)
 def iter_has_child(iter)
 def iter_n_children(iter)
 def iter_nth_child(parent, n)
 def iter_parent(child)
 def ref_node(iter)
 def unref_node(iter)
 def get(iter, column, ...)
 def foreach(func, user_data)
 def row_changed(path, iter)
 def row_inserted(path, iter)
 def row_has_child_toggled(path, iter)
 def row_deleted(path)
 def rows_reordered(path, iter, new_order)
 def filter_new(root=None)

Functions

 def gtk.tree_row_reference_inserted(proxy, path)
 def gtk.tree_row_reference_deleted(proxy, path)

Signal Prototypes

"row−changed" def callback(treemodel, path, iter, user_param1,
...)

"row−deleted" def callback(treemodel, path, user_param1, ...)

"row−has−child−toggled" def callback(treemodel, path, iter, user_param1,
...)

PyGTK 2.0 Reference Manual

gtk.TreeIter.free 685

"row−inserted" def callback(treemodel, path, iter, user_param1,
...)

"rows−reordered" def callback(treemodel, path, iter, new_order,
user_param1, ...)

Description

The gtk.TreeModel interface defines a generic tree interface for use by the gtk.TreeView widget. It is
an abstract interface, and is designed to be usable with any appropriate data structure. The programmer just
has to implement this interface on their own data type for it to be viewable by a gtk.TreeView widget.

The model is represented as a hierarchical tree of strongly−typed, columned data. In other words, the model
can be seen as a tree where every node has different values depending on which column is being queried. The
type of data found in a column is determined by using the Python or GObject type system (i.e.
gobject.TYPE_INT, gtk.BUTTON, gobject.TYPE_STRING, etc.). The types are homogeneous per column
across all nodes. It is important to note that this interface only provides a way of examining a model and
observing changes. The implementation of each individual model decides how and if changes are made.

In order to make life simpler for programmers who do not need to write their own specialized model, two
generic models are provided: the gtk.TreeStore and the gtk.ListStore. To use these, the developer
simply pushes data into these models as necessary. These models provide the data structure as well as all
appropriate tree interfaces. As a result, implementing drag and drop, sorting, and storing data is trivial. For the
vast majority of trees and lists, these two models are sufficient.

Models are accessed on a node−column level of granularity. One can query for the value of a model at a
certain node and a certain column on that node. A particular node in a model is referenced using a path or a
gtk.TreeIter object. Most of the interface consists of operations on a gtk.TreeIter.

A path is essentially a potential node. It is a location on a model that may or may not actually correspond to a
node on a specific model. A path can be converted into either an array of unsigned integers or a string. The
string form is a list of numbers separated by a colon. Each number refers to the offset at that level. Thus, the
path "0" refers to the root node and the path "2:4" refers to the fifth child of the third node.

By contrast, a gtk.TreeIter is a reference to a specific node on a specific model. One can convert a path
to a treeiter by calling get_iter(). These treeiters are the primary way of accessing a model and are similar
to the textiters used by gtk.TextBuffer. The model interface defines a set of operations using them for
navigating the model.

It is expected that models fill in the treeiter with private data. For example, the gtk.ListStore model,
which is internally a simple linked list, stores a list node in one of the pointers. The gtk.TreeModelSort
stores an array and an offset in two of the pointers. Additionally, there is an integer field. This field is
generally filled with a unique stamp per model. This stamp is for catching errors resulting from using invalid
treeiters with a model.

The lifecycle of a treeiter can be a little confusing at first. treeiters are expected to always be valid for as long
as the model is unchanged (and doesn't emit a signal). The model is considered to own all outstanding treeiters
and nothing needs to be done to free them from the user's point of view. Additionally, some models guarantee
that an treeiter is valid for as long as the node it refers to is valid (most notably the gtk.TreeStore and
gtk.ListStore). Although generally uninteresting, as one always has to allow for the case where treeiters
do not persist beyond a signal, some very important performance enhancements were made in the sort model.
As a result, the gtk.TREE_MODEL_ITERS_PERSIST flag was added to indicate this behavior.

A gtk.TreeModel object supports some of the Python Mapping protocol that allows you to retrieve a
gtk.TreeModelRow object representing a row in the model. You can also set the values in a row using the

PyGTK 2.0 Reference Manual

Signal Prototypes 686

same protocol. For example, you can retrieve the second row of a gtk.TreeModel using any of:

 treemodelrow = model[1]
 treemodelrow = model[(1,)]
 treemodelrow = model['1']
 treemodelrow = model["1"]

Also if the model has two columns both containing strings then the following will set the values of the third
row.

 model[(2,)] = ('new string value', 'string 2')

You can also retrieve the number of top level items in the gtk.TreeModel by using the Python len()
function:

 n_rows = len(model)

A gtk.TreeModelRowIter object can be retrieved for iterating over the top level rows of a
gtk.TreeModel by calling the Python iter() function:

 treemodelrowiter = iter(model)

Methods

gtk.TreeModel.get_flags

 def get_flags()

Returns : the flags supported by this interface.
The get_flags() method returns a set of flags supported by this interface. The flags are a bitwise
combination of:

gtk.TREE_MODEL_ITERS_PERSIST Treeiters survive all signals emitted by the tree.
gtk.TREE_MODEL_LIST_ONLY The model is a list only, and never has children
The flags supported should not change during the lifecycle of the tree_model.

gtk.TreeModel.get_n_columns

 def get_n_columns()

Returns : The number of columns.
The get_n_columns() method returns the number of columns supported by the treemodel.

gtk.TreeModel.get_column_type

 def get_column_type(index)

index : the column index.
Returns : the type of the column.
The get_column_type() method returns the type of the column.

PyGTK 2.0 Reference Manual

Description 687

gtk.TreeModel.get_iter

 def get_iter(path)

path : a path
Returns : a new gtk.TreeIter that points at path.
The get_iter() method returns a new gtk.TreeIter pointing to path. This method raises a
ValueError exception if path is not a valid tree path.

gtk.TreeModel.get_iter_from_string

 def get_iter_from_string(path_string)

path_string : a string representation of a path.
Returns : a new gtk.TreeIter that points at the path represented by path_string
The get_iter_from_string() method returns a gtk.TreeIter pointing to the path represented by
path_string, if it exists. This method raises a ValueError exception if path_string does not
represent a valid tree path.

gtk.TreeModel.get_string_from_iter

 def get_string_from_iter(iter)

iter : An gtk.TreeIter.
Returns : A string representation of iter

Note

This method is available in PyGTK 2.2 and above.

The get_string_from_iter() method returns a string representation of the path pointed to by iter.
This string is a ':' separated list of numbers. For example, "4:10:0:3" would be an acceptable return value for
this string.

gtk.TreeModel.get_iter_root

 def get_iter_root()

Returns : a new gtk.TreeIter that points at the first path in the treemodel or None
The get_iter_root() method returns a gtk.TreeIter pointing to the path "0" or None if the tree is
empty.

gtk.TreeModel.get_iter_first

 def get_iter_first()

Returns : a new gtk.TreeIter that points at the first path in the treemodel or None
The get_iter_first() method returns a gtk.TreeIter pointing to the path "0" or None if the tree is
empty.

PyGTK 2.0 Reference Manual

gtk.TreeModel.get_iter 688

gtk.TreeModel.get_path

 def get_path(iter)

iter : a gtk.TreeIter.
Returns : the tree path referenced by iter.
The get_path() method returns the tree path referenced by iter.

gtk.TreeModel.get_value

 def get_value(iter, column)

iter : a gtk.TreeIter.
column : the column value to retrieve.
Returns : a value.
The get_value() method returns the value at column at the path pointed to by iter.

gtk.TreeModel.iter_next

 def iter_next(iter)

iter : a gtk.TreeIter.
Returns : a gtk.TreeIter pointing at the next row or None if there is no next row.
The iter_next() method returns a gtk.TreeIter pointing at the row at the current level after the row
referenced by iter. If there is no next row, None is returned. iter is unchanged.

gtk.TreeModel.iter_children

 def iter_children(parent)

parent : the gtk.TreeIter pointing to the parent
Returns : the new gtk.TreeIter to be set to the first child or None
The iter_children() method returns a new gtk.TreeIter pointing to the first child of parent. If
parent has no children, None is returned. parent will remain a valid node after this method has been
called.

gtk.TreeModel.iter_has_child

 def iter_has_child(iter)

iter : a gtk.TreeIter to test for children.
Returns : TRUE if iter has children.
The iter_has_child() method returns TRUE if iter has children, or FALSE otherwise.

gtk.TreeModel.iter_n_children

 def iter_n_children(iter)

iter : a gtk.TreeIter, or None.
Returns : the number of children of iter.

PyGTK 2.0 Reference Manual

gtk.TreeModel.get_path 689

The iter_n_children() method returns the number of children that iter has. As a special case, if iter
is None, then the number of top level nodes is returned.

gtk.TreeModel.iter_nth_child

 def iter_nth_child(parent, n)

parent : a gtk.TreeIter to get the child from, or None.
n : Then index of the desired child.
Returns : the gtk.TreeIter that is set to the nth child or None
The iter_nth_child() method returns a new gtk.TreeIter pointing to the child of parent, with the
index specified by n. The first index is 0. If n is too big, or parent has no children, this method returns
None. parent will remain a valid node after this function has been called. As a special case, if parent is
None, then the treeiter points to the nth root node.

gtk.TreeModel.iter_parent

 def iter_parent(child)

child : The gtk.TreeIter.
Returns : a new gtk.TreeIter set to the parent of child or None
The iter_parent() method returns a gtk.TreeIter pointing to the parent of child. If child is at
the top level, and doesn't have a parent, then None is returned. child will remain a valid node after this
method has been called.

gtk.TreeModel.ref_node

 def ref_node(iter)

iter : a gtk.TreeIter.
The ref_node() method lets the treemodel ref the node that iter points to. This is an optional method for
models to implement. To be more specific, models may ignore this call as it exists primarily for performance
reasons. This function is primarily meant as a way for views to let the caching model know when nodes are
being displayed (and hence, whether or not to cache that node.) For example, a file−system based model
would not want to keep the entire file−hierarchy in memory, just the sections that are currently being
displayed by every current view. A model should be expected to be able to get a treeiter independent of it's
reffed state.

gtk.TreeModel.unref_node

 def unref_node(iter)

iter : a gtk.TreeIter.
The unref_node() method lets the treemodel unref the node that iter points to. This is an optional
method for models to implement. To be more specific, models may ignore this call as it exists primarily for
performance reasons. For more information on what this means, see the ref_node() method. Please note
that nodes that are deleted are not unreffed.

PyGTK 2.0 Reference Manual

gtk.TreeModel.iter_n_children 690

gtk.TreeModel.get

 def get(iter, column, ...)

iter : a gtk.TreeIter pointing at the row to retrieve data value from
column : a column number
... : zero or more column numbers
Returns : a tuple containing the column values

Note

This method is available in PyGTK 2.4 and above.

The get() method returns a tuple containing the values of one or more cells in the row referenced by the
gtk.TreeIter specified by iter. column specifies the first column number to retrieve a value from. The
additional arguments should contain integer column numbers for additional column values. For example, to
get values from columns 0 and 3, you would write:

 value0, value3 = treemodel_get(iter, 0, 3)

gtk.TreeModel.foreach

 def foreach(func, user_data)

func : a function to be called on each row
user_data : the user data to passed to func.
The foreach() method calls func on each node in model in a depth−first fashion. user_data is passed
to func each time it is called. If func returns TRUE, then the operation ceases, and foreach() returns.

The signature of func is:

 def func(model, path, iter, user_data)

where model is the treemodel, path is the current path, and iter is a treeiter pointing to path.

If func is an object method its signature will be:

 def func(self, model, path, iter, user_data)

gtk.TreeModel.row_changed

 def row_changed(path, iter)

path : a path pointing to the changed row
iter : a gtk.TreeIter pointing to the changed row
The row_changed() method emits the "row−changed" signal on the treemodel with the parameters path
and iter that are the path and a treeiter pointing to the path of the changed row.

gtk.TreeModel.row_inserted

 def row_inserted(path, iter)

path : a path pointing to the inserted row

PyGTK 2.0 Reference Manual

gtk.TreeModel.get 691

iter : a gtk.TreeIter pointing to the inserted row
The row_inserted() method emits the "row−inserted" signal on the treemodel with the parameters path
and iter that are the path and a treeiter pointing to the path of the inserted row.

gtk.TreeModel.row_has_child_toggled

 def row_has_child_toggled(path, iter)

path : a path pointing to the changed row
iter : a gtk.TreeIter pointing to the changed row
The row_has_child_toggled() method emits the "row−has−child−toggled" signal on the treemodel
with the parameters path and iter that are the path and a treeiter pointing to the path of the changed row.
This should be called by models after the child state of a node changes.

gtk.TreeModel.row_deleted

 def row_deleted(path)

path : a path pointing to the previous location of the deleted row.
The row_deleted() method emits the "row−deleted" signal on the treemodel. This should be called by
models after a row has been removed. The location pointed to by path should be the location that the deleted
row was at. It may not be a valid location anymore.

gtk.TreeModel.rows_reordered

 def rows_reordered(path, iter, new_order)

path : A tree path pointing to the tree node whose children have been reordered, or None or () or ""
to indicate the top level node.

iter : A valid gtk.TreeIter pointing to the node whose children have been reordered, or None
to indicate the top level node.

new_order : a sequence of integers containing the new indexes of the children, i.e. the former child n is
now at the position specified by new_order[n].

The rows_reordered() method emits the "rows_reordered" signal on the tree model. This method should
be called by a tree model when its rows have been reordered. If iter is None to indicate that the top level
rows have been reordered, path should be None or () or "".

gtk.TreeModel.filter_new

 def filter_new(root=None)

root : a tree path or None.
Returns : A new gtk.TreeModel.

Note

This method is available in PyGTK 2.4 and above.

The filter_new() method creates a new gtk.TreeModel, with the tree model as the child_model and
the virtual root specified by root.

PyGTK 2.0 Reference Manual

gtk.TreeModel.row_inserted 692

Functions

gtk.tree_row_reference_inserted

 def gtk.tree_row_reference_inserted(proxy, path)

proxy : a GObject
path : a row position that was inserted
The gtk.tree_row_reference_inserted() function lets a set of row references know that the model
emitted the "row_inserted" signal for the row specified by path.

gtk.tree_row_reference_deleted

 def gtk.tree_row_reference_deleted(proxy, path)

proxy : a GObject
path : a row position that was deleted
The gtk.tree_row_reference_deleted() function lets a set of row references know that the model
emitted the "row_deleted" signal for the row specified by path.

Signals

The "row−changed" gtk.TreeModel Signal

 def callback(treemodel, path, iter, user_param1, ...)

treemodel : the treemodel that received the signal
path : a path
iter : a gtk.TreeIter pointing at path
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "row−changed" signal is emitted when the row specified by path and pointed to by iter has changed
in the treemodel. Usually, this means that one or more column values have changed.

The "row−deleted" gtk.TreeModel Signal

 def callback(treemodel, path, user_param1, ...)

treemodel : the treemodel that received the signal
path : a path
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "row−deleted" signal is emitted when the row that was specified by path is deleted from treemodel.

The "row−has−child−toggled" gtk.TreeModel Signal

 def callback(treemodel, path, iter, user_param1, ...)

PyGTK 2.0 Reference Manual

Functions 693

treemodel : the treemodel that received the signal
path : a path
iter : a gtk.TreeIter pointing at path
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "row−has−child−toggled" signal is emitted when the child state of the row specified by path and
pointed to by iter has changed in treemodel.

The "row−inserted" gtk.TreeModel Signal

 def callback(treemodel, path, iter, user_param1, ...)

treemodel : the treemodel that received the signal
path : a path
iter : a gtk.TreeIter pointing at path
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "row−inserted" signal is emitted when the row specified by path and pointed to by iter is inserted into
treemodel. The row referenced by iter will be empty so using the get_value() method will always
return None. Connect to the "row−changed" signal if you want to track value changes.

The "rows−reordered" gtk.TreeModel Signal

 def callback(treemodel, path, iter, new_order, user_param1, ...)

treemodel : the treemodel that received the signal
path : a path
iter : a gtk.TreeIter pointing at path
new_order : an array of reordered row numbers
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "rows−reordered" signal is emitted when the treemodel child rows of the row specified by path and
pointed to by iter are reordered. new_order is an array of node index numbers representing the new order
of the rows. The value of new_order cannot be retrieved in PyGTK because it is passed as an opaque
pointer (gobject.GPointer) value. iter may be None and path an empty tuple to indicate that the top
level rows were reordered.

Prev Up Next
gtk.TreeIter Home gtk.TreeModelFilter

gtk.TreeModelFilter
Prev The gtk Class Reference Next

gtk.TreeModelFilter

gtk.TreeModelFilter � a gtk.TreeModel which hides parts of an underlying tree (new in PyGTK 2.4)

PyGTK 2.0 Reference Manual

The "row−has−child−toggled" gtk.TreeModel Signal 694

Synopsis

class gtk.TreeModelFilter(gobject.GObject, gtk.TreeModel, gtk.TreeDragSource):
 def set_visible_func(func, data=None)
 def set_modify_func(types, func, data=None)
 def set_visible_column(column)
 def get_model()
 def convert_child_iter_to_iter(child_iter)
 def convert_iter_to_child_iter(filter_iter)
 def convert_child_path_to_path(child_path)
 def convert_path_to_child_path(filter_path)
 def refilter()
 def clear_cache()

Ancestry

+−− gobject.GObject
 +−− gtk.TreeModelFilter (implements gtk.TreeModel, gtk.TreeDragSource)

Properties

"child−model" Read−Write−Construct
Only

The gtk.TreeModel for the filtermodel to filter. Available in
GTK+ 2.4 and above.

"virtual−root" Read−Write−Construct
Only

The virtual root (relative to the child model) for this filtermodel.
Available in GTK+ 2.4 and above.

Description

Note

This object is available in PyGTK 2.4 and above.

A gtk.TreeModelFilter is a tree model which wraps another tree model, and can do the following
things:

Filter specific rows, based on data from a "visible column", a column storing booleans indicating
whether the row should be filtered or not, or based on the return value of a "visible function", which
gets a model, iter and user_data and returns a boolean indicating whether the row should be
filtered or not.

•

Modify the "appearance" of the model, using a modify function. This is extremely powerful and
allows for just changing some values and also for creating a completely different synthetic model
based on the child model. For example, you can create a model with columns synthesized from the
data in the child model.

•

Set a different root node, also known as a "virtual root". You can pass in a tree path indicating the root
node for the filter at construction time.

•

A gtk.TreeModelFilter is created using the gtk.TreeModel.filter_new() method. For
example:

 liststore = gtk.ListStore(gobject.TYPE_INT, gobject.TYPE_STRING)
 modelfilter = liststore.filter_new()

PyGTK 2.0 Reference Manual

Synopsis 695

Methods

gtk.TreeModelFilter.set_visible_func

 def set_visible_func(func, data=None)

func : a function called to determine the visibility of a row
data : User data to pass to func

Note

This method is available in PyGTK 2.4 and above.

The set_visible_func() method sets the visible function used when filtering the rows of the treemodel
filter to the value of func. data is the user data that is passed to func (see below). This method will fail if
the set_visible_column() method has already been called. The visible function signature is:

 def visible_func(model, iter, user_data):

where model is the child gtk.TreeModel, iter is a gtk.TreeIter pointing at a row in model and
user_data is the data parameter. The function should return TRUE if the row should be visible.

gtk.TreeModelFilter.set_modify_func

 def set_modify_func(types, func, data=None)

types : a sequence containing the column types
func : a function that is called to provide the data for a specific row and column
data : user data to pass to the modify function, or None.

Note

This method is available in PyGTK 2.4 and above.

The set_modify_func() method uses the list of column types specified by types and the function
specified by func to provide a synthetic model based on the child model of the gtk.TreeModelFilter.
data is passed to func when it is called. func is called for each data access to return the data which should
be displayed at the location specified using the parameters of the modify function.

The signature of func is:

 def func(model, iter, column, user_data)

where model is the gtk.TreeModelFilter, iter is a gtk.TreeIter pointing at a row in model,
column is the column number to provide the value for and user_data is data. func should returns the
generated value for the specified location in model.

Note

This method must be called before the gtk.TreeModelFilter is associated with a gtk.TreeView and
before either of the gtk.TreeModel.get_n_columns() or gtk.TreeModel.get_column_type()
methods are called. Also this method can only be called once − there is no way to change the modify function
once it is set.

Since func is called for every access to a value in model, it will be slow for models with a large number of
rows and/or columns.

PyGTK 2.0 Reference Manual

Methods 696

gtk.TreeModelFilter.set_visible_column

 def set_visible_column(column)

column : the number of the column containing the visible information.

Note

This method is available in PyGTK 2.4 and above.

The set_visible_column() method sets the visible column setting to the value of column. The visible
column setting contains the number of the "child−model" column that is used to determine the visibility of the
model rows. The specified column should be a column of type gobject.TYPE_BOOLEAN, where True
means that a row is visible, and False, not visible. This method will fail if the set_visible_func()
method has already been called.

gtk.TreeModelFilter.get_model

 def get_model()

Returns : the child gtk.TreeModel

Note

This method is available in PyGTK 2.4 and above.

The get_model() method returns the child gtk.TreeModel of the treemodel filter

gtk.TreeModelFilter.convert_child_iter_to_iter

 def convert_child_iter_to_iter(child_iter)

child_iter : A valid gtk.TreeIter pointing to a row on the child model.
Returns : a gtk.TreeIter pointing to a row in the treemodel filter.

Note

This method is available in PyGTK 2.4 and above.

The convert_child_iter_to_iter() method returns a gtk.TreeIter pointing to the row in the
treemodel filter that corresponds to the child treemodel row pointed to by the gtk.TreeIter specified by
child_iter.

gtk.TreeModelFilter.convert_iter_to_child_iter

 def convert_iter_to_child_iter(filter_iter)

filter_iter : A valid gtk.TreeIter pointing to a row in the treemodel filter.
Returns : a gtk.TreeIter pointing to a row in the child treemodel.

Note

This method is available in PyGTK 2.4 and above.

The convert_iter_to_child_iter() method a gtk.TreeIter pointing to the row in the child
treemodel that corresponds to the treemodel filter row pointed to by the gtk.TreeIter specified by

PyGTK 2.0 Reference Manual

gtk.TreeModelFilter.set_visible_column 697

filter_iter.

gtk.TreeModelFilter.convert_child_path_to_path

 def convert_child_path_to_path(child_path)

child_path : a tree path in the child treemodel to convert.
Returns : a treemodel filter tree path, or None.

Note

This method is available in PyGTK 2.4 and above.

The convert_child_path_to_path() method returns a treemodel filter tree path that corresponds to
the child treemodel tree path specified by child_path. If child_path isn't a valid path on the child
model, None is returned.

gtk.TreeModelFilter.convert_path_to_child_path

 def convert_path_to_child_path(filter_path)

filter_path : a treemodel filter tree path to convert.
Returns : a child treemodel tree path, or None.

Note

This method is available in PyGTK 2.4 and above.

The convert_path_to_child_path() method returns a child treemodel tree path that corresponds to
the treemodel filter tree path specified by filter_path. If filter_path does not point to a row in the
child model, None is returned.

gtk.TreeModelFilter.refilter

 def refilter()

Note

This method is available in PyGTK 2.4 and above.

The refilter() method emits the gtk.TreeModel "row−changed" signal for each row in the child
model, thereby causing the filter to re−evaluate whether a row is visible or not.

gtk.TreeModelFilter.clear_cache

 def clear_cache()

Note

This method is available in PyGTK 2.4 and above.

The clear_cache() method clears the treemodel filter of any cached iterators that haven't been reffed with
the gtk.TreeModel.ref_node(). This might be useful if the child model being filtered is static (and
doesn't change often) and there has been a lot of unreffed access to nodes. As a side effect of this function, all

PyGTK 2.0 Reference Manual

Note 698

unreffed iters will be invalid. This method should almost never be called by an application.

Prev Up Next
gtk.TreeModel Home gtk.TreeModelSort

gtk.TreeModelSort
Prev The gtk Class Reference Next

gtk.TreeModelSort

gtk.TreeModelSort � a tree model that is a sorted version of a child gtk.TreeModel

Synopsis

class gtk.TreeModelSort(gobject.GObject, gtk.TreeModel, gtk.TreeSortable):
gtk.TreeModelSort(child_model)

 def get_model()
 def convert_child_path_to_path(child_path)
 def convert_child_iter_to_iter(sort_iter, child_iter)
 def convert_path_to_child_path(sorted_path)
 def convert_iter_to_child_iter(child_iter, sorted_iter)
 def reset_default_sort_func()
 def clear_cache()
 def iter_is_valid(iter)

Ancestry

+−− gobject.GObject
 +−− gtk.TreeModelSort (implements gtk.TreeModel, gtk.TreeSortable)

Properties

"model" Read−Write−Construct The child model for the gtk.TreeModelSort to sort.

Description

A gtk.TreeModelSort is a sorted model of its child model. A gtk.TreeModelSort implements the
gtk.TreeModel interface and the gtk.TreeSortable interface to manage the sort functions.

Constructor

gtk.TreeModelSort(child_model)

child_model : a child gtk.TreeModel
Returns : A new gtk.TreeModel.
Creates a new gtk.TreeModel, with child_model as the child model.

PyGTK 2.0 Reference Manual

Note 699

Methods

gtk.TreeModelSort.get_model

 def get_model()

Returns : the "child model" being sorted
The get_model() method returns the model that the gtk.TreeModelSort is sorting.

gtk.TreeModelSort.convert_child_path_to_path

 def convert_child_path_to_path(child_path)

child_path : A child tree path to convert
Returns : A new tree path in the treemodelsort, or None
The convert_child_path_to_path() method converts the path in the child model specified by
child_path to a path relative to the treemodelsort. That is, child_path points to a path in the child
model. The returned path will point to the same row in the sorted model. If child_path isn't a valid path on
the child model, then None is returned.

gtk.TreeModelSort.convert_child_iter_to_iter

 def convert_child_iter_to_iter(sort_iter, child_iter)

sort_iter : None or a gtk.TreeIter for backward compatibility.
child_iter : A valid gtk.TreeIter pointing to a row on the child model
Returns : A gtk.TreeIter pointing to the same path in the sorted model.
The convert_child_iter_to_iter() method returns a gtk.TreeIter that points to the row in the
treemodelsort that corresponds to the row pointed to by child_iter. sort_iter parameter should be
None but can specify a gtk.TreeIter for backward compatibility.

gtk.TreeModelSort.convert_path_to_child_path

 def convert_path_to_child_path(sorted_path)

sorted_path : a path in the sorted model
Returns : a new path in the child model, or None
The convert_path_to_child_path() method returns a path in the child model that refers to the same
row as the path in the sorted model specified by sorted_path. That is, sorted_path points to a location
in treemodelsort and the returned path will point to the same location in the child model. If sorted_path
does not point to a location in the child model, None is returned.

gtk.TreeModelSort.convert_iter_to_child_iter

 def convert_iter_to_child_iter(child_iter, sorted_iter)

child_iter : None or a gtk.TreeIter for backward compatibility.
sorted_iter : A valid gtk.TreeIter pointing to a row on tree_model_sort.
Returns : A gtk.TreeIter that points to a row in the child model
The convert_iter_to_child_iter() method returns a gtk.TreeIter that points to the row in the

PyGTK 2.0 Reference Manual

Methods 700

child model that is the same row pointed to by sorted_iter in the treemodelsort. child_iter should be
None but can specify a gtk.TreeIter for backward compatibility.

gtk.TreeModelSort.reset_default_sort_func

 def reset_default_sort_func()

The reset_default_sort_func() method resets the default sort function to be in the 'unsorted' state.
That is, it is in the same order as the child model. It will re−sort the model to be in the same order as the child
model only if the gtk.TreeModelSort is in 'unsorted' state.

gtk.TreeModelSort.clear_cache

 def clear_cache()

The clear_cache() method clears the treemodelsort of any cached iterators that haven't been reffed with
the ref_node() method. This might be useful if the child model being sorted is static (and doesn't change
often) and there has been a lot of unreffed access to nodes. As a side effect of this function, all unreffed
gtk.TreeIter objects will be invalid.

gtk.TreeModelSort.iter_is_valid

 def iter_is_valid(iter)

iter : A gtk.TreeIter.
Returns : TRUE if iter is valid

Note

This method is available in PyGTK 2.2 and above.

The iter_is_valid() method checks if the gtk.TreeIter specified by iter is valid for the
treemodel sort.

Warning

This method is slow. Only use it for debugging and/or testing purposes.

Prev Up Next
gtk.TreeModelFilter Home gtk.TreeModelRow

gtk.TreeRowReference
Prev The gtk Class Reference Next

gtk.TreeRowReference

gtk.TreeRowReference � an object maintaining a persistent reference to a gtk.TreeModel row (new in
PyGTK 2.4)

PyGTK 2.0 Reference Manual

gtk.TreeModelSort.convert_iter_to_child_iter 701

Synopsis

class gtk.TreeRowReference(gobject.GBoxed):
gtk.TreeRowReference(model, path)

 def get_path()
 def valid()
 def copy()
 def free()

Description

Note

This object is available in PyGTK 2.4 and above.

A gtk.TreeRowReference is an object that points to a row in a gtk.TreeModel similar to a
gtk.TreeIter. A gtk.TreeRowReference, unlike a gtk.TreeIter, maintains a persistent
reference in spite of changes in the model.

Constructor

gtk.TreeRowReference(model, path)

model : a gtk.TreeModel
path : a valid tree path to monitor
Returns : a gtk.TreeRowReference, or None

Note

This constructor is available in PyGTK 2.4 and above.

Creates a row reference pointing to the treemodel row specified by model and path. This reference will
continue pointing to the node in spite of changes in model. It listens to all signals emitted by model, and
updates its path appropriately. If path isn't a valid path in model, None is returned.

Methods

gtk.TreeRowReference.get_path

 def get_path()

Returns : A current path, or NULL.

Note

This method is available in PyGTK 2.4 and above.

The get_path() method returns the path that the row reference currently points to, or None if the path
pointed to is no longer valid.

PyGTK 2.0 Reference Manual

Synopsis 702

gtk.TreeRowReference.valid

 def valid()

Returns : TRUE if the row reference points to a valid path.

Note

This method is available in PyGTK 2.4 and above.

The valid() method returns TRUE if the row reference is not None and refers to a current valid path.

gtk.TreeRowReference.copy

 def copy()

Returns : a copy of the row reference

Note

This method is available in PyGTK 2.4 and above.

The copy() method returns a copy of the tree row reference.

gtk.TreeRowReference.free

 def free()

Note

This method is available in PyGTK 2.4 and above.

The free() method frees the tree row reference. The row reference may be None.

Prev Up Next
gtk.TreeModelRowIter Home gtk.TreeSelection

gtk.TreeSelection
Prev The gtk Class Reference Next

gtk.TreeSelection

gtk.TreeSelection � the selection object for gtk.TreeView

Synopsis

class gtk.TreeSelection(gtk.Object):
 def set_mode(type)
 def get_mode()
 def set_select_function(func, data=None)
 def get_tree_view()
 def get_selected()
 def get_selected_rows()
 def count_selected_rows()
 def selected_foreach(func, data=None)

PyGTK 2.0 Reference Manual

gtk.TreeRowReference.valid 703

 def select_path(path)
 def unselect_path(path)
 def select_iter(iter)
 def unselect_iter(iter)
 def path_is_selected(path)
 def iter_is_selected(iter)
 def select_all()
 def unselect_all()
 def select_range(start_path, end_path)
 def unselect_range(start_path, end_path)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.TreeSelection

Signal Prototypes

"changed" def callback(treeselection, user_param1, ...)

Description

The gtk.TreeSelection object is a helper object to manage the selection for a gtk.TreeView widget.
The gtk.TreeSelection object is automatically created when a new gtk.TreeView widget is created,
and cannot exist independent of this widget. The primary reason the gtk.TreeSelection object exists is
for cleanliness of code and API. That is, there is no conceptual reason all these functions could not be
methods on the gtk.TreeView widget instead of a separate function. The gtk.TreeSelection object
is retrieved from a gtk.TreeView by calling the gtk.TreeView.get_selection() method. It can be
manipulated to check the selection status of the tree, as well as select and deselect individual rows. Selection
is done completely on the view side. As a result, multiple views of the same model can have completely
different selections. Additionally, you cannot change the selection of a row on the model that is not currently
displayed by the view without expanding its parents first.

One of the important things to remember when monitoring the selection of a view is that the "changed" signal
is mostly a hint. That is, it may only emit one signal when a range of rows is selected. Additionally, it may on
occasion emit a "changed" signal when nothing has happened (mostly as a result of programmers calling the
select_path() or select_iter() methods on an already selected row).

Methods

gtk.TreeSelection.set_mode

 def set_mode(type)

type : the selection mode
The set_mode() method sets the selection mode of the treeselection to the mode specified by type. The
value of type must be one of: gtk.SELECTION_NONE, gtk.SELECTION_SINGLE,
gtk.SELECTION_BROWSE or gtk.SELECTION_MULTIPLE. See the GTK Selection Mode Constants
description for more detail.

If the previous type was gtk.SELECTION_MULTIPLE, then the anchor is kept selected, if it was
previously selected.

PyGTK 2.0 Reference Manual

Synopsis 704

gtk.TreeSelection.get_mode

 def get_mode()

Returns : the current selection mode
The get_mode() method returns the selection mode for treeselection. See the set_mode() method for more
information.

gtk.TreeSelection.set_select_function

 def set_select_function(func, data)

func : the selection function.
data : the selection function's data.
The set_selection_function() method sets the selection function to func (a function or method). If
the selection function is set, it is called before any node is selected or unselected, giving some control over
which nodes are selected. The selection function should return TRUE if the state of the node may be toggled,
and FALSE if the state of the node should be left unchanged. The signature of the selection function callback
is:

 def selectfunction(selection, model, path, path_currently_selected, ...)

 def selectmethod(self, selection, model, path, is_selected, ...)

where selection is the gtk.TreeSelection, model is the gtk.TreeModel used by the
gtkTreeView associated with selection, path is the path of the selected row, is_selected is TRUE if the
row is currently selected and ... is the user data if any (may not be present if data was None). If func is a
method then self is the object that the method is called upon.

gtk.TreeSelection.get_tree_view

 def get_tree_view()

Returns : a gtk.TreeView
The get_tree_iter() method returns the tree view associated with the treeselection.

gtk.TreeSelection.get_selected

 def get_selected()

Returns : a 2−tuple containing a reference to the gtk.TreeModel and a gtk.TreeIter
pointing to the currently selected node.

The get_selected() method returns a 2−tuple containing the treemodel and a treeiter pointing to the
selected node in the treemodel if the treeselection is set to gtk.SELECTION_SINGLE or
gtk.SELECTION_BROWSE. The returned gtk.TreeIter will be None if there is no row selected. This
method will not work if you use selection is gtk.SELECTION_MULTIPLE.

gtk.TreeSelection.get_selected_rows

 def get_selected_rows()

Returns : a 2−tuple containing the tree model and a list of the tree paths of all selected rows.

PyGTK 2.0 Reference Manual

gtk.TreeSelection.get_mode 705

Note

This method is available in PyGTK 2.2 and above.

The get_selected_rows() method returns a 2−tuple containing a gtk.TreeModel and a list of the
tree paths of all selected rows. Additionally, if you are planning on modifying the tree model after calling this
method, you may want to convert the returned list into a list of gtk.TreeRowReference objects. To do
this, you can use the gtk.TreeRowReference() constructor.

gtk.TreeSelection.count_selected_rows

 def count_selected_rows()

Returns : The number of rows selected.

Note

This method is available in PyGTK 2.2 and above.

The count_selected_rows() method returns the number of rows that have been selected.

gtk.TreeSelection.selected_foreach

 def selected_foreach(func, data=None)

func : the function or method to call for each selected node.
data : the user data to pass to func.
The selected_foreach() method calls the function or method specified by func for each selected node
passing the user data specified by data. The signature of func is:

 def foreachfunction(treemodel, path, iter, ...)

 def foreachmethod(self, treemodel, path, iter, ...)

where treemodel is the gtk.TreeModel being viewed, path is the path of the selected row, iter is a
gtk.TreeIter pointing to the selected row and ... is the user data if any (may not be present if data
was None). If func is a method then self is the object that the method is called upon.

Note

You cannot modify the tree or selection in the callback function.

gtk.TreeSelection.select_path

 def select_path(path)

path : the tree path to be selected.
The select_path() method selects the row at path.

gtk.TreeSelection.unselect_path

 def unselect_path(path)

path : the tree path to be unselected.

PyGTK 2.0 Reference Manual

Note 706

The unselect_path() method unselects the row at path.

gtk.TreeSelection.select_iter

 def select_iter(iter)

iter : the gtk.TreeIter to be selected.
The select_iter() method selects the row pointed to by the gtk.TreeIter specified by iter.

gtk.TreeSelection.unselect_iter

 def unselect_iter(iter)

iter : the gtk.TreeIter to be unselected.
The unselect_iter() method unselects the row pointed to by the gtk.TreeIter specified by iter.

gtk.TreeSelection.path_is_selected

 def path_is_selected(path)

path : A tree path to check if selected.
Returns : TRUE if path is selected.
The path_is_selected() method returns TRUE if the row pointed to by path is currently selected. If
path does not point to a valid location, FALSE is returned.

gtk.TreeSelection.iter_is_selected

 def iter_is_selected(iter)

iter : a gtk.TreeIter
Returns : TRUE, if the row pointed to by iter is selected
The iter_is_selected() method returns TRUE if the row pointed to by iter is currently selected.

gtk.TreeSelection.select_all

 def select_all()

The select_all() method selects all the nodes. The treeselection is must be set to
gtk.SELECTION_MULTIPLE mode.

gtk.TreeSelection.unselect_all

 def unselect_all()

The unselect_all() method unselects all the nodes.

gtk.TreeSelection.select_range

 def select_range(start_path, end_path)

start_path : the initial node path of the range.

PyGTK 2.0 Reference Manual

gtk.TreeSelection.unselect_path 707

end_path : the final node path of the range.
The select_range() method selects a range of nodes specified by the tree paths start_path and
end_path inclusive.

gtk.TreeSelection.unselect_range

 def unselect_range(start_path, end_path)

start_path : The initial node of the range.
end_path : The final node of the range.

Note

This method is available in PyGTK 2.2 and above.

The unselect_range() method unselects the range of nodes specified by the tree paths start_path
and end_path inclusive.

Signals

The "changed" gtk.TreeSelection Signal

 def callback(treeselection, user_param1, ...)

treeselection : the treeselection that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "changed" signal is emitted when the selection has changed.

Prev Up Next
gtk.TreeRowReference Home gtk.TreeSortable

gtk.TreeSortable
Prev The gtk Class Reference Next

gtk.TreeSortable

gtk.TreeSortable � an interface for sorting a gtk.TreeModel

Synopsis

class gtk.TreeSortable(gobject.GInterface):
 def sort_column_changed()
 def get_sort_column_id()
 def set_sort_column_id(sort_column_id, order)
 def set_sort_func(sort_column_id, sort_func, user_data=None)
 def set_default_sort_func(sort_func, user_data=None)
 def has_default_sort_func()

PyGTK 2.0 Reference Manual

gtk.TreeSelection.select_range 708

Signal Prototypes

"sort−column−changed" def callback(treesortable, user_param1, ...)

Description

The gtk.TreeSortable interface provide the common methods for a gtk.TreeModel to implement a
sorted model for a gtk.TreeView. See the gtk.TreeModelSort for an example of a treemodel that
implements the gtk.TreeSortable interface. The key element of the interface is a "sort column ID"
which is an arbitrary integer value referring to a sort function and associated user data. A sort column ID must
be greater than or equal to zero. A usable sort column ID is created by using the set_sort_func() method.
The sort column ID can then be used for sorting a gtk.ListStore or gtk.TreeStore using the
set_sort_column_id() method.

The gtk.ListStore and gtk.TreeStore objects automatically setup sort column IDs corresponding to
the columns in the store. These sort column IDs are associated with an internal comparison function that
handles the fundamental types:

gboolean•
str•
int•
long•
float•

Note

Once a sort column ID has been set on a gtk.TreeModel implementing the gtk.TreeSortable
interface it cannot be returned to the original unsorted state. You can change the sort function or use a default
sort function but you cannot set the gtk.TreeModel to have no sort function.

Methods

gtk.TreeSortable.sort_column_changed

 def sort_column_changed()

The sort_column_changed() method emits the "sort_column_changed" signal on the treesortable object.

gtk.TreeSortable.get_sort_column_id

 def get_sort_column_id()

Returns : a tuple containing the sort column id and the sort type: gtk.SORT_ASCENDING or
gtk.SORT_DESCENDING

The get_sort_column_id() method returns a tuple containing the current sort column ID and the sort
type (either gtk.SORT_ASCENDING or gtk.SORT_DESCENDING), if applicable. If the sort column ID is
not set, then the tuple (−2, 0) is returned. If the sort column ID is set to −1 indicating the default sort
function is to be used this method returns (None, None)

PyGTK 2.0 Reference Manual

Signal Prototypes 709

gtk.TreeSortable.set_sort_column_id

 def set_sort_column_id(sort_column_id, order)

sort_column_id : the sort column id to set
order : the sort order: gtk.SORT_ASCENDING or gtk.SORT_DESCENDING
The set_sort_column_id() method sets the current sort comparison function to that associated with the
sort column ID specified by sort_column_id with the sort order type specified by order. The value of
order must be either: gtk.SORT_ASCENDING or gtk.SORT_DESCENDING. The treesortable will resort
itself to reflect this change, after emitting a "sort_column_changed" signal.

If sort_column_id is −1, then the default sort function will be used, if it is set. If a default sort function is
not set then the sort column ID is not changed.

gtk.TreeSortable.set_sort_func

 def set_sort_func(sort_column_id, sort_func, user_data=None)

sort_column_id : the sort column id to set the function for
sort_func : The sorting function
user_data : the user data to pass to the sort func, or None
The set_sort_func() method sets the comparison function (or method) used when sorting on the sort
column ID specified by column_id to the value specified by sort_func. If the current sort column id of
the treesortable is the same as sort_column_id, the model will be resorted. The signature of the
comparison function (or method) is:

 def comparefunction(treemodel, iter1, iter2, user_data)

 def comparemethod(self, treemodel, iter1, iter2, user_data)

where treemodel is the tree model implementing the gtk.TreeSortable interface, iter1 and
iter2 point at the rows to compare and user_data is the user data specified in set_sort_func() or
None. If sort_func is a method then self is the object associated with the method.

The comparison callback should return −1 if the iter1 row should come before the iter2 row, 0 if the
rows are equal, or 1 if the iter1 row should come after the iter2 row.

gtk.TreeSortable.set_default_sort_func

 def set_default_sort_func(sort_func, user_data=None)

sort_func : the sorting function
user_data : the user data to pass to sort_func, or None
The set_default_sort_func() method sets the default comparison function (or method) to the value of
sort_func. If the current sort column id of the treesortable is −1 (the get_sort_column_id() method
returns (None, None)), then the model will be resorted using the sort_func. See the set_sort_func()
method for more details on the signature of the comparison function.

gtk.TreeSortable.has_default_sort_func

 def has_default_sort_func()

Returns : TRUE, if the model has a default sort function

PyGTK 2.0 Reference Manual

gtk.TreeSortable.set_sort_column_id 710

The has_default_sort_func() method returns TRUE if the model has a default sort function. This is
used primarily by gtk.TreeViewColumn to determine if a model can go back to the default state, or not.

Signals

The "sort−column−changed" gtk.TreeSortable Signal

 def callback(treesortable, user_param1, ...)

treesortable : the treesortable that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "sort−column−changed" signal is emitted when the sort_column_changed() method is called or the
sort column is changed using the set_sort_column_id() method.

Prev Up Next
gtk.TreeSelection Home gtk.TreeStore

gtk.TreeStore
Prev The gtk Class Reference Next

gtk.TreeStore

gtk.TreeStore � a model for tree widgets with columns

Synopsis

class gtk.TreeStore(gobject.GObject, gtk.TreeModel, gtk.TreeDragSource, gtk.TreeDragDest, gtk.TreeSortable):
gtk.TreeStore(...)

 def set_value(iter, column, value)
 def set(iter, ...)
 def remove(iter)
 def insert(parent, position, row=None)
 def insert_before(parent, sibling, row=None)
 def insert_after(parent, sibling, row=None)
 def prepend(parent, row=None)
 def append(parent, row=None)
 def is_ancestor(iter, descendant)
 def iter_depth(iter)
 def clear()
 def iter_is_valid(iter)
 def reorder(parent, new_order)
 def swap(a, b)
 def move_after(iter, position)
 def move_before(iter, position)

Ancestry

+−− gobject.GObject
 +−− gtk.TreeStore (implements gtk.TreeModel, gtk.TreeDragSource, gtk.TreeDragDest, gtk.TreeSortable)

PyGTK 2.0 Reference Manual

gtk.TreeSortable.has_default_sort_func 711

Description

A gtk.TreeStore is a model for multi−columned tree widgets. A gtk.TreeStore is a subclass of
gobject.GObject and implements the gtk.TreeModel, gtk.TreeDragSource, gtk.TreeDragDest
and gtk.TreeSortable interfaces.

Constructor

gtk.TreeStore(...)

... : one or more column types
Returns : a new gtk.TreeStore
Creates a new tree store as with one or more columns each of the types passed in. As an example:

 gtk.TreeStore(gobject.TYPE_INT, gobject.TYPE_STRING, gtk.gdk.Pixbuf)

will create a new gtk.TreeStore with three columns, of type int, string and gtk.gdk.Pixbuf
respectively.

Methods

gtk.TreeStore.set_value

 def set_value(iter, column, value)

iter : a gtk.TreeIter for the row being modified
column : the column number to modify
value : a new value for the cell
The set_value() method sets the data in the cell specified by iter and column to the value specified by
value. The type of value must be convertible to the type of the column.

gtk.TreeStore.set

 def set(iter, ...)

iter : a gtk.TreeIter for the row being modified
... : one or more column ID−value pairs
The set() method sets the value of one or more cells in the row referenced by iter. The argument list
following iter should contain pairs of integer column numbers followed by the value to be set. For example,
to set column 0 with type gobject.TYPE_STRING to "Foo", you would write:

 store.set(iter, 0, "Foo")

gtk.TreeStore.remove

 def remove(iter)

iter : a gtk.TreeIter
Returns : None in PyGTK 2.0. Returns TRUE in PyGTK 2.2 and above if iter is still valid.

PyGTK 2.0 Reference Manual

Description 712

The remove() method removes the row pointed to by iter from the treestore. After being removed, iter
is set to the next valid row at that level, or invalidated if it previously pointed to the last one.

gtk.TreeStore.insert

 def insert(parent, position, row=None)

parent : a gtk.TreeIter, or None
position : the position to insert the new row
row : an optional list or tuple containing column values (in order) to set on the row or None
Returns : a gtk.TreeIterpointing to the new row
The insert() method inserts a new row at position. If parent is not None, then the row will be made
a child of parent. Otherwise, the row will be created at the toplevel. If position is larger than the
number of rows at that level, then the new row will be inserted to the end of the list. This method returns a
gtk.TreeIter pointing at the new row. If row is not None it must be a tuple or list containing ordered
column values that are used to set values in the columns of the row.

gtk.TreeStore.insert_before

 def insert_before(parent, sibling, row=None)

parent : a gtk.TreeIter, or None
sibling : a gtk.TreeIter, or None
row : an optional list or tuple containing ordered column values to set on the row or None
Returns : a gtk.TreeIterpointing to the new row
The insert_before() method inserts a new row before the row pointed to by sibling. If sibling is
None, then the row will be appended to the children of the row pointed to by parent. If parent and
sibling are None, the row will be appended to the toplevel. If both sibling and parent are set, then
parent must be the parent of sibling. When sibling is set, parent is optional. This method returns a
gtk.TreeIter pointing at the new row. If row is not None it must be a tuple or list containing ordered
column values that are used to set values in the columns of the row.

gtk.TreeStore.insert_after

 def insert_after(parent, sibling, row=None)

parent : a gtk.TreeIter, or None
sibling : a gtk.TreeIter, or None
row : a tuple or list containing ordered column values to be set in the new row
Returns : a gtk.TreeIterpointing to the new row
The insert_after() method inserts a new row after the row pointed to by sibling. If sibling is
None, then the row will be prepended to the beginning of the children of parent. If parent and sibling
are None, then the row will be prepended to the toplevel. If both sibling and parent are set, parent
must be the parent of sibling. When sibling is set, parent is optional. This method returns a
gtk.TreeIter pointing at the new row. If row is not None it must be a tuple or list containing ordered
column values that are used to set values in the columns of the row.

PyGTK 2.0 Reference Manual

gtk.TreeStore.remove 713

gtk.TreeStore.prepend

 def prepend(parent, row=None)

parent : a gtk.TreeIter, or None
row : a tuple or list containing ordered column values to be set in the new row
Returns : a gtk.TreeIterpointing to the new row
The prepend() method prepends a new row to the treestore. If parent is not None, the new row will be
prepended before the first child of parent, otherwise it will prepend a row to the top level. This method
returns a gtk.TreeIter pointing at the new row. If row is not None it must be a tuple or list containing
ordered column values that are used to set values in the columns of the row.

gtk.TreeStore.append

 def append(parent, row=None)

parent : a gtk.TreeIter, or None
row : a tuple or list containing ordered column values to be set in the new row
Returns : a gtk.TreeIterpointing to the new row
The append() method appends a new row to the treestore. If parent is not None, the new row will be
prepended after the last child of parent, otherwise it will append a row to the top level. This method returns
a gtk.TreeIter pointing at the new row. If row is not None it must be a tuple or list containing ordered
column values that are used to set values in the columns of the row.

gtk.TreeStore.is_ancestor

 def is_ancestor(iter, descendant)

iter : a gtk.TreeIter
descendant : a gtk.TreeIter
Returns : TRUE, if iter is an ancestor of descendant
The is_ancestor() method returns TRUE if the row pointed to by iter is an ancestor of the row pointed
to by descendant. That is, iter is the parent (or grandparent or great−grandparent) of descendant.

gtk.TreeStore.iter_depth

 def iter_depth(iter)

iter : a gtk.TreeIter
Returns : the depth of iter
The iter_depth() method returns the depth of the row pointed to by iter. This will be 0 for anything on
the root level, 1 for anything down a level, etc.

gtk.TreeStore.clear

 def clear()

The clear() method removes all rows from the treestore.

PyGTK 2.0 Reference Manual

gtk.TreeStore.prepend 714

gtk.TreeStore.iter_is_valid

 def iter_is_valid(iter)

iter : a gtk.TreeIter.
Returns : TRUE if iter is valid for the tree store,

Note

This method is available in PyGTK 2.2 and above.

The iter_is_valid() method returns TRUE if iter is a valid gtk.TreeIter for the tree store.

Warning

This function is slow. Only use it for debugging and/or testing purposes.

gtk.TreeStore.reorder

 def reorder(parent, new_order)

parent : a gtk.TreeIter.

new_order : a list of integers mapping the new position of each child to its old position before the
re−ordering, i.e. new_order[newpos] = oldpos.

Note

This method is available in PyGTK 2.2 and above.

The reorder() method reorders the children of the tree store node pointed to by parent to match the order
of the list of row numbers contained in new_order. Note that this method only works with unsorted stores.

gtk.TreeStore.swap

 def swap(a, b)

a : a gtk.TreeIter.
b : another gtk.TreeIter.

Note

This method is available in PyGTK 2.2 and above.

The swap() method swaps the tree store nodes pointed to by a and b in the same level of the tree store. Note
that this method only works with unsorted stores.

gtk.TreeStore.move_after

 def move_after(iter, position)

iter : a gtk.TreeIter.
position : a second gtk.TreeIter or None.

PyGTK 2.0 Reference Manual

gtk.TreeStore.iter_is_valid 715

Note

This method is available in PyGTK 2.2 and above.

The move_after() method moves the tree store node specified by iter to the position after the node
specified by position. iter and position should be in the same level. Note that this method only
works with unsorted stores. If position is None, iter will be moved to the start of the level.

gtk.TreeStore.move_before

 def move_before(iter, position)

iter : a gtk.TreeIter.
position : a gtk.TreeIter or None.

Note

This method is available in PyGTK 2.2 and above.

The move_before() method moves the tree store node pointed to by iter to the position before the node
specified by position. iter and position should be in the same level. Note that this method only
works with unsorted stores. If position is None, iter will be moved to the end of the level.

Prev Up Next
gtk.TreeSortable Home gtk.TreeView

gtk.TreeView
Prev The gtk Class Reference Next

gtk.TreeView

gtk.TreeView � a widget for displaying both trees and lists.

Synopsis

class gtk.TreeView(gtk.Container):
gtk.TreeView(model=None)

 def get_model()
 def set_model(model=None)
 def get_selection()
 def get_hadjustment()
 def set_hadjustment(adjustment)
 def get_vadjustment()
 def set_vadjustment(adjustment)
 def get_headers_visible()
 def set_headers_visible(headers_visible)
 def columns_autosize()
 def set_headers_clickable(active)
 def set_rules_hint(setting)
 def get_rules_hint()
 def append_column(column)
 def remove_column(column)
 def insert_column(column, position)
 def insert_column_with_attributes(position, title, cell, ...)
 def insert_column_with_data_func(position, title, cell, func, data=None)
 def get_column(n)

PyGTK 2.0 Reference Manual

Note 716

 def get_columns()
 def move_column_after(column, base_column)
 def set_expander_column(column)
 def get_expander_column()
 def set_column_drag_function(func, user_data)
 def scroll_to_point(tree_x, tree_y)
 def scroll_to_cell(path, column, use_align, row_align, col_align)
 def row_activated(path, column)
 def expand_all()
 def collapse_all()
 def expand_to_path(path)
 def expand_row(path, open_all)
 def collapse_row(path)
 def map_expanded_rows(func, data)
 def row_expanded(path)
 def set_reorderable(reorderable)
 def get_reorderable()
 def set_cursor(path, focus_column=None, start_editing=False)
 def set_cursor_on_cell(path, focus_column=None, focus_cell=None, start_editing=False)
 def get_cursor()
 def get_bin_window()
 def get_path_at_pos(x, y)
 def get_cell_area(path, column)
 def get_background_area(path, column)
 def get_visible_rect()
 def widget_to_tree_coords(wx, wy)
 def tree_to_widget_coords(tx, ty)
 def enable_model_drag_source(start_button_mask, targets, actions)
 def enable_model_drag_dest(targets, actions)
 def unset_rows_drag_source()
 def unset_rows_drag_dest()
 def set_drag_dest_row(path, pos)
 def get_drag_dest_row()
 def get_dest_row_at_pos(x, y)
 def create_row_drag_icon(path)
 def set_enable_search(enable_search)
 def get_enable_search()
 def get_search_column()
 def set_search_column(column)
 def set_search_equal_func(func=None, user_data=None)
 def get_fixed_height_mode()
 def set_fixed_height_mode(enable)
 def get_hover_selection()
 def set_hover_selection(hover)
 def get_hover_expand()
 def set_hover_expand(expand)
 def set_row_separator_func(func=None, user_data=None)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.TreeView

Properties

PyGTK 2.0 Reference Manual

Synopsis 717

"enable−search" Read−Write If TRUE, the user can search through columns interactively. Default
value: TRUE

"expander−column" Read−Write The column for the expander
"fixed−height−mode" Read−Write If TRUE, assume all rows have the same height thereby speeding up

display. Default value: FALSE. Available in GTK+ 2.4 and above.
"hadjustment" Read−Write The horizontal Adjustment for the widget
"headers−clickable" Write If TRUE, the column headers respond to click events. Default value:

FALSE

"headers−visible" Read−Write If TRUE, show the column header buttons. Default value: TRUE
"hover−expand" Read−Write If TRUE, rows expand or collapse if the pointer moves over them. This

mode is primarily intended for treeviews in popups, e.g. in
gtk.ComboBox or gtk.EntryCompletion. Default value:
FALSE. Available in GTK+ 2.6 and above.

"hover−selection" Read−Write If TRUE, the selected row follows the pointer. Currently, this works only
for the selection modes gtk.SELECTION_SINGLE and
gtk.SELECTION_BROWSE. This mode is primarily intended for
treeviews in popups, e.g. in gtk.ComboBox or
gtk.EntryCompletion. Default value: FALSE. Available in GTK+
2.6 and above.

"model" Read−Write The model for the tree view
"reorderable" Read−Write If TRUE, the view is reorderable. Default value: FALSE.
"rules−hint" Read−Write If TRUE, hint to the theme engine to draw rows in alternating colors.

Default value: FALSE.
"search−column" Read−Write The model column to search when searching through code. Allowed

values: >= −1. Default value: −1
"vadjustment" Read−Write The vertical Adjustment for the widget

Style Properties

"allow−rules" Read If TRUE, allow drawing of alternating color rows. Default value: TRUE
"even−row−color" Read The gtk.gdk.Color to use for even rows. Available in GTK+ 2.2

and above.
"expander−size" Read The size of the expander arrow. Allowed values: >= 0. Default value: 12
"horizontal−separator" Read The horizontal space between cells. Must be an even number. Allowed

values: >= 0. Default value: 2
"indent−expanders" Read If TRUE, the expanders are indented.
"odd−row−color" Read The gtk.gdk.Color to use for odd rows. Available in GTK+ 2.2 and

above.
"vertical−separator" Read−Write The vertical space between cells. Must be an even number. Allowed

values: >= 0. Default value: 2

Signal Prototypes

"columns−changed" def callback(treeview, user_param1, ...)

"cursor−changed" def callback(treeview, user_param1, ...)

"expand−collapse−cursor−row"def callback(treeview, logical, expand, open_all,
user_param1, ...)

"move−cursor"

PyGTK 2.0 Reference Manual

Properties 718

def callback(treeview, step, count, user_param1,
...)

"row−activated" def callback(treeview, path, view_column,
user_param1, ...)

"row−collapsed" def callback(treeview, iter, path, user_param1,
...)

"row−expanded" def callback(treeview, iter, path, user_param1,
...)

"select−all" def callback(treeview, user_param1, ...)

"select−cursor−parent" def callback(treeview, user_param1, ...)

"select−cursor−row" def callback(treeview, start_editing, user_param1,
...)

"set−scroll−adjustments" def callback(treeview, hadjustment, vadjustment,
user_param1, ...)

"start−interactive−search" def callback(treeview, user_param1, ...)

"test−collapse−row" def callback(treeview, iter, path, user_param1,
...)

"test−expand−row" def callback(treeview, iter, path, user_param1,
...)

"toggle−cursor−row" def callback(treeview, user_param1, ...)

"unselect−all" def callback(treeview, user_param1, ...)

Description

A gtk.TreeView widget is used to display the contents of any model implementing the gtk.TreeModel
interface. The tree models provided standard with GTK+ and PyGTK are:

gtk.ListStore•
gtk.TreeStore•
gtk.TreeModelSort•

In addition, PyGTK provides gtk.GenericTreeModel that allows you to create your own tree model
entirely in Python.

The gtk.TreeView uses columns and cell renderers to actually display the model information. GTK+ and
PyGTK provides the gtk.TreeViewColumn to manage the display of a column and the following cell
renderers:

gtk.CellRendererPixbuf•
gtk.CellRendererText•
gtk.CellRendererToggle•

In addition, PyGTK provides the gtk.GenericCellRenderer that allows you to create your own cell
renderers entirely in Python.

Constructor

gtk.TreeView(model=None)

model : the tree model to display

PyGTK 2.0 Reference Manual

Signal Prototypes 719

Returns : A new gtk.TreeView widget.
Creates a new gtk.TreeView widget displaying the model specified by model.

Methods

gtk.TreeView.get_model

 def get_model()

Returns : the current gtk.TreeModel, or None if none is currently being used.
The get_model() method returns the value of the "model" property containing the model the
gtk.TreeView is displaying or None there is no the model.

gtk.TreeView.set_model

 def set_model(model=None)

model : the new tree model to use with the treeview
The set_model() method sets the "model" property for the treeview to the value of model. If the treeview
already has a model set, this method will remove it before setting the new model. If model is None, it will
unset the old model.

gtk.TreeView.get_selection

 def get_selection()

Returns : A gtk.TreeSelection object.
The get_selection() method returns the current gtk.TreeSelection associated with the treeview.

gtk.TreeView.get_hadjustment

 def get_hadjustment()

Returns : a gtk.Adjustment object, or None if none is currently being used.
The get_hadjustment() method returns the value of the "hadjustment" property that contains the current
horizontal gtk.Adjustment object or None (if no horizontal adjustment is being used).

gtk.TreeView.set_hadjustment

 def set_hadjustment(adjustment)

adjustment : the gtk.Adjustment to set
The set_hadjustment() method sets the "hadjustment" property to the value of adjustment that must
be a gtk.Adjustment object.

gtk.TreeView.get_vadjustment

 def get_vadjustment()

Returns : a gtk.Adjustment object, or None if none is currently being used.

PyGTK 2.0 Reference Manual

Constructor 720

The get_vadjustment() method returns the value of the "vadjustment" property that contains the
horizontal gtk.Adjustment or None if there is no vertical adjustment.

gtk.TreeView.set_vadjustment

 def set_vadjustment(adjustment)

adjustment : the gtk.Adjustment to set
The set_vadjustment() method sets the "vadjustment" property to the value of adjustment. The new
gtk.Adjustment replaces the current vertical adjustment.

gtk.TreeView.get_headers_visible

 def get_headers_visible()

Returns : TRUE if the headers are visible.
The get_headers_visible() method returns the value of the "headers−visible" property. If
"headers−visible" is TRUE the headers on the treeview are visible.

gtk.TreeView.set_headers_visible

 def set_headers_visible(headers_visible)

headers_visible : if TRUE the headers are visible
The set_headers_visible() method sets the "headers−visible" property to the value of
headers_visible. If headers_visible is TRUE the headers will be displayed.

gtk.TreeView.columns_autosize

 def columns_autosize()

The columns_autosize() method resizes all columns to their optimal width. Only works after the
treeview has been realized.

gtk.TreeView.set_headers_clickable

 def set_headers_clickable(active)

active : if TRUE the headers are clickable
The set_headers_clickable() method sets the "headers−clickable" property to the value of active.
If active is TRUE the column title buttons can be clicked.

gtk.TreeView.set_rules_hint

 def set_rules_hint(setting)

setting : if TRUE the tree requires reading across rows
The set_rules_hint() method sets the "rules−hint" property to the value of setting. If setting is
TRUE it indicates that the user interface for your application requires users to read across tree rows and
associate cells with one another. By default, the tree will be rendered with alternating row colors. Do not use it
just because you prefer the appearance of the ruled tree; that's a question for the theme. Some themes will
draw tree rows in alternating colors even when rules are turned off, and users who prefer that appearance all

PyGTK 2.0 Reference Manual

gtk.TreeView.get_vadjustment 721

the time can choose those themes. You should call this method only as a semantic hint to the theme engine
that your tree makes alternating colors useful from a functional standpoint (since it has lots of columns,
generally).

gtk.TreeView.get_rules_hint

 def get_rules_hint()

Returns : TRUE if rules are useful for the user of this tree
The get_rules_hint() returns the value of the "rules−hint" property. See the set_rules_hint()
method for more information on the use of "rules−hint".

gtk.TreeView.append_column

 def append_column(column)

column : the gtk.TreeViewColumn to add.
Returns : the number of columns in tree_view after appending.
The append_column() method appends the specified column to the list of columns and returns the new
number of columns in the treeview.

gtk.TreeView.remove_column

 def remove_column(column)

column : the gtk.TreeViewColumn to remove.
Returns : the number of columns in the treeview after the column removal.
The remove_column() method removes the specified column from the treeview.

gtk.TreeView.insert_column

 def insert_column(column, position)

column : the gtk.TreeViewColumn to be inserted.
position : the position to insert column.
Returns : the number of columns in the treeview after the insertion.
The insert_column() method inserts the specified column into the treeview at the location specified by
position. If position is −1, then the column is inserted at the end.

gtk.TreeView.insert_column_with_attributes

 def insert_column_with_attributes(position, title, cell, ...)

position : the position to insert the new column in.
title : the title to set the header to.
cell : the gtk.CellRenderer.
... : optional keyword−value arguments
Returns : the number of columns in tree_view after the insertion.
The insert_columns_with_attributes() method creates a new gtk.TreeViewColumn and
inserts it into the treeview at the location specified by position with the column title specified by title

PyGTK 2.0 Reference Manual

gtk.TreeView.set_rules_hint 722

and using the gtk.CellRenderer specified by cell. If position is −1, then the newly created column
is inserted at the end. The column is initialized with the optional attributes passed as keyword−value pairs
(e.g. text=0, foreground=2). See the gtk.TreeViewColumn.add_attribute() method for more
information.

gtk.TreeView.insert_column_with_data_func

 def insert_column_with_data_func(position, title, cell, func, data=None)

position : the position to insert, −1 for append
title : the column title
cell : a cell renderer for the column
func : the function or method to set attributes of the cell renderer
data : the data to pass with func
Returns : the number of columns in the treeview after the insertion
The insert_column_with_data_func() method is a convenience function that inserts a new column
into the treeview at the location specified by position with the specified title and the cell renderer
specified by cell and using the function or method specified by func to set cell renderer attributes
(normally using data from the model). The signature of func is:

 def celldatafunction(column, cell, model, iter, user_data)

 def celldatamethod(self, column, cell, model, iter, user_data)

where column is the gtk.TreeViewColumn in the treeview, cell is the gtk.CellRenderer for
column, model is the gtk.TreeModel for the treeview and iter is the gtk.TreeIter pointing at
the row. See the gtk.TreeViewColumn.set_cell_data_func() and
gtk.TreeViewColumn.pack_start() methods for more detail.

gtk.TreeView.get_column

 def get_column(n)

n : the position of the column, counting from 0.
Returns : the gtk.TreeViewColumn, or None if the position is outside the range of columns.
The get_column() method returns the gtk.TreeViewColumn at the specified position in the
treeview.

gtk.TreeView.get_columns

 def get_columns()

Returns : a list of gtk.TreeViewColumn s
The get_columns() method returns a list of all the gtk.TreeViewColumn objects currently in the
treeview.

gtk.TreeView.move_column_after

 def move_column_after(column, base_column)

column : the gtk.TreeViewColumn to be moved.
base_column : the gtk.TreeViewColumn column is to be after, or None.

PyGTK 2.0 Reference Manual

gtk.TreeView.insert_column_with_attributes 723

The move_column_after() method moves the gtk.TreeViewColumn specified by column to be
after the treeview column specified by base_column. If base_column is None, then column is placed
in the first position.

gtk.TreeView.set_expander_column

 def set_expander_column(column)

column : the column to draw the expander arrow at orNone.
The set_expander_column() method sets the "expander−column" property to the value of column
which must be a gtk.TreeViewColumn in the treeview. If column is None, then the expander arrow is
always at the first visible column.

gtk.TreeView.get_expander_column

 def get_expander_column()

Returns : the expander column.
The get_expander_column() method returns the value of the "expander−column" property that contains
the current expander column i.e. the column that has the expander arrow drawn next to it.

gtk.TreeView.set_column_drag_function

 def set_column_drag_function(func, user_data)

func : A function to determine which columns are reorderable, or None.
user_data : User data to be passed to func, or None

Note

This method is available in PyGTK 2.4 and above.

The set_column_drag_function() method sets the user function specified by func for determining
where a column may be dropped when dragged. The user function is called on every column pair in turn at the
beginning of a column drag to determine where a drop can take place. The signature of func is:

 def func(tree_view, column, prev_column, next_column, data)

where tree_view is the gtk.TreeView, column is the gtk.TreeViewColumn being dragged,
prev_column and next_column are the two gtk.TreeViewColumn objects bracketing the drop spot, and
data is user_data. If prev_column or next_column is None, then the drop is at an edge. If func is
None, the user drag function is removed and the gtk.TreeView reverts to the default behavior of allowing
any reorderable column to be dropped anywhere.

gtk.TreeView.scroll_to_point

 def scroll_to_point(tree_x, tree_y)

tree_x : the X coordinate of new top−left pixel of visible area, or −1
tree_y : the Y coordinate of new top−left pixel of visible area, or −1
The scroll_to_point() method scrolls the treeview so that the top−left corner of the visible area is at the
location specified by tree_x and tree_y, where tree_x and tree_y are specified in tree window
coordinates. The treeview must be realized before this method is called. If it isn't, you should use the
scroll_to_cell() method instead. If either tree_x or tree_y are −1, there is no scrolling in that

PyGTK 2.0 Reference Manual

gtk.TreeView.move_column_after 724

direction.

gtk.TreeView.scroll_to_cell

 def scroll_to_cell(path, column=None, use_align=FALSE, row_align=0.0, col_align=0.0)

path : the path of the row to move to
column : the gtk.TreeViewColumn to move horizontally to, or None.
use_align : if TRUE use the alignment arguments
row_align : the vertical alignment of the row specified by path.
col_align : the horizontal alignment of the column specified by column.
The scroll_to_cell() method scrolls the treeview display to the position specified by column and
path. If column is None, no horizontal scrolling occurs. The alignment parameters specified by
row_align and col_align determines where column is placed within the treeview. The values of
col_align and row_align range from 0.0 to 1.0. The alignment values specify the fraction of display
space that is to the left of or above the cell. If use_align is FALSE, the alignment arguments are ignored,
and the tree does the minimum amount of work to scroll the cell onto the screen. This means that the cell will
be scrolled to the edge closest to it's current position. If the cell is currently visible on the screen, nothing is
done. This method only works if the model is set, and path is a valid row in the model.

gtk.TreeView.row_activated

 def row_activated(path, column)

path : the tree path of the row of the cell to be activated.
column : the gtk.TreeViewColumn of the cell to be activated.
The row_activated() method activates the cell determined by path and column.

gtk.TreeView.expand_all

 def expand_all()

The expand_all() method recursively expands all nodes in the treeview.

gtk.TreeView.collapse_all

 def collapse_all()

The collapse_all() method recursively collapses all visible, expanded nodes in the treeview.

gtk.TreeView.expand_to_path

 def expand_to_path(path)

path : a path to a row.

Note

This method is available in PyGTK 2.2 and above.

The expand_to_row() method expands the row with the tree path specified by path. This will also
expand all parent rows of path as necessary.

PyGTK 2.0 Reference Manual

gtk.TreeView.scroll_to_point 725

gtk.TreeView.expand_row

 def expand_row(path, open_all)

path : the path to a row
open_all : if TRUE recursively expand, otherwise just expand immediate children
The expand_row() method opens the row specified by path so its children are visible. If open_all is
TRUE all rows are expanded, otherwise only the immediate children of path are expanded.

gtk.TreeView.collapse_row

 def collapse_row(path)

path : the path to a row
The collapse_row() method collapses the row specified by path (hides its child rows, if they exist).

gtk.TreeView.map_expanded_rows

 def map_expanded_rows(func, data)

func : A function to be called
data : User data to be passed to the function.

Note

This method is available in PyGTK 2.2 and above.

The map_expanded_rows() method calls the function specified by func on all expanded rows passing
data as an argument.

gtk.TreeView.row_expanded

 def row_expanded(path)

path : the path to a row to test the expansion state.
Returns : TRUE if path is expanded.
The row_expanded() method returns TRUE if the node pointed to by path is expanded.

gtk.TreeView.set_reorderable

 def set_reorderable(reorderable)

reorderable : if TRUE, the tree can be reordered.
The set_reorderable() method sets the "reorderable" property to the value of reorderable. This
method is a convenience method to allow you to reorder models that support the gtk.TreeDragSource
and the gtk.TreeDragDest interfaces. Both gtk.TreeStore and gtk.ListStore support these. If
reorderable is TRUE, then the user can reorder the model by dragging and dropping rows. The
application can listen to these changes by connecting to the model's signals.

Note

This function does not give you any degree of control over the order −− any reordering is allowed. If more
control is needed, you should probably handle drag and drop manually.

PyGTK 2.0 Reference Manual

gtk.TreeView.expand_row 726

gtk.TreeView.get_reorderable

 def get_reorderable()

Returns : TRUE if the tree can be reordered.
The get_reorderable() method returns the value of the "reorderable" property that determines if the user
can reorder the tree via drag−and−drop. See the set_reorderable() method for more information.

gtk.TreeView.set_cursor

 def set_cursor(path, focus_column=None, start_editing=False)

path : a tree path
focus_column : a gtk.TreeViewColumn, or None
start_editing : if TRUE the specified cell should start being edited.
The set_cursor() method sets the current keyboard focus to be at the row specified by path, and selects
it. This is useful when you want to focus the user's attention on a particular row. If column is not None, then
focus is given to the specified column. Additionally, if column is specified, and start_editing is TRUE,
then editing should be started in the specified cell. This method is often followed by the
gtk.Widget.grab_focus() method to give keyboard focus to the treeview. Please note that editing can
only happen when the widget is realized.

gtk.TreeView.set_cursor_on_cell

 def set_cursor_on_cell(path, focus_column=None, focus_cell=None, start_editing=False)

path : a tree path
focus_column : a gtk.TreeViewColumn, or None
focus_cell : a gtk.CellRenderer, or None
start_editing : TRUE if the specified cell should start being edited.

Note

This method is available in PyGTK 2.2 and above.

The set_cursor_on_cell() method sets the current keyboard focus to be at the node specified by path,
and selects it. This is useful when you want to focus the user's attention on a particular row. If
focus_column is specified, focus is given to that column. If focus_column and focus_cell are
specified, and focus_column contains 2 or more editable or activatable cells, then focus is given to the cell
specified by focus_cell. Additionally, if focus_column is specified, and start_editing is True,
editing should be started in the specified cell. This method is often followed by the
gtk.Widget.grab_focus() method in order to give keyboard focus to the widget. Please note that
editing can only happen when the widget is realized.

gtk.TreeView.get_cursor

 def get_cursor()

Returns : a tuple containing the current cursor path and focus column.
The get_cursor() method returns a tuple containing the current path and focus column. If the cursor isn't
currently set, the current path will be None. If no column currently has focus, the current focus column will
be None.

PyGTK 2.0 Reference Manual

gtk.TreeView.get_reorderable 727

gtk.TreeView.get_bin_window

 def get_bin_window()

Returns : a gtk.gdk.Window, or None
The get_bin_window() method returns the window that the treeview renders to or None if the treeview is
not realized yet. This is used primarily to compare to the event.window attribute to confirm that the event
on the treeview is on the right window.

gtk.TreeView.get_path_at_pos

 def get_path_at_pos(x, y)

x : The x position to be identified.
y : The y position to be identified.

Returns :a tuple containing: a tree path; a gtk.TreeViewColumn object; the X coordinate relative to the
cell; and, the Y coordinate relative to the cell. If there is no path at the position None is returned.

The get_path_at_pos() method returns a tuple containing:

the path at the specified point (x, y), relative to widget coordinates•
the gtk.TreeViewColumn at that point•
the X coordinate relative to the cell background•
the Y coordinate relative to the cell background•

x and y are relative to the coordinates of an event on the treeview only when
event.window==treeview.get_bin_window(). It is primarily used for popup menus. This method
is only meaningful if the treeview is realized. This method returns None if there is no path at the position.

gtk.TreeView.get_cell_area

 def get_cell_area(path, column)

path : a tree path for the row
column : a gtk.TreeViewColumn for the column
Returns : rectangle
The get_cell_area() method returns the bounding gtk.gdk.Rectangle in tree window coordinates
for the cell at the row specified by path and the column specified by column. If path points to a path not
currently displayed, the y and height attributes of the rectangle will be 0. The sum of all cell rects does not
cover the entire tree; there are extra pixels in between rows, for example. The returned rectangle is equivalent
to the cell_area passed to the gtk.CellRenderer.render() method. This method is only valid if
the treeview is realized.

gtk.TreeView.get_background_area

 def get_background_area(path, column)

path : a tree path for the row,
column : a gtk.TreeViewColumn for the column
Returns : a rectangle
The get_background_area() method returns the bounding gtk.gdk.Rectangle in tree window
coordinates for the cell at the row specified by path and the column specified by column. If path points to
a node not found in the tree, the y and height attributes of the rectangle will be 0. The returned rectangle is

PyGTK 2.0 Reference Manual

gtk.TreeView.get_bin_window 728

equivalent to the background_area passed to the gtk.CellRenderer.render(). These background
areas tile to cover the entire tree window (except for the area used for header buttons). Contrast with the
cell_area, returned by the get_cell_area() method, that returns only the cell itself, excluding the
surrounding borders and the tree expander area.

gtk.TreeView.get_visible_rect

 def get_visible_rect()

Returns : a rectangle
The get_visible_rect() method returns the bounding gtk.gdk.Rectangle for the currently visible
region of the treeview widget, in tree coordinates. Convert to widget coordinates with the
tree_to_widget_coords(). Tree coordinates start at 0,0 for row 0 of the tree, and cover the entire
scrollable area of the tree.

gtk.TreeView.widget_to_tree_coords

 def widget_to_tree_coords(wx, wy)

wx : the widget X coordinate
wy : the widget Y coordinate
Returns : a tuple containing the tree X and Y coordinates
The widget_to_tree_coords() method returns a tuple containing the tree X and Y coordinates for the
widget coordinates specified by wx and wy. The tree coordinates cover the full scrollable area of the tree.

gtk.TreeView.tree_to_widget_coords

 def tree_to_widget_coords(tx, ty)

tx : tree X coordinate
ty : tree Y coordinate
Returns : a tuple containing the widget X and Y coordinates
The tree_to_widget_coords() method returns a tuple containing the widget coordinates for the tree
coordinates specified by tx and ty.

gtk.TreeView.enable_model_drag_source

 def enable_model_drag_source(start_button_mask, targets, actions)

start_button_mask : the bitmask of buttons that can start the drag
targets : a sequence of tuples containing target data
actions : the possible actions for a drag
The enable_model_drag_source() method sets the treeview to start a drag operation when the user
click and drags on a row. The value of start_button_mask is a combination of:

gtk.gdk.SHIFT_MASK The Shift key.

gtk.gdk.LOCK_MASK
A Lock key (depending on the modifier mapping of the X server this may
either be Caps Lock or Shift Lock).

gtk.gdk.CONTROL_MASK The Control key.
gtk.gdk.MOD1_MASK The fourth modifier key (it depends on the modifier mapping of the X server

PyGTK 2.0 Reference Manual

gtk.TreeView.get_background_area 729

which key is interpreted as this modifier, but normally it is the Alt key).

gtk.gdk.MOD2_MASK
The fifth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD3_MASK
The sixth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD4_MASK
The seventh modifier key (it depends on the modifier mapping of the X
server which key is interpreted as this modifier).

gtk.gdk.MOD5_MASK
The eighth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.BUTTON1_MASK The first mouse button.
gtk.gdk.BUTTON2_MASK The second mouse button.
gtk.gdk.BUTTON3_MASK The third mouse button.
gtk.gdk.BUTTON4_MASK The fourth mouse button.
gtk.gdk.BUTTON5_MASK The fifth mouse button.

gtk.gdk.RELEASE_MASK
Differentiates between (keyval, modifiers) pairs from key press and release
events.

gtk.gdk.MODIFIER_MASK all of the above
targets is a sequence (list or tuple) of tuples that contain information about the targets. The target data
contains a string representing the drag type, target flags (a combination of gtk.TARGET_SAME_APP and
gtk.TARGET_SAME_WIDGET or neither) and an application assigned integer ID used for identification
purposes.

The value of actions is one of:

gtk.gdk.ACTION_DEFAULT,
gtk.gdk.ACTION_COPY, Copy the data.

gtk.gdk.ACTION_MOVE
Move the data, i.e. first copy it, then delete it from the source
using the DELETE target of the X selection protocol.

gtk.gdk.ACTION_LINK
Add a link to the data. Note that this is only useful if source
and destination agree on what it means.

gtk.gdk.ACTION_PRIVATE
Special action which tells the source that the destination will
do something that the source doesn't understand.

gtk.gdk.ACTION_ASK Ask the user what to do with the data.

gtk.TreeView.enable_model_drag_dest

 def enable_model_drag_dest(targets, actions)

targets : a sequence of tuples containing target data
actions : the possible actions for a drag
The enable_model_drag_dest() method sets the treeview to receive a drag drop.

targets is a sequence (list or tuple) of tuples that contain information about the targets. The target data
contains a string representing the drag type, target flags (a combination of gtk.TARGET_SAME_APP and
gtk.TARGET_SAME_WIDGET or neither) and an application assigned integer ID used for identification
purposes.

The value of actions is one of:

Copy the data.

PyGTK 2.0 Reference Manual

gtk.TreeView.enable_model_drag_source 730

gtk.gdk.ACTION_DEFAULT,
gtk.gdk.ACTION_COPY,

gtk.gdk.ACTION_MOVE
Move the data, i.e. first copy it, then delete it from the source
using the DELETE target of the X selection protocol.

gtk.gdk.ACTION_LINK
Add a link to the data. Note that this is only useful if source
and destination agree on what it means.

gtk.gdk.ACTION_PRIVATE
Special action which tells the source that the destination will
do something that the source doesn't understand.

gtk.gdk.ACTION_ASK Ask the user what to do with the data.

gtk.TreeView.unset_rows_drag_source

 def unset_rows_drag_source()

The unset_rows_drag_source() method unsets the drag source information.

gtk.TreeView.unset_rows_drag_dest

 def unset_rows_drag_dest()

The unset_rows_drag_dest() method unsets the drag destination information.

gtk.TreeView.set_drag_dest_row

 def set_drag_dest_row(path, pos)

path : a tree path
pos : a drop position
The set_drag_dest_row() method sets the treeview drag destination row to the value specified by path
with the drop position specified by pos. The value of pos must be one of:
gtk.TREE_VIEW_DROP_BEFORE, gtk.TREE_VIEW_DROP_AFTER,
gtk.TREE_VIEW_DROP_INTO_OR_BEFORE or gtk.TREE_VIEW_DROP_INTO_OR_AFTER.

gtk.TreeView.get_drag_dest_row

 def get_drag_dest_row()

Returns : a 2−tuple containing the tree path and the drop position relative to the tree path or None
The get_drag_dest_row() method returns a 2−tuple containing the path of the drag destination row and
a drop position relative to the destination row. The drop position is one of:
gtk.TREE_VIEW_DROP_BEFORE, gtk.TREE_VIEW_DROP_AFTER,
gtk.TREE_VIEW_DROP_INTO_OR_BEFORE or gtk.TREE_VIEW_DROP_INTO_OR_AFTER. This
method returns None if no drag destination row is set.

gtk.TreeView.get_dest_row_at_pos

 def get_dest_row_at_pos(x, y)

x : the x coordinate of the position
y : the y coordinate of the position
Returns :

PyGTK 2.0 Reference Manual

gtk.TreeView.enable_model_drag_dest 731

a 2−tuple containing the path of the row and the drop position at the position specified by x
and y or None

The get_dest_row_at_pos() method returns a 2−tuple containing the path of the row and the drop
position relative to the row of the position specified by x and y. The drop position is one of:
gtk.TREE_VIEW_DROP_BEFORE, gtk.TREE_VIEW_DROP_AFTER,
gtk.TREE_VIEW_DROP_INTO_OR_BEFORE or gtk.TREE_VIEW_DROP_INTO_OR_AFTER.

gtk.TreeView.create_row_drag_icon

 def create_row_drag_icon(path)

path : a tree path
Returns : a new pixmap of the drag icon.
The create_row_drag_icon() method creates a gtk.gdk.Pixmap representation of the row specified
by path. This image is used for a drag icon.

gtk.TreeView.set_enable_search

 def set_enable_search(enable_search)

enable_search : if TRUE, the user can search interactively
The set_enable_search() method sets the "enable−search" property to the value of enable_search.
If enable_search is TRUE the user can type in text to search through the tree interactively.

gtk.TreeView.get_enable_search

 def get_enable_search()

Returns : TRUE if the user can search interactively
The get_enable_search() method returns the value of the "enable−search" property. If "enable−search"
is TRUE the tree allows interactive searching.

gtk.TreeView.get_search_column

 def get_search_column()

Returns : the column the interactive search code searches.
The get_search_column() method returns the value of the "search−column" property that is the column
searched by the interactive search code.

gtk.TreeView.set_search_column

 def set_search_column(column)

column : the column to search
The set_search_column() method sets the "search−column" property to the value of column. The
value of column is the column where the interactive search code should search. Additionally, this method
turns on interactive searching (see the set_enable_search() method).

PyGTK 2.0 Reference Manual

gtk.TreeView.get_dest_row_at_pos 732

gtk.TreeView.set_search_equal_func

 def set_search_equal_func(func=None, user_data=None)

func : the compare function to use during the search or None
user_data : user data to pass to func, or None

Note

This method is available in PyGTK 2.4 and above.

The set_search_equal_func() method sets the compare function for the interactive search capabilities
to the function specified by func. If user_data is specified and not None, it is passed to func. If func
is None, the default gtk.TreeView search equal function will be used. The signature of func is:

 def func(model, column, key, iter, data)

where model is the gtk.TreeModel of the gtk.TreeView, column is the number of the column being
searched (see the set_search_column() method for more information), key is the string being searched
for, iter is a gtk.TreeIter pointing to the current candidate row and data is the context data
user_data. func should return FALSE to indicate that the row matches the search criteria.

gtk.TreeView.get_fixed_height_mode

 def get_fixed_height_mode()

Returns : TRUE if fixed height mode is enabled.

Note

This method is available in PyGTK 2.6 and above.

The get_fixed_height_mode() method returns the value of the "fixed−height−mode" property. If the
"fixed−height−mode" property is TRUE, all rows are assumed to be the same height.

gtk.TreeView.set_fixed_height_mode

 def set_fixed_height_mode(enable)

enable : if TRUE enable fixed height mode.

Note

This method is available in PyGTK 2.6 and above.

The set_fixed_height_mode() method sets the "fixed−height−mode" property to the value of enable.
If enable is TRUE all rows are assumed to have the same height which speeds up gtk.TreeView
displays. Only enable this option if all rows are the same height and all columns are of type
gtk.TREE_VIEW_COLUMN_FIXED (see the GTK TreeViewColumn Sizing Constants).

gtk.TreeView.get_hover_selection

 def get_hover_selection()

Returns : TRUE if hover selection mode is enabled.

PyGTK 2.0 Reference Manual

gtk.TreeView.set_search_equal_func 733

Note

This method is available in PyGTK 2.6 and above.

The get_hover_selection() method returns the value of the "hover−selection" property. If the
"hover−selection" property is TRUE the selected row follows the pointer. See the
set_hover_selection() method for more detail.

gtk.TreeView.set_hover_selection

 def set_hover_selection(hover)

hover : if TRUE enable hover selection mode.

Note

This method is available in PyGTK 2.6 and above.

The () method sets the "hover−selection" property to the value of hover. If hover is TRUE the hover
selection mode is enables and the selected row follows the pointer. Currently, this works only for the selection
modes gtk.SELECTION_SINGLE and gtk.SELECTION_BROWSE (see the GTK Selection Mode
Constants).

gtk.TreeView.get_hover_expand

 def get_hover_expand()

Returns : TRUE if hover expand mode is enabled

Note

This method is available in PyGTK 2.6 and above.

The get_hover_expand() method returns the value of the "hover−expand" property. If the
"hover−expand" property is TRUE rows expand or collapse if the pointer moves over them.

gtk.TreeView.set_hover_expand

 def set_hover_expand(expand)

expand : if TRUE enable hover expand mode.

Note

This method is available in PyGTK 2.6 and above.

The set_hover_expand() method sets the "hover−expand" property to the value of expand. If expand
is TRUE, rows expand or collapse if the pointer moves over them.

gtk.TreeView.set_row_separator_func

 def set_row_separator_func(func=None, user_data=None)

func : the row separator function or None
user_data : user data to pass to func, or None

PyGTK 2.0 Reference Manual

Note 734

Note

This method is available in PyGTK 2.6 and above.

The set_row_separator_func() method sets the row separator function to the function specified by
func. The row separator function is used to determine if a row should be displayed as a separator. If
user_data is specified and not None, it is passed to func. If func is None, no separators will be drawn.
The signature of func is:

 def func(model, iter, data)

where model is the gtk.TreeModel of the gtk.TreeView, iter is a gtk.TreeIter pointing to the
current candidate row and data is the context data user_data. func should return TRUE to indicate that
the row is a separator.

A common way to implement this is to have a boolean column in model, whose values func returns.

Signals

The "columns−changed" gtk.TreeView Signal

 def callback(treeview, user_param1, ...)

treeview : the treeview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "columns−changed" signal is emitted when a column has been added to, removed from or moved in
treeview.

The "cursor−changed" gtk.TreeView Signal

 def callback(treeview, user_param1, ...)

treeview : the treeview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "cursor−changed" signal is emitted when the cursor moves or is set.

The "expand−collapse−cursor−row" gtk.TreeView Signal

 def callback(treeview, logical, expand, open_all, user_param1, ...)

treeview : the treeview that received the signal
logical : if TRUE
expand : if TRUE the row should be expanded
open_all : if TRUE recursively expand all children
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.

PyGTK 2.0 Reference Manual

Note 735

The "expand−collapse−cursor−row" signal is emitted when the row at the cursor needs to be expanded or
collapsed.

The "move−cursor" gtk.TreeView Signal

 def callback(treeview, step, count, user_param1, ...)

treeview : the treeview that received the signal
step : the movement step size
count : the number of steps to take
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "move−cursor" signal is emitted when the user moves the cursor using the Right, Left, Up or Down
arrow keys or the Page Up, Page Down, Home and End keys.

The "row−activated" gtk.TreeView Signal

 def callback(treeview, path, view_column, user_param1, ...)

treeview : the treeview that received the signal
path : the path of the activated row
view_column : the column in the activated row
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "row−activated" signal is emitted when the row_activated() method is called or the user double
clicks a treeview row. "row−activated" is also emitted when a non−editable row is selected and one of the
keys: Space, Shift+Space, Return or Enter is pressed.

The "row−collapsed" gtk.TreeView Signal

 def callback(treeview, iter, path, user_param1, ...)

treeview : the treeview that received the signal
iter : a gtk.TreeIter pointing to the row that collapsed
path : the path of the row that collapsed
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "row−collapsed" signal is emitted when a row is collapsed by user of programmatic action.

The "row−expanded" gtk.TreeView Signal

 def callback(treeview, iter, path, user_param1, ...)

treeview : the treeview that received the signal
iter : a gtk.TreeIter pointing to the row that expanded
path : the path of the row that expanded
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

PyGTK 2.0 Reference Manual

The "expand−collapse−cursor−row" gtk.TreeView Signal 736

The "row−expanded" signal is emitted when a row is expanded via user or programmatic action.

The "select−all" gtk.TreeView Signal

 def callback(treeview, user_param1, ...)

treeview : the treeview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "select−all" signal is emitted when the user presses Control+a or Control+/.

The "select−cursor−parent" gtk.TreeView Signal

 def callback(treeview, user_param1, ...)

treeview : the treeview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "select−cursor−parent" signal is emitted when the user presses Backspace while a row has the cursor.

The "select−cursor−row" gtk.TreeView Signal

 def callback(treeview, start_editing, user_param1, ...)

treeview : the treeview that received the signal
start_editing : if TRUE the cell editing is started
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "select−cursor−row" signal is emitted when a non−editable row is selected and one of the keys: Space,
Shift+Space, Return or Enter is pressed.

The "set−scroll−adjustments" gtk.TreeView Signal

 def callback(treeview, hadjustment, vadjustment, user_param1, ...)

treeview : the treeview that received the signal
hadjustment : a horizontal gtk.Adjustment
vadjustment : a vertical gtk.Adjustment
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "set−scroll−adjustments" signal is emitted when new horizontal or vertical adjustments are set on the
treeview.

PyGTK 2.0 Reference Manual

The "row−expanded" gtk.TreeView Signal 737

The "start−interactive−search" gtk.TreeView Signal

 def callback(treeview, user_param1, ...)

treeview : the treeview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "start−interactive−search" signal is emitted when the user presses Control+f.

The "test−collapse−row" gtk.TreeView Signal

 def callback(treeview, iter, path, user_param1, ...)

treeview : the treeview that received the signal
iter : the gtk.TreeIter pointing at the row to test.
path : the path of the row to be tested
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the row should be collapsed.
The "test−collapse−row" signal is emitted when the row pointed to by iter and path is to be collapsed.

The "test−expand−row" gtk.TreeView Signal

 def callback(treeview, iter, path, user_param1, ...)

treeview : the treeview that received the signal
iter : the gtk.TreeIter pointing at the row to test.
path : the path of the row to test
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the row should be expanded.
The "test−expand−row" signal is emitted when the row pointed to by iter and path is to be expanded.

The "toggle−cursor−row" gtk.TreeView Signal

 def callback(treeview, user_param1, ...)

treeview : the treeview that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "toggle−cursor−row" signal is emitted when the user presses Control+Space.

The "unselect−all" gtk.TreeView Signal

 def callback(treeview, user_param1, ...)

treeview : the treeview that received the signal

PyGTK 2.0 Reference Manual

The "start−interactive−search" gtk.TreeView Signal 738

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the signal was handled.
The "unselect−all" signal is emitted when the user presses Shift+Control+a or Shift+Control+/.

Prev Up Next
gtk.TreeStore Home gtk.TreeViewColumn

gtk.TreeViewColumn
Prev The gtk Class Reference Next

gtk.TreeViewColumn

gtk.TreeViewColumn � a visible column in a gtk.TreeView widget

Synopsis

class gtk.TreeViewColumn(gtk.Object):
gtk.TreeViewColumn(title=None, cell_renderer=None, ...)

 def pack_start(cell, expand=TRUE)
 def pack_end(cell, expand=TRUE)
 def clear()
 def get_cell_renderers()
 def add_attribute(cell_renderer, attribute, column)
 def set_attributes(cell_renderer, ...)
 def set_cell_data_func(cell_renderer, func, func_data=None)
 def clear_attributes(cell_renderer)
 def set_spacing(spacing)
 def get_spacing()
 def set_visible(visible)
 def get_visible()
 def set_resizable(resizable)
 def get_resizable()
 def set_sizing(type)
 def get_sizing()
 def get_width()
 def get_fixed_width()
 def set_fixed_width(fixed_width)
 def set_min_width(min_width)
 def get_min_width()
 def set_max_width(max_width)
 def get_max_width()
 def clicked()
 def set_title(title)
 def get_title()
 def set_expand(expand)
 def get_expand()
 def set_clickable(active)
 def get_clickable()
 def set_widget(widget)
 def get_widget()
 def set_alignment(xalign)
 def get_alignment()
 def set_reorderable(reorderable)
 def get_reorderable()
 def set_sort_column_id(sort_column_id)
 def get_sort_column_id()
 def set_sort_indicator(setting)
 def get_sort_indicator()

PyGTK 2.0 Reference Manual

The "unselect−all" gtk.TreeView Signal 739

 def set_sort_order(order)
 def get_sort_order()
 def cell_set_cell_data(tree_model, iter, is_expander, is_expanded)
 def cell_get_size()
 def cell_is_visible()
 def focus_cell(cell)
 def cell_get_position(cell_renderer)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.TreeViewColumn

Properties

"alignment" Read−Write The alignment of the column header text or widget
"clickable" Read−Write If TRUE, the header can be clicked
"expand" Read−Write If TRUE, the column can expand to take extra available space. Available in

GTK+ 2.4 and above
"fixed−width" Read−Write The current fixed width of the column
"max−width" Read−Write The maximum allowed width of the column
"min−width" Read−Write The minimum allowed width of the column
"reorderable" Read−Write If TRUE, the column can be reordered around the headers
"resizable" Read−Write If TRUE, the user can resize the column
"sizing" Read−Write The resize mode of the column: gtk.TREE_VIEW_COLUMN_GROW_ONLY,

gtk.TREE_VIEW_COLUMN_AUTOSIZE or
gtk.TREE_VIEW_COLUMN_FIXED

"sort−indicator" Read−Write If TRUE, how a sort indicator
"sort−order" Read−Write The sort direction the sort indicator should indicate: gtk.SORT_ASCENDING

or gtk.SORT_DESCENDING
"title" Read−Write The title to appear in the column header
"visible" Read−Write If TRUE, display the column
"widget" Read−Write The widget to put in the column header button instead of the column title
"width" Read The current width of the column

Signal Prototypes

"clicked" def callback(treeviewcolumn, user_param1, ...)

Description

The gtk.TreeViewColumn object is a visible column in a gtk.TreeView widget. A
gtk.TreeViewColumn manages the display of the header and the cells using a gtk.CellRenderer.

In PyGTK 2.4 gtk.TreeViewColumn implementes the gtk.CellLayout interface.

PyGTK 2.0 Reference Manual

Synopsis 740

Constructor

gtk.TreeViewColumn(title=None, cell_renderer=None, ...)

title : the header title string
cell_renderer : a gtk.CellRenderer
... : zero or more attribute=column pairs
Returns : A newly created gtk.TreeViewColumn.
Creates a new gtk.TreeViewColumn with the header string specified by title and using the
gtk.CellRenderer specified by cell_renderer. Zero or more attribute=column pairs may be
added to specify from which tree model column to retrieve the attribute value. For example:

 column = gtk.TreeViewColumn('Column Title', cell_renderer, text=0, foreground=1)

will retrieve the 'text' attribute values for the cell renderer from column 0 in the treemodel and the 'foreground'
attribute values from column 1. See the add_attribute() method for more detail.

Methods

gtk.TreeViewColumn.pack_start

 def pack_start(cell, expand=TRUE)

cell : a gtk.CellRenderer.
expand : if TRUE cell is to be given the extra space allocated to the cell box.
The pack_start() method packs the gtk.CellRenderer specified by cell into the beginning
column. If expand is TRUE, then the cell is allocated a share of all available space that the column is
allocated. Note expand defaults to TRUE in PyGTK 2.4.

gtk.TreeViewColumn.pack_end

 def pack_end(cell, expand=TRUE)

cell : a gtk.CellRenderer.
expand : if TRUE cell is to be given the extra space allocated to the cell box.
The pack_end() method packs the gtk.CellRenderer specified by cell into the column. If expand
is TRUE, then the cell is allocated a share of all available space that the column is allocated. Note expand
defaults to TRUE in PyGTK 2.4.

gtk.TreeViewColumn.clear

 def clear()

The clear() method unsets all the mappings on all renderers on the column.

gtk.TreeViewColumn.get_cell_renderers

 def get_cell_renderers()

Returns : a list of gtk.CellRenderer objects
The get_cell_renderers() method returns a list containing all the cell renderers in the column, in no
particular order.

PyGTK 2.0 Reference Manual

Constructor 741

gtk.TreeViewColumn.add_attribute

 def add_attribute(cell_renderer, attribute, column)

cell_renderer : the gtk.CellRenderer to set attributes on
attribute : an attribute on the renderer
column : the column position on the model to get the attribute from.
The add_attribute() method adds an attribute mapping to the list in the tree column. The column is the
column of the tree model to get a value from, and the attribute is the parameter on cell_renderer to
be set from the value. So for example if column 2 of the model contains strings, you could have the "text"
attribute of a gtk.CellRendererText get its values from column 2.

gtk.TreeViewColumn.set_attributes

 def set_attributes(cell_renderer, ...)

cell_renderer : the gtk.CellRenderer we're setting the attributes of
... : zero or more attribute=column pairs
The set_attributes() method sets the attribute locations of the gtk.CellRenderer specified by
cell_renderer using the attribute=column pairs (e.g. text=0, foreground=1). See the
add_attribute() method for more detail. All existing cell attributes are removed, and replaced with the
new attributes.

gtk.TreeViewColumn.set_cell_data_func

 def set_cell_data_func(cell_renderer, func, func_data=None)

cell_renderer : a gtk.CellRenderer
func : the function or method to use.
func_data : the user data to pass when calling func.
The set_cell_data_func() method sets the data function (or method) to use for the column
gtk.CellRenderer specified by cell_renderer. This function (or method) is used instead of the
standard attribute mappings for setting the column values, and should set the attributes of the cell renderer as
appropriate. func may be None to remove the current data function. The signature of func is:

 def celldatafunction(column, cell, model, iter, user_data)

 def celldatamethod(self, column, cell, model, iter, user_data)

where column is the gtk.TreeViewColumn in the treeview, cell is the gtk.CellRenderer for
column, model is the gtk.TreeModel for the treeview and iter is the gtk.TreeIter pointing at
the row.

gtk.TreeViewColumn.clear_attributes

 def clear_attributes(cell_renderer)

cell_renderer : a gtk.CellRenderer to clear the attribute mapping on.
The clear_attributes() method clears all existing attributes previously set with the
set_attributes() method.

PyGTK 2.0 Reference Manual

gtk.TreeViewColumn.add_attribute 742

gtk.TreeViewColumn.set_spacing

 def set_spacing(spacing)

spacing : the distance between cell renderers in pixels.
The set_spacing() method sets the spacing field of the treeview column, which is the number of pixels to
place between cell renderers packed into it.

gtk.TreeViewColumn.get_spacing

 def get_spacing()

Returns : the spacing of the treeview column.
The get_spacing() method returns the spacing of the treeview column.

gtk.TreeViewColumn.set_visible

 def set_visible(visible)

visible : if TRUE the treeview column is visible.
The set_visible() method sets the "visible" property to the value of visible. If visible is TRUE the
treeview column is visible

gtk.TreeViewColumn.get_visible

 def get_visible()

Returns : TRUE if the column is visible
The get_visible() method returns the value of the "visible" property. If "visible" is TRUE the treeview
column is visible.

gtk.TreeViewColumn.set_resizable

 def set_resizable(resizable)

resizable : if TRUE, the column can be resized
The set_resizable() method sets the "resizable" property to the value of resizable. If resizable
is TRUE the user can explicitly resize the column by grabbing the outer edge of the column button. If
resizable is TRUE and the sizing mode of the column is gtk.TREE_VIEW_COLUMN_AUTOSIZE, the
sizing mode is changed to gtk.TREE_VIEW_COLUMN_GROW_ONLY.

gtk.TreeViewColumn.get_resizable

 def get_resizable()

Returns : TRUE, if the treeview column can be resized.
The get_resizable() method returns the value of the "resizable" property. If "resizable" is TRUE, the
treeview column can be resized by the user.

PyGTK 2.0 Reference Manual

gtk.TreeViewColumn.set_spacing 743

gtk.TreeViewColumn.set_sizing

 def set_sizing(type)

type :
The treeview column sizing: gtk.TREE_VIEW_COLUMN_GROW_ONLY,
gtk.TREE_VIEW_COLUMN_AUTOSIZE or
gtk.TREE_VIEW_COLUMN_FIXED.

The set_sizing() method sets the "sizing" property to the value of type. The value of type must be one
of:

gtk.TREE_VIEW_COLUMN_GROW_ONLY Columns only get bigger in reaction to changes in the model

gtk.TREE_VIEW_COLUMN_AUTOSIZE
Columns resize to be the optimal size every time the model
changes.

gtk.TREE_VIEW_COLUMN_FIXED Columns are a fixed numbers of pixels wide.

gtk.TreeViewColumn.get_sizing

 def get_sizing()

Returns : the treeview column sizing type.
The get_sizing() method returns the value of the "sizing" property that contains the current type of the
treeview column sizing mode. See the set_sizing() method for more detail.

gtk.TreeViewColumn.get_width

 def get_width()

Returns : the current width of the treeview column.
The get_width() method returns the value of the "width" property that contains the current size of the
treeview column in pixels.

gtk.TreeViewColumn.get_fixed_width

 def get_fixed_width()

Returns : the fixed width of the treeview column
The get_fixed_width() method returns the value of the "fixed−width" property that contains the fixed
width of the treeview column i.e. the width of the treeview column only if the sizing type is
gtk.TREE_VIEW_COLUMN_FIXED.

gtk.TreeViewColumn.set_fixed_width

 def set_fixed_width(fixed_width)

fixed_width : the size to set the treeview column to. Must be greater than 0.
The set_fixed_width() method sets the "fixed−width" property to the value of fixed_width. The
value of fixed_width is the size of the column in pixels. This is meaningful only if the sizing type is
gtk.TREE_VIEW_COLUMN_FIXED. The size of the column is clamped to the min and max width for the
column. Please note that the min and max width of the column doesn't actually affect the "fixed_width"
property of the widget, just the actual size when displayed.

PyGTK 2.0 Reference Manual

gtk.TreeViewColumn.set_sizing 744

gtk.TreeViewColumn.set_min_width

 def set_min_width(min_width)

min_width : the minimum width of the treeview column in pixels, or −1.
The set_min_width() method sets the "min−width" property to the value of min_width. The value of
min_width is the minimum width of the treeview column. If min_width is −1, then the minimum width
is unset.

gtk.TreeViewColumn.get_min_width

 def get_min_width()

Returns : the minimum width of the treeview column.
The get_min_width() method returns the value of the "min−width" property that contains the minimum
width in pixels of the treeview column, or −1 if no minimum width is set.

gtk.TreeViewColumn.set_max_width

 def set_max_width(max_width)

max_width : the maximum width of the column in pixels, or −1.
The set_max_width() method sets the "max−width" property to the value of max_width. The value of
max_width becomes the maximum width of the treeview column. If max_width is −1, then the maximum
width is unset. Note, the column can actually be wider than max width if it's the last column in a view. In this
case, the column expands to fill any extra space.

gtk.TreeViewColumn.get_max_width

 def get_max_width()

Returns : the maximum width of the treeview column.
The get_max_width() method returns the value of the "max−width" property that contains the maximum
width in pixels of the treeview column, or −1 if no maximum width is set.

gtk.TreeViewColumn.clicked

 def clicked()

The clicked() method emits the "clicked" signal on the treeview column. The treeview column must be
clickable.

gtk.TreeViewColumn.set_title

 def set_title(title)

title : the title string of the treeview column.
The set_title() method sets the "title" property to the value of title. The "title" property contains the
string that is used to set the treeview column title. If a custom widget has been set (see the set_widget()
method), this value is ignored.

PyGTK 2.0 Reference Manual

gtk.TreeViewColumn.set_min_width 745

gtk.TreeViewColumn.get_title

 def get_title()

Returns : the title of the column.
The get_title() method returns the value of the "title" property that contains the treeview column title.

gtk.TreeViewColumn.set_expand

 def set_expand(expand)

expand : if TRUE the column expands to take extra space if available.

Note

This method is available in PyGTK 2.4 and above.

The set_expand() method sets the "expand" property to the value of expand. If expand is TRUE the
column expands to take available extra space. This space is shared equally among all columns that have their
"expand" property set to TRUE. If no column has this option set, then the last column gets all extra space. By
default, every column is created with this FALSE.

gtk.TreeViewColumn.get_expand

 def get_expand()

Returns : TRUE, if the column expands

Note

This method is available in PyGTK 2.4 and above.

The get_expand() method returns the value of the "expand" property. If "expand is TRUE if the column
expands to take any available space.

gtk.TreeViewColumn.set_clickable

 def set_clickable(active)

active : if TRUE the treeview column header can be clicked
The set_clickable() method sets the "clickable" property to the value of active. If active is TRUE
the header can take keyboard focus, and be clicked.

gtk.TreeViewColumn.get_clickable

 def get_clickable()

Returns : TRUE if the user can click the column header.
The get_clickable() method returns the value of the "clickable" property. If "clickable" is TRUE the user
can click on the header for the treeview column.

PyGTK 2.0 Reference Manual

gtk.TreeViewColumn.get_title 746

gtk.TreeViewColumn.set_widget

 def set_widget(widget)

widget : a child gtk.Widget.
The set_widget() method sets the widget in the header to be widget.

gtk.TreeViewColumn.get_widget

 def get_widget()

Returns : the gtk.Widget in the column header, or None
The get_widget() method returns the gtk.Widget in the button on the column header. If a custom
widget has not been set using the set_widget() method None is returned.

gtk.TreeViewColumn.set_alignment

 def set_alignment(xalign)

xalign : the horizontal alignment, in the range 0.0 to 1.0 inclusive.
The set_alignment() method sets the "alignment" property to the value of xalign. xalign specifies
the alignment of the title or custom widget inside the column header. The alignment value specifies the
fraction of free space to the left of the widget.

gtk.TreeViewColumn.get_alignment

 def get_alignment()

Returns : the current alignment of the treeview column.
The get_alignment() method returns the value of the "alignment" property that contains the current
horizontal alignment of the treeview column. See the set_alignment() method for more detail.

gtk.TreeViewColumn.set_reorderable

 def set_reorderable(reorderable)

reorderable : if TRUE, the column can be reordered.
The set_reorderable() method sets the "reorderable" property to the value of reorderable. If
reorderable is TRUE, the column can be reordered by the end user dragging the header.

gtk.TreeViewColumn.get_reorderable

 def get_reorderable()

Returns : TRUE if the treeview column can be reordered by the user.
The get_reorderable() method returns the value of the "reorderable" property. If "reorderable" is TRUE
the treeview column can be reordered by the user.

gtk.TreeViewColumn.set_sort_column_id

 def set_sort_column_id(sort_column_id)

PyGTK 2.0 Reference Manual

gtk.TreeViewColumn.set_widget 747

sort_column_id : the logical column ID of the model to sort on or −1.
The set_sort_column_id() method is a convenience method that sets the column's sort column ID to the
value specified by sort_column_id (an integer value). The treeview model sorts on the
sort_column_id when this treeview column is selected for sorting. This method also makes the treeview
column header clickable. If sort_column_id is −1 sorting using the treeview column is disabled.

This method sets up a number of callbacks that manage the sorting of the tree model when the column header
is clicked. These callbacks provide toggling of the sort order, enabling the sort indicator and so on.

gtk.TreeViewColumn.get_sort_column_id

 def get_sort_column_id()

Returns : the current column ID for this column, or −1 if this column can't be used for sorting.
The get_sort_column_id() method returns the logical column ID that the model sorts on when this
column is selected for sorting. See the set_sort_column_id() method.

gtk.TreeViewColumn.set_sort_indicator

 def set_sort_indicator(setting)

setting : if TRUE display an indicator that the column is sorted
The set_sort_indicator() method sets the "sort−indicator" property to the value of setting. If
setting is TRUE an arrow is displayed in the header button when the column is sorted. Call the
set_sort_order() to change the direction of the arrow.

Note

If the set_sort_column_id() convenience method has been called the visibility of the sort indicator will
be managed automatically. See the set_sort_order() method for more information.

gtk.TreeViewColumn.get_sort_indicator

 def get_sort_indicator()

Returns : TRUE if the sort indicator arrow is displayed
The get_sort_indicator() method returns the value of the "sort−indicator" property. If "sort−indicator"
is TRUE an arrow is displayed in the header button when the column is sorted.

gtk.TreeViewColumn.set_sort_order

 def set_sort_order(order)

order : the sort order that the sort indicator should indicate
The set_sort_order() method set the "sort−order" property to the value of order. The value of order
must be either: gtk.SORT_ASCENDING or gtk.SORT_DESCENDING. This method changes the
appearance of the sort indicator.

Note

This method does not actually sort the model. Use the set_sort_column_id() method if you want
automatic sorting support. This method is primarily for custom sorting behavior, and should be used in

PyGTK 2.0 Reference Manual

gtk.TreeViewColumn.set_sort_column_id 748

conjunction with the set_sort_column_id() method to do that. For custom models, the mechanism will
vary.

The sort indicator changes direction to indicate normal sort or reverse sort. Of course, you must have the sort
indicator enabled to see anything when calling this method; see the set_sort_indicator() method.

gtk.TreeViewColumn.get_sort_order

 def get_sort_order()

Returns : the sort order the sort indicator is indicating
The get_sort_order() method returns the value of the "sort−order" property that indicates in which
direction the treeview column is sorted. See the set_sort_order() method for more detail.

gtk.TreeViewColumn.cell_set_cell_data

 def cell_set_cell_data(tree_model, iter, is_expander, is_expanded)

tree_model : the gtk.TreeModel to get the cell renderer's attributes from.
iter : the gtk.TreeIter to get the cell renderer's attributes from.
is_expander : if TRUE, the row has children
is_expanded : if TRUE, the row has visible children
The cell_set_cell_data() method sets the cell renderer attributes based on the specified
tree_model and iter. That is, for every attribute mapping in the treeview column, it will get a value from
the set column in the iter, and use that value to set the attribute on the cell renderer. If is_expander is
TRUE the tree model row has children that may or may not be displayed. If is_expanded is TRUE the tree
model row has children that are displayed.

gtk.TreeViewColumn.cell_get_size

 def cell_get_size()

Returns :a tuple containing five values: a gtk.gdk.Rectangle holding the area a the column will be
allocated; the x offset of the cell; the y offset of the cell; the cell width; and, the cell height

The cell_get_size() method returns a tuple containing:

a gtk.gdk.Rectangle holding the area a cell in the treeview column will be allocated.•
the x offset of the cell relative to cell_area.•
the y offset of the cell relative to cell_area.•
the width of the cell.•
the height of the cell.•

This method is used primarily by the gtk.TreeView.

gtk.TreeViewColumn.cell_is_visible

 def cell_is_visible()

Returns : TRUE, if any of the cells packed into the treeview column are currently visible
The cell_is_visible() method returns TRUE if any of the cells packed into the treeview column are
visible. For this to be meaningful, you must first initialize the cells with the cell_set_cell_data()
method.

PyGTK 2.0 Reference Manual

Note 749

gtk.TreeViewColumn.focus_cell

 def focus_cell(cell)

cell : a gtk.CellRenderer

Note

This method is available in PyGTK 2.2 and above.

The focus_cell() method sets the current keyboard focus to be at cell, if the column contains 2 or more
editable and activatable cells.

gtk.TreeViewColumn.cell_get_position

 def cell_get_position(cell_renderer)

cell_renderer : a gtk.CellRenderer
Returns : a 2−tuple containing the horizontal position and size of a cell or None

Note

This method is available in PyGTK 2.4 and above.

The cell_get_position() method returns the horizontal position and size of the cell specified by
cell_renderer. If the cell is not found in the column, None is returned.

Signals

The "clicked" gtk.TreeViewColumn Signal

 def callback(treeviewcolumn, user_param1, ...)

treeviewcolumn : the treeviewcolumn that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "clicked" signal is emitted when the user clicks on the treeviewcolumn header button.

Prev Up Next
gtk.TreeView Home gtk.UIManager

gtk.UIManager
Prev The gtk Class Reference Next

gtk.UIManager

gtk.UIManager � construct menus and toolbars from an XML description (new in PyGTK 2.4)

Synopsis

class gtk.UIManager(gobject.GObject):
gtk.UIManager()

PyGTK 2.0 Reference Manual

gtk.TreeViewColumn.focus_cell 750

 def set_add_tearoffs(add_tearoffs)
 def get_add_tearoffs()
 def insert_action_group(action_group, pos)
 def remove_action_group(action_group)
 def get_action_groups()
 def get_accel_group()
 def get_widget(path)
 def get_toplevels(types)
 def get_action(path)
 def add_ui_from_string(buffer)
 def add_ui_from_file(filename)
 def add_ui(merge_id, path, name, action, type, top)
 def remove_ui(merge_id)
 def get_ui()
 def ensure_update()
 def new_merge_id()

Ancestry

+−− gobject.GObject
 +−− gtk.UIManager

Properties

"add−tearoffs" Read−Write If TRUE, regular menus have tearoff menu items. Note that this only affects
regular menus. Generated popup menus never have tearoff menu items.
Available in GTK+ 2.4 and above.

"ui" Read−Write An XML string describing the merged UI.

Signal Prototypes

"actions−changed" def callback(uimanager, user_param1, ...)

"add−widget" def callback(uimanager, widget, user_param1, ...)

"connect−proxy" def callback(uimanager, action, widget, user_param1, ...)

"disconnect−proxy" def callback(uimanager, action, widget, user_param1, ...)

"post−activate" def callback(uimanager, action, user_param1, ...)

"pre−activate" def callback(uimanager, action, user_param1, ...)

Description

Note

This object is available in PyGTK 2.4 and above.

A gtk.UIManager constructs a user interface (menus and toolbars) from one or more UI definitions, which
reference actions from one or more action groups.

UI Definitions

The UI definitions are specified in an XML format which can be roughly described by the following DTD.

<!ELEMENT ui (menubar|toolbar|popup|accelerator)* >

PyGTK 2.0 Reference Manual

Synopsis 751

<!ELEMENT menubar (menuitem|separator|placeholder|menu)* >
<!ELEMENT menu (menuitem|separator|placeholder|menu)* >
<!ELEMENT popup (menuitem|separator|placeholder|menu)* >
<!ELEMENT toolbar (toolitem|separator|placeholder)* >
<!ELEMENT placeholder (menuitem|toolitem|separator|placeholder|menu)* >
<!ELEMENT menuitem EMPTY >
<!ELEMENT toolitem EMPTY >
<!ELEMENT separator EMPTY >
<!ELEMENT accelerator EMPTY >
<!ATTLIST menubar name #IMPLIED >
<!ATTLIST toolbar name #IMPLIED >
<!ATTLIST popup name #IMPLIED >
<!ATTLIST placeholder name #IMPLIED >
<!ATTLIST menu name #IMPLIED
 action #REQUIRED
 position (top|bot) #IMPLIED >
<!ATTLIST menuitem name #IMPLIED
 action #REQUIRED
 position (top|bot) #IMPLIED >
<!ATTLIST toolitem name #IMPLIED
 action #REQUIRED
 position (top|bot) #IMPLIED >
<!ATTLIST accelerator name #IMPLIED
 action #REQUIRED >

There are some additional restrictions beyond those specified in the DTD, e.g. every toolitem must have a
toolbar in its ancestry and every menuitem must have a menubar or popup in its ancestry. Since a GMarkup
parser is used to parse the UI description, it must not only be valid XML, but valid GMarkup. If a name is not
specified, it defaults to the action. If an action is not specified either, the element name is used.

Example 1. A UI definition

<ui>
 <menubar>
 <menu name="FileMenu" action="FileMenuAction">
 <menuitem name="New" action="New2Action" />
 <placeholder name="FileMenuAdditions" />
 </menu>
 <menu name="JustifyMenu" action="JustifyMenuAction">
 <menuitem name="Left" action="justify−left"/>
 <menuitem name="Centre" action="justify−center"/>
 <menuitem name="Right" action="justify−right"/>
 <menuitem name="Fill" action="justify−fill"/>
 </menu>
 </menubar>
 <toolbar action="toolbar1">
 <placeholder name="JustifyToolItems">
 <separator/>
 <toolitem name="Left" action="justify−left"/>
 <toolitem name="Centre" action="justify−center"/>
 <toolitem name="Right" action="justify−right"/>
 <toolitem name="Fill" action="justify−fill"/>
 <separator/>
 </placeholder>
 </toolbar>
</ui>

The constructed widget hierarchy is very similar to the element tree of the XML, with the exception that
placeholders are merged into their parents. The correspondence of XML elements to widgets should be almost
obvious:

menubar a gtk.MenuBar
toolbar a gtk.Toolbar

PyGTK 2.0 Reference Manual

UI Definitions 752

popup a toplevel gtk.Menu
menu a gtk.Menu attached to a menuitem
menuitem a gtk.MenuItem subclass, the exact type depends on the action
toolitem a gtk.ToolItem subclass, the exact type depends on the action
separator a gtk.SeparatorMenuItem or gtk.SeparatorToolItem
accelerator a keyboard accelerator
The "position" attribute determines where a constructed widget is positioned with respect to its siblings in the
partially constructed tree. If it is "top", the widget is prepended, otherwise it is appended.

UI Merging

The most remarkable feature of gtk.UIManager is that it can overlay a set of menuitems and toolitems
over another one, and demerge them later.

Merging is done based on the name of the XML elements. Each element is identified by a path which consists
of the names of its ancestors, separated by slashes. For example, the menuitem named "Left" in the example
above has the path /ui/menubar/JustifyMenu/Left and the toolitem with the same name has path
/ui/toolbar1/JustifyToolItems/Left.

Accelerators

Every action has an accelerator path. Accelerators are installed together with menuitem proxies, but they can
also be explicitly added with <accelerator> elements in the UI definition. This makes it possible to have
accelerators for actions even if they have no visible proxies.

Smart Separators

The separators created by gtk.UIManager are "smart", i.e. they do not show up in the UI unless they end
up between two visible menu or tool items. Separators which are located at the very beginning or end of the
menu or toolbar containing them, or multiple separators next to each other, are hidden. This is a useful feature,
since the merging of UI elements from multiple sources can make it hard or impossible to determine in
advance whether a separator will end up in such an unfortunate position.

Empty Menus

Submenus pose similar problems to separators in connection with merging. It is impossible to know in
advance whether they will end up empty after merging. gtk.UIManager offers two ways to treat empty
submenus:

make them disappear by hiding the menu item they're attached to•
add an insensitive "Empty" item•

The behavior is chosen based on the "is_important" property of the action to which the submenu is associated.

PyGTK 2.0 Reference Manual

UI Merging 753

Constructor

gtk.UIManager()

Returns : a new ui manager object.

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new gtk.UIManager object.

Methods

gtk.UIManager.set_add_tearoffs

 def set_add_tearoffs(add_tearoffs)

add_tearoffs : TRUE if tearoff menu items are added to regular menus

Note

This method is available in PyGTK 2.4 and above.

The add_tearoffs() method sets the "add_tearoffs" property to the value of add_tearoffs. If
add_tearoffs is TRUE regular menus generated by this gtk.UIManager will have tearoff menu items.

Note that this only affects regular menus. Generated popup menus never have tearoff menu items.

gtk.UIManager.get_add_tearoffs

 def get_add_tearoffs()

Returns : TRUE if tearoff menu items are added

Note

This method is available in PyGTK 2.4 and above.

The get_add_tearoffs() method returns the value of the "add−tearoffs" property. If "add−tearoffs" is
TRUE regular menus generated will have tearoff menu items.

gtk.UIManager.insert_action_group

 def insert_action_group(action_group, pos)

action_group : the action group to be inserted

pos : the position at which the group will be inserted. If pos is negative
action_group is inserted at the end of the list.

Note

This method is available in PyGTK 2.4 and above.

PyGTK 2.0 Reference Manual

Constructor 754

The insert_action_group() method inserts the gtk.ActionGroup specified by action_group
into the list of associated action groups at the position specified by pos. Actions in earlier groups hide actions
with the same name in later groups.

gtk.UIManager.remove_action_group

 def remove_action_group(action_group)

action_group : the action group to be removed

Note

This method is available in PyGTK 2.4 and above.

The remove_action_group() method removes the gtk.ActionGroup specified by action_group
from the list of associated action groups.

gtk.UIManager.get_action_groups

 def get_action_groups()

Returns : a list of associated action groups.

Note

This method is available in PyGTK 2.4 and above.

The get_action_groups() method returns the list of associated gtk.ActionGroup objects.

gtk.UIManager.get_accel_group

 def get_accel_group()

Returns : the gtk.AccelGroup.

Note

This method is available in PyGTK 2.4 and above.

The get_accel_group() method returns the associated gtk.AccelGroup.

gtk.UIManager.get_widget

 def get_widget(path)

path : a path
Returns : the widget found by following the path, or None if no widget was found.

Note

This method is available in PyGTK 2.4 and above.

The get_widget() method looks up a widget by following the path specified by path. The path consists of
the names specified in the XML description of the UI. separated by '/'. Elements that don't have a name or
action attribute in the XML (e.g. <popup>) can be addressed by their XML element name (e.g. "popup"). The
root element ("/ui") can be omitted in the path.

PyGTK 2.0 Reference Manual

Note 755

gtk.UIManager.get_toplevels

 def get_toplevels(types)

types :
specifies the types of toplevel widgets to include. Allowed types are
gtk.UI_MANAGER_MENUBAR, gtk.UI_MANAGER_TOOLBAR and
gtk.UI_MANAGER_POPUP.

Returns : a list of all toplevel widgets of the requested types.

Note

This method is available in PyGTK 2.4 and above.

The get_toplevels() method returns a list of all toplevel widgets of the types specified by types.

gtk.UIManager.get_action

 def get_action(path)

path : a path

Returns : the action whose proxy widget is found by following the path, or None if no widget was
found.

Note

This method is available in PyGTK 2.4 and above.

The get_action() method looks up a gtk.Action by following a path. See the get_widget()
method for more information about paths.

gtk.UIManager.add_ui_from_string

 def add_ui_from_string(buffer)

buffer : the string to parse

Returns : The merge id for the merged UI. The merge id can be used to unmerge the UI with the
remove_ui() method.

Note

This method is available in PyGTK 2.4 and above.

The add_ui_from_string() method parses the string specified by buffer that contains a UI definition
and merges it with the current contents of the ui manager. An enclosing <ui> element is added if it is missing.

This method raise the GError exception if an error occurs during the parsing of the string.

gtk.UIManager.add_ui_from_file

 def add_ui_from_file(filename)

filename : the name of the file to parse

Returns : The merge id for the merged UI. The merge id can be used to unmerge the UI with the
gtk.UIManager.remove_ui() method.

PyGTK 2.0 Reference Manual

gtk.UIManager.get_toplevels 756

Note

This method is available in PyGTK 2.4 and above.

The add_ui_from_file() method parses the file specified by filename that contains a UI definition
and merges it with the current contents of the ui manager.

This method raise the GError exception if an error occurs during the parsing of the file.

gtk.UIManager.add_ui

 def add_ui(merge_id, path, name, action, type, top)

merge_id : the merge id for the merged UI, see new_merge_id()
path : a path where the element should be added
name : the name for the added UI element
action : the name of the action to be proxied, or None to add a separator
type : the type of UI element to add.
top : if TRUE, the UI element is added before its siblings, otherwise it is added after its siblings.

Note

This method is available in PyGTK 2.4 and above.

The add_ui() method adds a UI element of the type specified by type to the current contents of the ui
manager at the location specified by path. Note that path must not start with "/ui" though "ui" is acceptable.
For example "/menubar" or "ui/menubar" is acceptable but "/ui/menubar" is not. type must be one of:

gtk.UI_MANAGER_AUTO
The type of the UI element (menuitem, toolitem or separator) is set
according to the context.

gtk.UI_MANAGER_MENUBAR A menubar.
gtk.UI_MANAGER_MENU A menu.
gtk.UI_MANAGER_TOOLBAR A toolbar.
gtk.UI_MANAGER_PLACEHOLDER A placeholder.
gtk.UI_MANAGER_POPUP A popup menu.
gtk.UI_MANAGER_MENUITEM A menuitem.
gtk.UI_MANAGER_TOOLITEM A toolitem.
gtk.UI_MANAGER_SEPARATOR A separator.
gtk.UI_MANAGER_ACCELERATOR An accelerator.

gtk.UIManager.remove_ui

 def remove_ui(merge_id)

merge_id : a merge id

Note

This method is available in PyGTK 2.4 and above.

The remove_ui() method unmerges the part of the ui manager content identified by merge_id.

PyGTK 2.0 Reference Manual

Note 757

gtk.UIManager.get_ui

 def get_ui()

Returns : A string containing an XML representation of the merged UI.

Note

This method is available in PyGTK 2.4 and above.

The get_ui() method creates a UI definition of the merged UI.

gtk.UIManager.ensure_update

 def ensure_update()

Note

This method is available in PyGTK 2.4 and above.

The ensure_update() method makes sure that all pending updates to the UI have been completed. This
may occasionally be necessary, since gtk.UIManager updates the UI in an idle function. A typical
example where this method is useful is to enforce that the menubar and toolbar have been added to the main
window before showing it:

 window.add(vbox)
 merge.connect("add_widget", add_widget, vbox)
 merge.add_ui_from_file("my−menus")
 merge.add_ui_from_file("my−toolbars")
 merge.ensure_update()
 window.show()

gtk.UIManager.new_merge_id

 def new_merge_id()

Returns : an unused merge id.

Note

This method is available in PyGTK 2.4 and above.

The new_merge_id() method returns an unused merge id, suitable for use with the add_ui() method.
The returned merge ids are monotonically increasing integer values.

Signals

The "actions−changed" gtk.UIManager Signal

 def callback(uimanager, user_param1, ...)

uimanager : the uimanager that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

PyGTK 2.0 Reference Manual

gtk.UIManager.get_ui 758

Note

This signal is available in GTK+ 2.4 and above.

The "actions−changed" signal is emitted when the set of actions changes.

The "add−widget" gtk.UIManager Signal

 def callback(uimanager, widget, user_param1, ...)

uimanager : the uimanager that received the signal
widget : the added widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "add−widget" signal is emitted for each generated menubar and toolbar. The added widget is specified by
widget. It is not emitted for generated popup menus, which can be retrieved by the get_widget()
method.

The "connect−proxy" gtk.UIManager Signal

 def callback(uimanager, action, widget, user_param1, ...)

uimanager : the uimanager that received the signal
action : the action
widget : the proxy widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "connect−proxy" signal is emitted after connecting the proxy widget specified by widget to the
gtk.Action specified by action in the group. This is intended for simple customizations for which a
custom action class would be too clumsy, e.g. showing tooltips for menuitems in the statusbar.

The "disconnect−proxy" gtk.UIManager Signal

 def callback(uimanager, action, widget, user_param1, ...)

uimanager : the uimanager that received the signal
action : the action
widget : the proxy widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

PyGTK 2.0 Reference Manual

Note 759

Note

This signal is available in GTK+ 2.4 and above.

The "disconnect−proxy" signal is emitted when widget is disconnected from action.

The "post−activate" gtk.UIManager Signal

 def callback(uimanager, action, user_param1, ...)

uimanager : the uimanager that received the signal
action : the action
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "post−activate" signal is emitted after action is activated. This signal is intended for applications to get
notification after any action is activated.

The "pre−activate" gtk.UIManager Signal

 def callback(uimanager, action, user_param1, ...)

uimanager : the uimanager that received the signal
action : the action
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "pre−activate" signal is emitted before action is activated. This signal is intended for applications to
get notification before any action is activated.

Prev Up Next
gtk.TreeViewColumn Home gtk.VBox

gtk.VBox
Prev The gtk Class Reference Next

gtk.VBox

gtk.VBox � a vertical container box

Synopsis

class gtk.VBox(gtk.Box):
gtk.VBox(homogeneous=FALSE, spacing=0)

PyGTK 2.0 Reference Manual

Note 760

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.VBox

Description

A gtk.VBox is a container subclassed from gtk.Box that organizes its child widgets into a single column.
The gtk.Box methods are used to manage the arrangement, spacing, height, and alignment of the
gtk.VBox child widgets though all are allocated the same width.

Constructor

gtk.VBox(homogeneous=FALSE, spacing=0)

homogeneous : if TRUE all child widgets are given equal space allocations.
spacing : the additional vertical space between child widgets in pixels.
Returns : a new gtk.VBox widget
Creates a new gtk.VBox widget with the spacing between child widgets specified by spacing. If
homogeneous is TRUE all child widgets are allocated the same space.

Prev Up Next
gtk.UIManager Home gtk.VButtonBox

gtk.VButtonBox
Prev The gtk Class Reference Next

gtk.VButtonBox

gtk.VButtonBox � a container for arranging buttons vertically.

Synopsis

class gtk.VButtonBox(gtk.ButtonBox):
gtk.VButtonBox()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Box
 +−− gtk.ButtonBox
 +−− gtk.VButtonBox

PyGTK 2.0 Reference Manual

Ancestry 761

Description

A gtk.VButtonBox is a container subclassed from gtk.ButtonBox that is optimized for the vertical
layout of buttons. The gtk.VButtonBox helps provide a consistent layout of buttons in an application by
supplying default values of spacing, padding and layout style (see the gtk.ButtonBox reference for more
detail). Buttons are packed into a gtk.VButtonBox using the gtk.Container.add()) method. The
pack_start() and pack_end() methods can also be used but they work just like the
gtk.Container.add()) method i.e. they pack the button in a way that depends on the current layout style
and on whether the button has had the gtk.ButtonBox.set_child_secondary() method called on it.
The spacing between buttons can be set with the gtk.Box.set_spacing() method. The arrangement and
layout of the buttons can be changed with the gtk.ButtonBox.set_layout() method.

Constructor

gtk.VButtonBox()

Returns : a new gtk.VButtonBox widget
Creates a new gtk.VButtonBox widget

Prev Up Next
gtk.VBox Home gtk.VPaned

gtk.Viewport
Prev The gtk Class Reference Next

gtk.Viewport

gtk.Viewport � a widget displaying a portion of a larger widget.

Synopsis

class gtk.Viewport(gtk.Bin):
gtk.Viewport(hadjustment=None, vadjustment=None)

 def get_hadjustment()
 def get_vadjustment()
 def set_hadjustment(adjustment)
 def set_vadjustment(adjustment)
 def set_shadow_type(type)
 def get_shadow_type()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Viewport

Properties

PyGTK 2.0 Reference Manual

Description 762

"hadjustment" Read−Write The gtk.Adjustment that determines the values of the horizontal position
for this viewport.

"vadjustment" Read−Write The gtk.Adjustment that determines the values of the vertical position for
this viewport.

"shadow−type" Read−Write The type of shadowed box around the viewport: gtk.SHADOW_NONE,
gtk.SHADOW_IN, gtk.SHADOW_OUT, gtk.SHADOW_ETCHED_IN or
gtk.SHADOW_ETCHED_OUT

Signal Prototypes

"set−scroll−adjustments" def callback(viewport, hadjustment, vadjustment,
user_param1, ...)

Description

A gtk.Viewport widget provides a view into a portion of a larger widget. A gtk.Viewport is usually
used to provide adjustment capability for a widget to be used in a gtk.ScrolledWindow. For example, a
label widget doesn't have any adjustments (does not support the "set−scroll−adjustments" signal) and would
need a viewport when added to a gtk.ScrolledWindow to make the scrollbars functional. See the
gtk.ScrolledWindow.add_with_viewport() method for more information.

Constructor

gtk.Viewport(hadjustment=None, vadjustment=None)

hadjustment : a horizontal adjustment.
vadjustment : a vertical adjustment.
Returns : a new gtk.Viewport widget
Creates a new gtk.Viewport with the horizontal and vertical adjustments specified by hadjustment
and vadjustment respectively. If hadjustment or vadjustment is None a new adjustment will be
created.

Methods

gtk.Viewport.get_hadjustment

 def get_hadjustment()

Returns : the horizontal adjustment
The get_hadjustment() method returns the value of the "hadjustment" property that contains the
horizontal gtk.Adjustment of the viewport.

gtk.Viewport.get_vadjustment

 def get_vadjustment()

Returns : the vertical adjustment
The get_vadjustment() method returns the value of the "vadjustment" property that contains the vertical
gtk.Adjustment of the viewport.

PyGTK 2.0 Reference Manual

Properties 763

gtk.Viewport.set_hadjustment

 def set_hadjustment(adjustment)

adjustment : a gtk.Adjustment.
The set_hadjustment() method sets the "hadjustment" property to the value of adjustment that
becomes the horizontal adjustment of the viewport.

gtk.Viewport.set_vadjustment

 def set_vadjustment(adjustment)

adjustment : a gtk.Adjustment.
The set_vadjustment() method sets the "vadjustment" property to the value of adjustment that
becomes the vertical adjustment of the viewport.

gtk.Viewport.set_shadow_type

 def set_shadow_type(type)

type : the new shadow type.
The set_shadow_type() method sets the "shadow−type" property to the value of type. The value of
type must be one of:

gtk.SHADOW_NONE•
gtk.SHADOW_IN•
gtk.SHADOW_OUT•
gtk.SHADOW_ETCHED_IN•
gtk.SHADOW_ETCHED_OUT•

gtk.Viewport.get_shadow_type

 def get_shadow_type()

Returns : the shadow type
The get_shadow_type() method returns the value of the "shadow−type" property that contains the
shadow type of the gtk.Viewport. See the set_shadow_type() method for more information.

Signals

The "set−scroll−adjustments" gtk.Viewport Signal

 def callback(viewport, hadjustment, vadjustment, user_param1, ...)

viewport : the viewport that received the signal
hadjustment : the horizontal gtk.Adjustment
vadjustment : the vertical gtk.Adjustment
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "set−scroll−adjustments" signal is emitted when one or both of the horizontal and vertical
gtk.Adjustment objects is changed.

PyGTK 2.0 Reference Manual

gtk.Viewport.set_hadjustment 764

Prev Up Next
gtk.VSeparator Home gtk.Widget

gtk.VPaned
Prev The gtk Class Reference Next

gtk.VPaned

gtk.VPaned � A container with two panes arranged vertically.

Synopsis

class gtk.VPaned(gtk.Paned):
gtk.VPaned()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Paned
 +−− gtk.VPaned

Description

The gtk.VPaned widget is a container widget subclassed from gtk.Paned with two child widgets
arranged vertically. The division between the two child widgets can be adjusted by the user by dragging a
handle. See the gtk.Paned description for more details.

Constructor

gtk.VPaned()

Returns : a new gtk.VPaned widget
Creates a new gtk.HPaned widget.

Prev Up Next
gtk.VButtonBox Home gtk.VRuler

gtk.VRuler
Prev The gtk Class Reference Next

gtk.VRuler

gtk.VRuler � a vertical ruler.

PyGTK 2.0 Reference Manual

The "set−scroll−adjustments" gtk.Viewport Signal 765

Synopsis

class gtk.VRuler(gtk.Ruler):
gtk.VRuler()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Ruler
 +−− gtk.VRuler

Description

Note

This widget is considered too specialized or little−used for PyGTK, and will in the future be moved to some
other package. If your application needs this widget, feel free to use it, as the widget does work and is useful
in some applications; it's just not of general interest. However, it will eventually move out of the PyGTK
distribution.

The gtk.VRuler widget is arranged vertically creating a ruler that is used in conjunction with other widgets
such as a text widget. The ruler is used to show the location of the mouse on the window and to show the size
of the window in specified units. The available units of measurement are gtk.PIXELS (the default),
gtk.INCHES and gtk.CENTIMETERS. See the gtk.Ruler description for more information on the
methods that are used to manage a gtk.VRuler.

Constructor

gtk.VRuler()

Returns : a new gtk.VRuler widget
Creates a new gtk.VRuler widget.

Prev Up Next
gtk.VPaned Home gtk.VScale

gtk.VScale
Prev The gtk Class Reference Next

gtk.VScale

gtk.VScale � a vertical slider widget used to select a value from a range.

Synopsis

class gtk.VScale(gtk.Scale):
gtk.VScale(adjustment=None)

PyGTK 2.0 Reference Manual

Synopsis 766

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Range
 +−− gtk.Scale
 +−− gtk.VScale

Description

The gtk.VScale is subclassed from gtk.Scale to provide a widget that allows a user to select a value
using a horizontal slider. See the gtk.Scale description for more information on the methods available to
manage a gtk.VScale.

Constructor

gtk.VScale(adjustment=None)

adjustment : a gtk.Adjustment or None
Returns : a new gtk.VScale widget
Creates a new gtk.VScale widget and associates a gtk.Adjustment specified by adjustment with
it. The default value of adjustment is None which creates the vscale with no gtk.Adjustment.

Prev Up Next
gtk.VRuler Home gtk.VScrollbar

gtk.VScrollbar
Prev The gtk Class Reference Next

gtk.VScrollbar

gtk.VScrollbar � a vertical scrollbar

Synopsis

class gtk.VScrollbar(gtk.Scrollbar):
gtk.VScrollbar(adjustment=None)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Range
 +−− gtk.Scrollbar
 +−− gtk.VScrollbar

Description

The gtk.VScrollbar widget is subclassed from gtk.Scrollbar to provide a horizontal scrollbar. See

PyGTK 2.0 Reference Manual

Ancestry 767

the gtk.Scrollbar reference for details on the methods available for managing vertical scrollbars. A
gtk.Adjustment may be specified for the scrollbar at creation (or is created automatically if None is
specified) to handle the adjustment of the scrollbar. See the gtk.Adjustment method for more details.

Constructor

gtk.VScrollbar(adjustment=None)

adjustment : a gtk.Adjustment object or None
Returns : a new gtk.VScrollbar widget
Creates a new gtk.VScrollbar with an associated gtk.Adjustment specified by adjustment. If
adjustment is None or missing a new gtk.Adjustment object will be created and associated with the
scrollbar.

Prev Up Next
gtk.VScale Home gtk.VSeparator

gtk.VSeparator
Prev The gtk Class Reference Next

gtk.VSeparator

gtk.VSeparator � a vertical separator.

Synopsis

class gtk.VSeparator(gtk.Separator):
gtk.VSeparator()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Separator
 +−− gtk.VSeparator

Description

The gtk.VSeparator widget is a vertical separator, used to group the widgets within a window. It
displays a vertical line with a shadow to make it appear sunken into the interface.

Constructor

gtk.VSeparator()

Returns : a new gtk.VSeparator widget
Creates a new gtk.VSeparator widget.

Prev Up Next

PyGTK 2.0 Reference Manual

Description 768

gtk.VScrollbar Home gtk.Viewport
gtk.Widget

Prev The gtk Class Reference Next

gtk.Widget

gtk.Widget � the base class for all PyGTK widgets

Synopsis

class gtk.Widget(gtk.Object):
 def get_allocation()
 def drag_check_threshold(start_x, start_y, current_x, current_y)
 def drag_get_data(context, target, time=0L)
 def drag_highlight()
 def drag_unhighlight()
 def drag_dest_set(flags, targets, actions)
 def drag_dest_set_proxy(proxy_window, protocol, use_coordinates)
 def drag_dest_unset()
 def drag_dest_find_target(context, target_list)
 def drag_dest_get_target_list()
 def drag_dest_set_target_list(target_list)
 def drag_dest_add_image_targets()
 def drag_dest_add_text_targets()
 def drag_dest_add_uri_targets()
 def drag_source_set(start_button_mask, targets, actions)
 def drag_source_unset()
 def drag_source_set_icon(colormap, pixmap, mask)
 def drag_source_set_icon_pixbuf(pixbuf)
 def drag_source_set_icon_stock(stock_id)
 def drag_source_add_text_targets()
 def drag_begin(targets, actions, button, event)
 def grab_add()
 def grab_remove()
 def rc_get_style()
 def selection_owner_set(selection, time=0L)
 def selection_add_target(selection, target, info)
 def selection_add_targets(selection, targets)
 def selection_clear_targets(selection)
 def selection_convert(selection, target, time=0L)
 def selection_remove_all()
 def destroy()
 def unparent()
 def show()
 def show_now()
 def hide()
 def show_all()
 def hide_all()
 def set_no_show_all(no_show_all)
 def get_no_show_all()
 def map()
 def unmap()
 def realize()
 def unrealize()
 def queue_draw()
 def queue_draw_area(x, y, width, height)
 def queue_resize()
 def queue_resize_no_redraw()
 def size_request()
 def size_allocate(allocation)

PyGTK 2.0 Reference Manual

Constructor 769

 def get_child_requisition(requisition)
 def add_accelerator(accel_signal, accel_group, accel_key, accel_mods, accel_flags)
 def remove_accelerator(accel_group, accel_key, accel_mods)
 def set_accel_path(accel_path, accel_group)
 def can_activate_accel(signal_id)
 def mnemonic_activate(group_cycling)
 def event(event)
 def send_expose(event)
 def activate()
 def set_scroll_adjustments(hadjustment, vadjustment)
 def reparent(new_parent)
 def intersect(area)
 def freeze_child_notify()
 def child_notify(child_property)
 def thaw_child_notify()
 def is_focus()
 def grab_focus()
 def grab_default()
 def set_name(name)
 def get_name()
 def set_state(state)
 def set_sensitive(sensitive)
 def set_app_paintable(app_paintable)
 def set_double_buffered(double_buffered)
 def set_redraw_on_allocate(redraw_on_allocate)
 def set_parent(parent)
 def set_parent_window(parent_window)
 def set_child_visible(is_visible)
 def get_child_visible()
 def get_parent()
 def get_parent_window()
 def child_focus(direction)
 def set_size_request(width, height)
 def get_size_request()
 def set_events(events)
 def add_events(events)
 def set_extension_events(mode)
 def get_extension_events()
 def get_toplevel()
 def get_ancestor(widget_type)
 def get_colormap()
 def get_visual()
 def get_screen()
 def has_screen()
 def get_display()
 def get_root_window()
 def get_settings()
 def get_clipboard(selection)
 def set_colormap(colormap)
 def get_events()
 def get_pointer()
 def is_ancestor(ancestor)
 def translate_coordinates(dest_widget, src_x, src_y)
 def hide_on_delete()
 def set_style(style)
 def ensure_style()
 def get_style()
 def modify_style(style)
 def get_modifier_style()
 def modify_fg(state, color)
 def modify_bg(state, color)
 def modify_text(state, color)
 def modify_base(state, color)
 def modify_font(font_desc)
 def create_pango_context()

PyGTK 2.0 Reference Manual

Synopsis 770

 def get_pango_context()
 def create_pango_layout(text)
 def render_icon(stock_id, size, detail)
 def set_composite_name(name)
 def get_composite_name()
 def reset_rc_styles()
 def style_get_property(property_name)
 def set_direction(dir)
 def get_direction()
 def shape_combine_mask(shape_mask, offset_x, offset_y)
 def reset_shapes()
 def path()
 def class_path()
 def list_mnemonic_labels()
 def add_mnemonic_label(label)
 def remove_mnemonic_label(label)
 def menu_get_for_attach_widget()

Functions

 def gtk.widget_push_colormap(cmap)
 def gtk.widget_push_composite_child()
 def gtk.widget_pop_composite_child()
 def gtk.widget_pop_colormap()
 def gtk.widget_get_default_style()
 def gtk.widget_set_default_colormap(colormap)
 def gtk.widget_get_default_colormap()
 def gtk.widget_get_default_visual()
 def gtk.widget_set_default_direction(dir)
 def gtk.widget_get_default_direction()
 def gtk.widget_list_style_properties(cmap)
 def gtk.widget_class_install_style_property(widget, pspec)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget

Properties

"app−paintable" Read−Write If TRUE, the application will paint directly on the widget
"can−default" Read−Write If TRUE, the widget can be the default widget
"can−focus" Read−Write If TRUE, the widget can accept the input focus
"composite−child" Read−Write If TRUE, the widget is part of a composite widget
"events" Read−Write The event mask that decides what kind of gtk.gdk.Event this widget

gets.
"extension−events" Read−Write The mask that decides what kind of extension events this widget gets.
"has−default" Read−Write If TRUE, the widget is the default widget
"has−focus" Read−Write If TRUE, the widget has the input focus
"height−request" Read−Write The height request of the widget, or −1 if natural request should be used.
"is−focus" Read−Write If TRUE, the widget is the focus widget within the toplevel
"name" Read−Write The name of the widget
"no−show−all" Read−Write If TRUEshow_all() should not affect this widget. Available in GTK+ 2.4

and above.
"parent" Read−Write The parent widget of this widget. Must be a gtk.Container widget.

PyGTK 2.0 Reference Manual

Ancestry 771

"receives−default" Read−Write If TRUE, the widget will receive the default action when it is focused.
"sensitive" Read−Write If TRUE, the widget responds to input
"style" Read−Write The style of the widget, which contains information about how it will look

(colors etc).
"visible" Read−Write If TRUE, the widget is visible
"width−request" Read−Write The width request of the widget, or −1 if natural request should be used.

Style Properties

"cursor−aspect−ratio" Read The aspect ratio with which to draw the insertion cursor
"cursor−color" Read The gtk.gdk.Color with which to draw insertion cursor
"focus−line−pattern" Read−Write The dash pattern used to draw the focus indicator.
"focus−line−width" Read−Write The width, in pixels, of the focus indicator line.
"focus−padding" Read−Write The width, in pixels, between the focus indicator and the widget

'box'.
"interior−focus" Read If TRUE, draw the focus indicator inside widgets.
"secondary−cursor−color" Read The gtk.gdk.Color with which to draw the secondary insertion

cursor when editing mixed right−to−left and left−to−right text.

Attributes

"allocation" Read−Write The gtk.gdk.Rectangle specifying the widget's
space allocation. This attribute is writeable in PyGTK
2.4.

"name" Read The name of the widget

"parent" Read The parent widget of this widget. Must be a
gtk.Container widget.

"saved_state" Read The widget's saved state.

"state" Read The widget state: gtk.STATE_NORMAL,
gtk.STATE_ACTIVE, gtk.STATE_PRELIGHT,
gtk.STATE_SELECTED or
gtk.STATE_INSENSITIVE

"style" Read The style of the widget.

"window" Read−Write The gtk.gdk.Window used by the widget. This
attribute is writeable in PyGTK 2.4.

Signal Prototypes

"accel−closures−changed"def callback(widget, user_param1, ...)
"button−press−event" def callback(widget, event, user_param1, ...)

"button−release−event" def callback(widget, signal_id, user_param1, ...)

"can−activate−accel" def callback(widget, event, user_param1, ...)

"child−notify" def callback(widget, child_property, user_param1, ...)

"client−event" def callback(widget, event, user_param1, ...)

PyGTK 2.0 Reference Manual

Properties 772

"configure−event" def callback(widget, event, user_param1, ...)

"delete−event" def callback(widget, event, user_param1, ...)

"destroy−event" def callback(widget, event, user_param1, ...)

"direction−changed" def callback(widget, direction, user_param1, ...)

"drag−begin" def callback(widget, drag_context, user_param1, ...)

"drag−data−delete" def callback(widget, drag_context, user_param1, ...)

"drag−data−get" def callback(widget, drag_context, selection_data,
info, timestamp, user_param1, ...)

"drag−data−received" def callback(widget, drag_context, x, y,
selection_data, info, timestamp, user_param1, ...)

"drag−drop" def callback(widget, drag_context, x, y, timestamp,
user_param1, ...)

"drag−end" def callback(widget, drag_context, user_param1, ...)

"drag−leave" def callback(widget, drag_context, timestamp,
user_param1, ...)

"drag−motion" def callback(widget, drag_context, x, y, timestamp,
user_param1, ...)

"enter−notify−event" def callback(widget, event, user_param1, ...)

"event" def callback(widget, event, user_param1, ...)

"event−after" def callback(widget, event, user_param1, ...)

"expose−event" def callback(widget, event, user_param1, ...)

"focus" def callback(widget, direction, user_param1, ...)

"focus−in−event" def callback(widget, event, user_param1, ...)

"focus−out−event" def callback(widget, event, user_param1, ...)

"grab−focus" def callback(widget, user_param1, ...)

"grab−notify" def callback(widget, was_grabbed, user_param1, ...)

"hide" def callback(widget, user_param1, ...)

"hierarchy−changed" def callback(widget, previous_toplevel, user_param1,
...)

"key−press−event" def callback(widget, event, user_param1, ...)

"key−release−event" def callback(widget, event, user_param1, ...)

"leave−notify−event" def callback(widget, event, user_param1, ...)

"map" def callback(widget, user_param1, ...)

"map−event" def callback(widget, event, user_param1, ...)

"mnemonic−activate" def callback(widget, group_cycling, user_param1, ...)

"motion−notify−event" def callback(widget, event, user_param1, ...)

"no−expose−event" def callback(widget, event, user_param1, ...)

"parent−set" def callback(widget, old_parent, user_param1, ...)

"popup−menu" def callback(widget, user_param1, ...)

"property−notify−event" def callback(widget, event, user_param1, ...)

"proximity−in−event" def callback(widget, event, user_param1, ...)

"proximity−out−event" def callback(widget, event, user_param1, ...)

"realize" def callback(widget, user_param1, ...)

"screen−changed" def callback(widget, screen, user_param1, ...)

"scroll−event" def callback(widget, event, user_param1, ...)

"selection−clear−event" def callback(widget, event, user_param1, ...)

PyGTK 2.0 Reference Manual

Signal Prototypes 773

"selection−get" def callback(widget, selection_data, info, timestamp,
user_param1, ...)

"selection−notify−event" def callback(widget, event, user_param1, ...)

"selection−received" def callback(widget, selection_data, timestamp,
user_param1, ...)

"selection−request−event"def callback(widget, event, user_param1, ...)
"show" def callback(widget, user_param1, ...)

"show−help" def callback(widget, help_type, user_param1, ...)

"size−allocate" def callback(widget, allocation, user_param1, ...)

"size−request" def callback(widget, requisition, user_param1, ...)

"state−changed" def callback(widget, state, user_param1, ...)

"style−set" def callback(widget, previous_style, user_param1, ...)

"unmap" def callback(widget, user_param1, ...)

"unmap−event" def callback(widget, event, user_param1, ...)

"unrealize" def callback(widget, user_param1, ...)

"visibility−notify−event" def callback(widget, event, user_param1, ...)

"window−state−event" def callback(widget, event, user_param1, ...)

Description

The gtk.Widget class is the base class for all PyGTK widgets. It provides the common set of method and
signals for the widgets including:

drag and drop setting and management methods•
selection methods•
methods to realize, map and show widgets•
methods to manage size allocation and requests•
methods to initiate widget redrawing•
methods to deal with the widget's place in the widget hierarchy•
event management methods•
methods to modify the style settings•
methods to access the default resources•

gtk.Widget introduces style properties − these are basically object properties that are stored not on the
object, but in the style object associated to the widget. Style properties are set in resource files. This
mechanism is used for configuring such things as the location of the scrollbar arrows through the theme,
giving theme authors more control over the look of applications without the need to write a theme engine in
C.

Use the gtk.widget.list_style_properties() function to get information about existing style
properties and the style_get_property() method to obtain the value of a style property.

Methods

gtk.Widget.get_allocation

 def get_allocation()

Returns : a gtk.gdk.Rectangle

PyGTK 2.0 Reference Manual

Description 774

The get_allocation() method returns a gtk.gdk.Rectangle containing the bounds of the widget's
allocation.

gtk.Widget.drag_check_threshold

 def drag_check_threshold(start_x, start_y, current_x, current_y)

start_x : the X coordinate of start of drag
start_y : the Y coordinate of start of drag
current_x : the current X coordinate
current_y : the current Y coordinate
Returns : TRUE if the drag threshold has been passed.
The check_drag_threshold() method checks to see if a mouse drag starting at (start_x, start_y) and
ending at (current_x, current_y) has passed the+ drag threshhold distance, and thus should trigger the
beginning of a drag−and−drop operation.

gtk.Widget.drag_get_data

 def drag_get_data(context, target, time=0L)

context : a gtk.gdk.DragContext
target : an atom
time : a timestamp or 0L to specify the current time
The drag_get_data() method gets the data associated with a drag specified by drag_context and
target. When the data is received or the retrieval fails, a "drag_data_received" signal will be emitted.
Failure of the retrieval is indicated by the length field of the gtk.SelectionData being negative.
However, when the drag_get_data() method is called implicitly because gtk.DRAG_DEFAULT_DROP
was set, the widget will not receive notification of failed drops.

gtk.Widget.drag_highlight

 def drag_highlight()

The drag_highlight() method draws a highlight around a widget. This will attach handlers to
"expose_event" and "draw", so the highlight will continue to be displayed until the drag_unhighlight()
method is called.

gtk.Widget.drag_unhighlight

 def drag_unhighlight()

The drag_unhighlight() method removes the highlight that was set by the drag_highlight()
method.

gtk.Widget.drag_dest_set

 def drag_dest_set(flags, targets, actions)

flags :
the flags that specify what actions should be taken on behalf of a widget for drops onto that
widget. The targets and actions fields only are used if gtk.DEST_DEFAULT_MOTION or
gtk.DEST_DEFAULT_DROP are given.

PyGTK 2.0 Reference Manual

gtk.Widget.get_allocation 775

targets :a sequence of target tuples
actions :a bitmask of possible actions for a drop onto this widget.
The drag_dest_set() method sets up a widget as a potential drag drop destination. The value of flags is
a combination of the GTK Dest Defaults Constants.

targets is a sequence (list or tuple) of 3−tuples that contain information about the targets. The target data
contains a string representing the drag type, target flags (a combination of gtk.TARGET_SAME_APP and
gtk.TARGET_SAME_WIDGET or neither) and an application assigned integer ID used for identification
purposes.

The value of actions is one of the GDK Drag Action Constants.

gtk.Widget.drag_dest_set_proxy

 def drag_dest_set_proxy(proxy_window, protocol, use_coordinates)

proxy_window : the gtk.gdk.Window to forward drag events to
protocol : the drag protocol that proxy_window accepts

use_coordinates : if TRUE, send the same coordinates to the destination, because it is an embedded
subwindow.

The drag_dest_set_proxy() method sets a proxy gtk.gdk.Window specified by proxy_window
that drag events are forwarded to on behalf of the widget. The value of protocol is one of the GDK Drag
Protocol Constants.

If use_coordinates is TRUE, the same coordinates are sent to the destination because the widget's an
embedded subwindow.

gtk.Widget.drag_dest_unset

 def drag_dest_unset()

The drag_dest_unset() method clears the information about a drop destination set with the
drag_dest_set() method. The widget will no longer receive notification of drags.

gtk.Widget.drag_dest_find_target

 def drag_dest_find_target(context, target_list)

context : the drag context
target_list : a list of droppable targets, or None.
Returns : the first target that the source offers and the dest can accept, or None
The dest_find_target() method looks for a match between the targets in the
gtk.gdk.DragContext specified by context and the target_list, returning the first matching
target, or NONE if no match is found. The list specified by target_list should usually be the return value
from the drag_dest_get_target_list() method, but some widgets may have different valid targets
for different parts of the widget; in that case, they will have to implement a "drag−motion" handler that passes
the correct target list to this method. target_list is a sequence (list or tuple) of 3−tuples that contain
information about the targets. The target data contains a string representing the drag type, target flags (a
combination of gtk.TARGET_SAME_APP and gtk.TARGET_SAME_WIDGET or neither) and an
application assigned integer ID used for identification purposes.

PyGTK 2.0 Reference Manual

gtk.Widget.drag_dest_set 776

gtk.Widget.drag_dest_get_target_list

 def drag_dest_get_target_list()

Returns : the list of targets or None if no targets are set
The drag_dest_get_target_list() method returns the list of targets this widget can accept from
drag−and−drop. The returned value is a sequence (list or tuple) of 3−tuples that contain information about the
targets. The target data contains a string representing the drag type, target flags (a combination of
gtk.TARGET_SAME_APP and gtk.TARGET_SAME_WIDGET or neither) and an application assigned
integer ID used for identification purposes.

gtk.Widget.drag_dest_set_target_list

 def drag_dest_set_target_list(target_list)

target_list : a list of droppable targets, or None
The drag_dest_set_target_list() method sets the target types (that this widget can accept from
drag−and−drop) to the list specified by target_list. The widget must first be made into a drag
destination with the drag_dest_set() method. target_list is a sequence (list or tuple) of 3−tuples
that contain information about the targets. The target data contains a string representing the drag type, target
flags (a combination of gtk.TARGET_SAME_APP and gtk.TARGET_SAME_WIDGET or neither) and an
application assigned integer ID used for identification purposes.

gtk.Widget.drag_dest_add_image_targets

 def drag_dest_add_image_targets()

Note

This method is available in PyGTK 2.6 and above.

The drag_dest_add_image_targets() method adds the image targets supported by
gtk.SelectionData to the target list of the widget's drag destination using an info value of 0.

gtk.Widget.drag_dest_add_text_targets

 def drag_dest_add_text_targets()

Note

This method is available in PyGTK 2.6 and above.

The drag_dest_add_text_targets() method adds the text targets supported by
gtk.SelectionData to the target list of the widget's drag destination using an info value of 0.

gtk.Widget.drag_dest_add_uri_targets

 def drag_dest_add_uri_targets()

PyGTK 2.0 Reference Manual

gtk.Widget.drag_dest_get_target_list 777

Note

This method is available in PyGTK 2.6 and above.

The drag_dest_add_uri_targets() method adds the URI targets supported by
gtk.SelectionData to the target list of the widget's drag destination using an info value of 0.

gtk.Widget.drag_source_set

 def drag_source_set(start_button_mask, targets, actions)

start_button_mask : the bitmask of buttons that can start the drag
targets : a list of targets that the drag will support
actions : the possible actions for a drag from this widget.
The drag_source_set() method sets up the widget to start a drag operation when the user clicks and
drags on the widget. The widget must have a window. The value of start_button_mask is a combination of the
GDK Modifier Constants.

targets is a sequence (list or tuple) of 3−tuples that contain information about the targets. The target data
contains a string representing the drag type, target flags (a combination of gtk.TARGET_SAME_APP and
gtk.TARGET_SAME_WIDGET or neither) and an application assigned integer ID used for identification
purposes.

The value of actions is one of the GDK Drag Action Constants:

gtk.Widget.drag_source_unset

 def drag_source_unset()

The drag_source_unset() method unsets the drag source for the widget that was set up by the
drag_source_set() method.

gtk.Widget.drag_source_set_icon

 def drag_source_set_icon(colormap, pixmap, mask=None)

colormap : the colormap of the icon
pixmap : the image data for the icon
mask : the transparency mask for an image.
The drag_source_set_icon() method sets the icon that will be used for drags from the widget using the
specified pixmap and mask. colormap specifies the colormap to be used to create the icon. The
drag_source_set_icon_pixbuf() method should be used instead of this method.

gtk.Widget.drag_source_set_icon_pixbuf

 def drag_source_set_icon_pixbuf(pixbuf)

pixbuf : the gtk.gdk.Pixbuf for the drag icon
The drag_source_set_icon_pixbuf() method sets the icon that will be used for drags from the
widget from the gtk.gdk.Pixbuf specified by pixbuf.

PyGTK 2.0 Reference Manual

Note 778

gtk.Widget.drag_source_set_icon_stock

 def drag_source_set_icon_stock(stock_id)

stock_id : the ID of the stock icon to use
The drag_source_set_icon_stock() method sets the icon that will be used for drags from a particular
source using the stock icon specified by stock_id.

gtk.Widget.drag_source_get_target_list

 def drag_source_get_target_list()

Returns : the list of targets or None if no targets are set

Note

This method is available in PyGTK 2.6 and above.

The drag_source_get_target_list() method returns the list of targets this widget can provide for
drag−and−drop. The returned value is a sequence (list or tuple) of 3−tuples that contain information about the
targets. The target data contains a string representing the drag type, target flags (a combination of
gtk.TARGET_SAME_APP and gtk.TARGET_SAME_WIDGET or neither) and an application assigned
integer ID used for identification purposes.

gtk.Widget.drag_source_set_target_list

 def drag_source_set_target_list(target_list)

target_list : a list of droppable targets, or None

Note

This method is available in PyGTK 2.6 and above.

The drag_source_set_target_list() method sets the target types (that this widget can provide for
drag−and−drop) to the list specified by target_list. The widget must first be made into a drag source
with the drag_source_set() method. target_list is a sequence (list or tuple) of 3−tuples that
contain information about the targets. The target data contains a string representing the drag type, target flags
(a combination of gtk.TARGET_SAME_APP and gtk.TARGET_SAME_WIDGET or neither) and an
application assigned integer ID used for identification purposes.

gtk.Widget.drag_source_add_text_targets

 def drag_source_add_text_targets()

Note

This method is available in PyGTK 2.6 and above.

The drag_source_add_text_targets() method adds the text targets supported by
gtk.SelectionData to the target list of the widget's drag source using an info value of 0.

PyGTK 2.0 Reference Manual

gtk.Widget.drag_source_set_icon_stock 779

gtk.Widget.drag_begin

 def drag_begin(targets, actions, button, event)

targets : the list of targets supported by the widget drag
actions : the allowed drag operations for the drag
button : the button the user pressed to start the drag
event : the gtk.gdk.Event that triggered the drag
Returns : a new gtk.gdk.DragContext
The drag_begin() method starts a drag on the source side. The method only needs to be used when the
application is starting drags itself, and is not needed when the drag_source_set() method is used.
targets is a sequence (list or tuple) of 3−tuples that contain information about the targets. The target data
contains a string representing the drag type, target flags (a combination of gtk.TARGET_SAME_APP and
gtk.TARGET_SAME_WIDGET or neither) and an application assigned integer ID used for identification
purposes.

The value of actions is one of the GDK Drag Action Constants.

button is the button that the user pressed to start the drag operation. event is the gtk.gdk.Event that
triggered the start of the drag operation (the button press). This method returns the
gtk.gdk.DragContext for the drag operation.

gtk.Widget.grab_add

 def grab_add()

The grab_add() method makes the widget the current grabbed widget. This means that interaction with
other widgets in the same application is blocked and mouse as well as keyboard events are delivered to this
widget.

gtk.Widget.grab_remove

 def grab_remove()

The grab_remove() method removes the grab from the widget. You have to pair calls to the grab_add()
and grab_remove() methods.

gtk.Widget.rc_get_style

 def rc_get_style()

Returns : the resulting style.
The rc_get_style() method finds all matching RC styles for the widget, composites them together, and
then creates a gtk.Style representing the composite appearance.

gtk.Widget.selection_owner_set

 def selection_owner_set(selection, time=0L)

selection : an atom representing the selection to claim
time : a timestamp or 0L to use the current time
Returns : TRUE if successful

PyGTK 2.0 Reference Manual

gtk.Widget.drag_begin 780

The selection_owner_set() method claims the ownership of the selection specified by selection
for the widget.

gtk.Widget.selection_add_target

 def selection_add_target(selection, target, info)

selection : an atom representing the selection
target : an atom representing the target for the selection
info : an integer ID that will be passed to the application
The selection_add_target() method adds the specified target to the list of supported targets for the
specified selection. info is an integer ID that will be passed to the application when the "selection−get"
handler is called.

gtk.Widget.selection_add_targets

 def selection_add_targets(selection, targets)

selection : an atom representing the selection
targets : a sequence of 3−tuples containing target data
The selection_add_targets() method adds the list of targets (specified by targets) to the list of
supported targets for the specified selection. targets is a sequence (Python tuple or list) of 3−tuples that
contain information about the targets. The target data contains a string representing the drag type, target flags
(a combination of gtk.TARGET_SAME_APP and gtk.TARGET_SAME_WIDGET or neither) and an
application assigned integer ID used for identification purposes.

gtk.Widget.selection_clear_targets

 def selection_clear_targets(selection)

selection : an atom representing a selection
The selection_clear_targets() method remove all targets registered for the specified selection
for the widget.

gtk.Widget.selection_convert

 def selection_convert(selection, target, time=0L)

selection : an atom specifying the selection
target : an atom specifying the target type
time : a timestamp for the request or 0L to use the current time
Returns : TRUE if the request succeeded
The selection_convert() method requests the contents of the specified selection for the specified
target type. When received, a "selection_received" signal will be generated.

gtk.Widget.selection_remove_all

 def selection_remove_all()

The selection_remove_all() method removes all handlers and unsets ownership of all selections for a
widget. This method is called when widget is being destroyed and not usually by applications.

PyGTK 2.0 Reference Manual

gtk.Widget.selection_owner_set 781

gtk.Widget.destroy

 def destroy()

The destroy() method destroys the widget. When a widget is destroyed, it will break any references it holds
to other objects. If the widget is inside a container, the widget will be removed from the container. If the
widget is a toplevel (derived from gtk.Window), it will be removed from the list of toplevels, and the
reference PyGTK holds to it will be removed. Removing a widget from its container or the list of toplevels
results in the widget being finalized. In most cases, only toplevel widgets (windows) require explicit
destruction, because when you destroy a toplevel its children will be destroyed as well.

gtk.Widget.unparent

 def unparent()

The unparent() method is only for use in widget implementations. It should be called by implementations
of the remove method on a gtk.Container, to dissociate a child widget from the container.

gtk.Widget.show

 def show()

The show() method causes a widget to be displayed as soon as practical. Any widget that isn't shown will not
appear on the screen. If you want to show all the widgets in a container, it's easier to call the show_all() on
the container, instead of individually showing the widgets. Of course you have to show the containers
containing a widget, as well as the widget itself, before it will appear onscreen. When a toplevel container is
shown, it is immediately realized and mapped; other shown widgets are realized and mapped when their
toplevel container is realized and mapped.

gtk.Widget.show_now

 def show_now()

The show_now() method is the same as the show() method except if the widget is an unmapped toplevel
widget (i.e. a gtk.Window that has not yet been shown), it enters the main loop and waits for the window to
actually be mapped.

Note

Because the main loop is running, anything can happen during this method.

gtk.Widget.hide

 def hide()

The hide() method reverses the effects of the show() method, causing the widget to be hidden (removed
from the display) by unmapping it.

gtk.Widget.show_all

 def show_all()

The show_all() method recursively shows the widget, and any child widgets (if the widget is a container).

PyGTK 2.0 Reference Manual

gtk.Widget.destroy 782

gtk.Widget.hide_all

 def hide_all()

The hide_all() method recursively hides the widget and its child widgets (if any).

gtk.Widget.set_no_show_all

 def set_no_show_all(no_show_all)

no_show_all : the new value for the "no_show_all" property

Note

This method is available in PyGTK 2.4 and above.

The set_no_show_all() method sets the "no_show_all" property to the value of no_show_all. If
no_show_all is TRUE calls to the show_all() and hide_all() methods will not affect this widget.

This method is mostly for use in constructing widget hierarchies with externally controlled visibility, see the
gtk.UIManager reference for mote information.

gtk.Widget.get_no_show_all

 def get_no_show_all()

Returns : the current value of the "no_show_all" property.

Note

This method is available in PyGTK 2.4 and above.

The get_no_show_all() method returns the current value of the "no_show_all" property. If
"no−show−all" is TRUE calls to the show_all() and hide_all() methods will not affect the widget.

gtk.Widget.map

 def map()

The map() method maps the widget (causes it to be displayed). This method will also cause the widget to be
realized if it is not currently realized. This method is usually not used by applications.

gtk.Widget.unmap

 def unmap()

The unmap() method unmaps the widget (causes it to be removed from the display). This method is not
usually used by applications.

gtk.Widget.realize

 def realize()

The realize() method creates the resources associated with a widget. For example, the widget
gtk.gdk.Window will be created when the widget is realized. Normally realization happens implicitly; if

PyGTK 2.0 Reference Manual

gtk.Widget.hide_all 783

you show a widget and all its parent containers, then the widget will be realized and mapped automatically.
Realizing a widget requires all the widget's parent widgets to be realized; calling the realize() method
realizes the widget's parents in addition to the widget itself. A widget must be inside a toplevel window when
you realize it. This method is primarily used in widget implementations, and not in applications. Many times
when you think you might need it, a better approach is to connect to a signal that will be called after the
widget is realized automatically, such as "expose_event". Or simply using the
gobject.connect_after() method to add a handler to the "realize" signal.

gtk.Widget.unrealize

 def unrealize()

The unrealize() method frees all resources associated with the widget, such as the gtk.gdk.Window.

gtk.Widget.queue_draw

 def queue_draw()

The queue_draw() method is equivalent to calling the queue_draw_area() method for the entire area of
a widget.

gtk.Widget.queue_draw_area

 def queue_draw_area(x, y, width, height)

x : the x coordinate of upper−left corner of rectangle to redraw
y : the y coordinate of upper−left corner of rectangle to redraw
width : the width of rectangle to redraw
height : the height of rectangle to redraw
The queue_draw_area() method invalidates the rectangular area of the widget specified by x, y, width
and height by calling the gtk.gdk.Window.invalidate_rect() method on the widget's window
and all its child windows. Once the main loop becomes idle (after the current batch of events has been
processed, roughly), the window will receive expose events for the union of all regions that have been
invalidated.

Normally you would only use this method in widget implementations. But you might also use it, or the
gtk.gdk.Window.invalidate_rect() method directly, to schedule a redraw of a
gtk.DrawingArea or some portion thereof. Frequently you can just call the
gtk.gdk.Window.invalidate_rect() method instead of this method. This method will invalidate
only a single window, instead of the widget and all its children. The advantage of adding to the invalidated
region compared to simply drawing immediately is efficiency; using an invalid region ensures that you only
have to redraw one time.

gtk.Widget.queue_resize

 def queue_resize()

The queue_resize() method schedules the widget to have its size renegotiated. This method should be
called when a widget for some reason has a new size request. For example, when you change the text in a
gtk.Label, a resize is queued to ensure there's enough space for the new text.

PyGTK 2.0 Reference Manual

gtk.Widget.realize 784

gtk.Widget.queue_resize_no_redraw

 def queue_resize_no_redraw()

Note

This method is available in PyGTK 2.4 and above.

The queue_resize_no_redraw() method works like the queue_resize() method, except that the
widget is not invalidated.

gtk.Widget.size_request

 def size_request()

Returns : a tuple containing the widget's required width and height.
The size_request() method returns the preferred size of a widget as a tuple containing its required width
and height. This method is typically used when implementing a gtk.Container subclass to arrange the
container's child widgets and decide what size allocations to give them with the size_allocate() method.
Obtaining a size request requires that the widget be associated with a screen, because font information may be
needed.

Also remember that the size request is not necessarily the size a widget will actually be allocated. See the
get_child_requisition() method.

gtk.Widget.size_allocate

 def size_allocate(allocation)

allocation : the position and size to be allocated to the widget
The size_allocate() method sets a size allocation for the widget using the gtk.gdk.Rectangle
specified by allocation. This method is only used by gtk.Container subclasses, to assign a size and
position to their child widgets.

gtk.Widget.get_child_requisition

 def get_child_requisition(requisition)

Returns : a tuple containing the required size of the widget
The get_child_requisition() method returns a tuple containing the widget requisition width and
height. This method is only for use in widget container implementations since it obtains the widget requisition
directly. By comparison the size_request() method actually computes the size request and fills in the
widget requisition before returning. Because this method does not recalculate the size request, it can only be
used when you know that the widget requisition is up−to−date, i.e. the size_request() method has been
called since the last time a resize was queued. In general, only container implementations have this
information; applications should use the size_request() method instead.

gtk.Widget.add_accelerator

 def add_accelerator(accel_signal, accel_group, accel_key, accel_mods, accel_flags)

accel_signal : the widget signal to emit on accelerator activation
accel_group : the accel group for this widget, added to its toplevel

PyGTK 2.0 Reference Manual

gtk.Widget.queue_resize_no_redraw 785

accel_key : the keyval of the accelerator e.g. ord('q')
accel_mods : the modifier key combination of the accelerator
accel_flags : the flag accelerators, e.g. gtk.ACCEL_VISIBLE
The add_accelerator() method installs an accelerator for the widget in accel_group that causes
accel_signal to be emitted if the accelerator is activated. The accelerator key and modifiers are specified
by accel_key and accel_mods respectively. accel_mods should be a combination of the GDK
Modifier Constants. accel_flags is a combination of gtk.ACCEL_VISIBLE and
gtk.ACCEL_LOCKED (see the GTK Accel Flags Constants). The accel_group needs to be added to the
widget's toplevel via the gtk.Window.add_accel_group() method and the signal specified by
accel_signal must have signal flags that include the gobject.SIGNAL_ACTION flag (see the
GObject Signal Flag Constants for more information). Accelerators added through this method are not user
changeable during runtime. If you want to support accelerators that can be changed by the user, the
set_accel_path() or gtk.MenuItem.set_accel_path() methods instead.

gtk.Widget.remove_accelerator

 def remove_accelerator(accel_group, accel_key, accel_mods)

accel_group : the accel group for this widget
accel_key : the keyval of the accelerator
accel_mods : the modifier key combination of the accelerator
Returns : TRUE if the accelerator was removed
The remove_accelerator() method removes the accelerator specified by accel_key and
accel_mods from the widget's accelerator group (specified by accel_group), previously installed with
the add_accelerator() method.

gtk.Widget.set_accel_path

 def set_accel_path(accel_path, accel_group)

accel_path : the path used to look up the the accelerator
accel_group : a gtk.AccelGroup.
The set_accel_path() method sets an accelerator (using the key bindings defined in accel_path) in
the accelerator group specified by accel_group. This method removes any accelerators for any accelerator
group installed by previous calls to the set_accel_path() method. Associating accelerators with paths
allows them to be modified by the user and the modifications to be saved for future use. This method is a low
level method that would most likely be used by a menu creation system like gtk.ItemFactory. If you use
gtk.ItemFactory, setting up accelerator paths will be done automatically. Even when you you aren't
using gtk.ItemFactory, if you only want to set up accelerators on menu items the
gtk.MenuItem.set_accel_path() method provides a somewhat more convenient interface.

gtk.Widget.can_activate_accel

 def can_activate_accel(signal_id)

signal_id : the ID of an installed signal
Returns : TRUE if the accelerator can be activated.

PyGTK 2.0 Reference Manual

gtk.Widget.add_accelerator 786

Note

This method is available in PyGTK 2.4 and above.

The can_activate_accel() method returns TRUE if an accelerator that activates the signal specified by
signal_id can currently be activated. This is done by emitting the "can−activate−accel" signal. If the
signal isn't overridden by a handler or in a derived widget, then the default check is that the widget must be
sensitive, and the widget and all its ancestors mapped.

gtk.Widget.mnemonic_activate

 def mnemonic_activate(group_cycling)

group_cycling : if TRUE grab the focus instead of activating the widget
Returns : TRUE if the signal was handled
The mnemonic_activate() method emits the "mnemonic−activate" signal on the widget and returns
TRUE if the signal was handled. group_cycling is TRUE if the focus is being shifted to the widget and
FALSE if the widget should be activated.

gtk.Widget.event

 def event(event)

event : a gtk.gdk.Event
Returns : TRUE if the event was handled
The event() method emits the event signals on a widget (those signals should never be emitted without using
this method to do so). If you want to synthesize an event though, don't use this method; instead, use the
gtk.main_do_event() function so the event will behave as if it were in the event queue. Don't synthesize
expose events; instead, use the gtk.gdk.Window.invalidate_rect() method to invalidate a region of
the window.

gtk.Widget.send_expose

 def send_expose(event)

event : an expose gtk.gdk.Event
Returns : TRUE if the event was handled
The send_expose() method emits an expose event signal on a widget. This method is usually used when
propagating an expose event to a child NO_WINDOW widget, and that is normally done using the
gtk.Container.propagate_expose() method. If you want to force an area of a window to be
redrawn, use the gtk.gdk.Window.invalidate_rect() method. To cause the redraw to be done
immediately, follow that call with a call to the gtk.gdk.Window.process_updates() method.

gtk.Widget.activate

 def activate()

Returns : TRUE if the widget was activatable
The activate() method emits the "activate" signal on the widget that activates it (if it can be activated).
Activation is what happens when you press Enter on a widget during key navigation; clicking a button,
selecting a menu item, etc. If the widget isn't activatable, the method returns FALSE.

PyGTK 2.0 Reference Manual

Note 787

gtk.Widget.set_scroll_adjustments

 def set_scroll_adjustments(hadjustment, vadjustment)

hadjustment : an adjustment for horizontal scrolling, or None
vadjustment : an adjustment for vertical scrolling, or None
Returns : TRUE if the widget supports scrolling
The set_scroll_adjustments() method sets the horizontal and vertical scroll adjustments specified by
hadjustment and vadjustment respectively and returns TRUE. If the widget doesn't support scrolling
this method returns FALSE. Widgets that don't support scrolling can be scrolled by placing them in a
gtk.Viewport, which does support scrolling. This method emits the "set−scroll−adjustments" signal on
the widget.

gtk.Widget.reparent

 def reparent(new_parent)

new_parent : a gtk.Container to move the widget into
The reparent() method moves a widget from one gtk.Container to another.

gtk.Widget.intersect

 def intersect(area, intersection)

area : a rectangle
Returns : a rectangle of the intersection of the widget and area or None
The intersect() method computes the intersection of a the widget's area and area, and returns the
intersection in a gtk.gdk.Rectangle. This method returns FALSE if there is no intersection.

gtk.Widget.freeze_child_notify

 def freeze_child_notify()

The freeze_child_notify() method freezes the child notify queue that is used to notify child widgets
of child property changes.

gtk.Widget.child_notify

 def child_notify(child_property)

child_property : a child property
The child_notify() method adds a child property to the widget's child notify queue that is used to notify
child widgets of a change to a child property.

gtk.Widget.thaw_child_notify

 def thaw_child_notify()

The thaw_child_notify() method reverses the effect of a previous call to the
freeze_child_notify() method.

PyGTK 2.0 Reference Manual

gtk.Widget.set_scroll_adjustments 788

gtk.Widget.is_focus

 def is_focus()

Returns : TRUE if the widget is the focus widget.
The is_focus() method returns TRUE if the widget is the focus widget within its toplevel. This does not
mean that the gtk.HAS_FOCUS flag is necessarily set; gtk.HAS_FOCUS will only be set if the toplevel
widget additionally has the global input focus.

gtk.Widget.grab_focus

 def grab_focus()

The grab_focus() method causes the widget to have the keyboard focus for it's enclosing gtk.Window.
The widget must be a focusable widget, such as a gtk.Entry. Also, the widget must have the
gtk.CAN_FOCUS flag set.

gtk.Widget.grab_default

 def grab_default()

The grab_default() method causes the widget to become the default widget. The widget must have the
gtk.CAN_DEFAULT flag set by calling the gtk.Object.set_flags() method. The default widget is
activated when the user presses Enter in a window.

gtk.Widget.set_name

 def set_name(name)

name : the name for the widget
The set_name() method sets the "name" property of the widget to the string specified by name. Widgets
can be named, which allows you to refer to them in a GTK resource file.

gtk.Widget.get_name

 def get_name()

Returns : the name of the widget
The get_name() method returns the value of the "name" property that contains the name of the widget or
None if the widget has no name.

gtk.Widget.set_state

 def set_state(state)

state : the new state for the widget
The set_state() method sets the state of the widget to the value specified by state. The value of state must be
one of the GTK State Type Constants.

Usually you should set the state using wrapper methods such as set_sensitive().

PyGTK 2.0 Reference Manual

gtk.Widget.is_focus 789

gtk.Widget.set_sensitive

 def set_sensitive(sensitive)

sensitive : if TRUE make the widget sensitive
The set_sensitive() method sets the "sensitive" property of the widget to the value specified by
sensitive. If sensitive is TRUE the widget will be sensitive and the user can interact with it. An
insensitive widget appears "grayed out" and the user can't interact with it. Insensitive widgets are known as
"inactive", "disabled", or "ghosted" in some other toolkits.

gtk.Widget.set_app_paintable

 def set_app_paintable(app_paintable)

app_paintable : if TRUE the application will paint directly on the widget
The set_app_paintable() method sets the "app−paintable" property to the value of app_paintable.
If app_paintable is TRUE the application will paint directly on the widget.

gtk.Widget.set_double_buffered

 def set_double_buffered(double_buffered)

double_buffered : if TRUE double−buffer a widget
The set_double_buffered() method sets the widget's flags according to the value of
double_buffered. If double_buffered is TRUE the gtk.DOUBLE_BUFFERED flag is set;
otherwise it is unset. Widgets are double buffered by default. "Double buffered" simply means that the
gtk.gdk.Window.begin_paint_rect() and gtk.gdk.Window.end_paint() methods are called
automatically around expose events sent to the widget. The gtk.gdk.Window.begin_paint_rect()
method diverts all drawing to a widget's window to an off screen buffer, and the
gtk.gdk.Window.end_paint() method draws the buffer to the screen. The result is that users see the
window update in one smooth step, and don't see individual graphics primitives being rendered. In very
simple terms, double buffered widgets don't flicker, so you would only use this method to turn off double
buffering if you had special needs and really knew what you were doing.

gtk.Widget.set_redraw_on_allocate

 def set_redraw_on_allocate(redraw_on_allocate)

redraw_on_allocate : if TRUE, the entire widget will be redrawn when it is allocated to a new size.
Otherwise, only the new portion of the widget will be redrawn.

The set_redraw_on_allocate() method sets a flag that determines if the entire widget is queued for
drawing when a widget's size allocation changes. By default, this setting is TRUE and the entire widget is
redrawn on every size change. If your widget leaves the upper left are unchanged when made bigger, turning
this setting on will improve performance.

Note

For NO_WINDOW widgets setting this flag to FALSE turns off all allocation on resizing: the widget will not
redraw even if its position changes; this is to allow containers that don't draw anything to avoid excess
invalidations. If you set this flag on a NO_WINDOW widget that does draw on the widget's
gtk.gdk.Window, you are responsible for invalidating both the old and new allocation of the widget when
the widget is moved and responsible for invalidating regions newly when the widget increases size.

PyGTK 2.0 Reference Manual

gtk.Widget.set_sensitive 790

gtk.Widget.set_parent

 def set_parent(parent)

parent : a parent container
The set_parent() method is useful only when implementing subclasses of gtk.Container. This
method sets the container as the parent of the widget, and takes care of some details such as updating the state
and style of the child to reflect its new location. The reverse method is the unparent() method.

gtk.Widget.set_parent_window

 def set_parent_window(parent_window)

parent_window : the new parent window.
The set_parent_window() method sets a non default parent window for the widget.

gtk.Widget.set_child_visible

 def set_child_visible(is_visible)

is_visible : if TRUE, the widget should be mapped along with its parent.
The set_child_visible() method determines if the widget should be mapped along with its parent. If
is_visible is TRUE the widget will be mapped with its parent if it has called the show() method.

The child visibility can be set for widget before it is added to a container to avoid mapping children
unnecessarily. The widget's child visibility flag will be reset to its default state of TRUE when the widget is
removed from a container. Note that changing the child visibility of a widget does not queue a resize on the
widget. Most of the time, the size of a widget is computed from all visible children, whether or not they are
mapped. If this is not the case, the container can queue a resize itself. This method is only useful for container
implementations and never should be called by an application.

gtk.Widget.get_child_visible

 def get_child_visible()

Returns : TRUE if the widget is mapped with the parent.
The get_child_visible() method returns the value set with the set_child_visible() method.
This method is only useful for container implementations and never should be called by an application.

gtk.Widget.get_parent

 def get_parent()

Returns : the parent container of the widget, or None
The get_parent() method returns the parent container of the widget or None if the widget has no parent.

gtk.Widget.get_parent_window

 def get_parent_window()

Returns : the parent gtk.gdk.Window of the widget
The get_parent_window() method returns the widget's parent gtk.gdk.Window.

PyGTK 2.0 Reference Manual

gtk.Widget.set_parent 791

gtk.Widget.child_focus

 def child_focus(direction)

direction : the direction of focus movement
Returns : TRUE if focus ended up inside the widget
The child_focus() method is used by custom widget implementations. If you're writing an application,
use the grab_focus() method to move the focus to a particular widget, and the
gtk.Container.set_focus_chain() method to change the focus tab order.

The child_focus() method is called by containers as the user moves around the window using keyboard
shortcuts. The value of direction indicates what kind of motion is taking place:
gtk.DIR_TAB_FORWARD, gtk.DIR_TAB_BACKWARD, gtk.DIR_UP, gtk.DIR_DOWN,
gtk.DIR_LEFT or gtk.DIR_RIGHT

This method emits the "focus" signal on the widget. Widgets override the default handler for this signal in
order to implement appropriate focus behavior. The "focus" default handler for a widget should return:

TRUE if the focus is left on a focusable location inside the widget, and•
FALSE if the focus moved outside the widget•

If returning TRUE, widgets normally call the grab_focus() method to place the focus accordingly; if
returning FALSE, they don't modify the current focus location.

gtk.Widget.set_size_request

 def set_size_request(width, height)

width : the width the widget should request, or −1 to unset
height : the height the widget should request, or −1 to unset
The set_size_request() method sets the minimum size of a widget to the values specified by width
and height. You can use this method to force a widget to be either larger or smaller than it normally would
be. In most cases, the gtk.Window.set_default_size() is a better choice for toplevel windows than
this method. Setting the default size will still allow users to shrink the window but setting the size request will
force them to leave the window at least as large as the size request. When dealing with window sizes, the
gtk.Window.set_geometry_hints() can be a useful method as well.

Note

There is an inherent danger when setting any fixed size − themes, translations into other languages, different
fonts, and user action can all change the appropriate size for a given widget. So, it's basically impossible to
hard code a size that will always be correct.

The size request of a widget is the smallest size a widget can accept while still functioning well and drawing
itself correctly. However in some strange cases a widget may be allocated less than its requested size, and in
many cases a widget may be allocated more space than it requested. If the size request in a given direction is
−1 (unset), then the "natural" size request of the widget will be used instead. Widgets can't actually be
allocated a size less than 1 by 1, but you can pass 0,0 to this method to mean "as small as possible".

gtk.Widget.get_size_request

 def get_size_request()

PyGTK 2.0 Reference Manual

gtk.Widget.child_focus 792

Returns : a 2−tuple containing the requested width and height
The get_size_request() method returns a 2−tuple containing the width and height of the widget that
was explicitly set for the widget using the set_size_request(). A value of −1 for the width or height
indicates that that dimension has not been set explicitly and the natural requisition of the widget will be used
instead. See the set_size_request() method for more information. To get the size a widget will
actually use, call the size_request() instead of this method.

gtk.Widget.set_events

 def set_events(events)

events : the event mask
The set_events() method sets the event mask for a widget using the value specified by events. The
event mask determines which events a widget will receive. Keep in mind that different widgets have different
default event masks, and by changing the event mask you may disrupt a widget's functionality, so be careful.
This method must be called while a widget is unrealized. Consider using the add_events() method for
widgets that are already realized, or if you want to preserve the existing event mask. This method can't be
used with gtk.NO_WINDOW widgets since a widget must have a gtk.gdk.Window to receive events. To
get events on gtk.NO_WINDOW widgets, place them inside a gtk.EventBox and receive events on the
event box.

The value of events must be a combination of the GDK Event Mask Flag Constants:

gtk.Widget.add_events

 def add_events(events)

events : an event mask
The add_events() method adds the events specified by events to the event mask for the widget. See the
set_events() method for details.

gtk.Widget.set_extension_events

 def set_extension_events(mode)

mode : the extension events to receive
The set_extension_events() method sets the extension events mask to the value specified by mode.
The value of mode must be one of the GDK Extension Mode Constants.

See the gtk.gdk.Window.input_set_extension_events() method for more information.

gtk.Widget.get_extension_events

 def get_extension_events()

Returns : the extension events for the widget
The get_extension_events() method returns the extension events the widget will receive. See the
gtk.gdk.Window.input_set_extension_events() method for more information.

PyGTK 2.0 Reference Manual

gtk.Widget.get_size_request 793

gtk.Widget.get_toplevel

 def get_toplevel()

Returns : the topmost ancestor of the widget, or the widget itself if there's no ancestor.
The get_toplevel() method returns the topmost widget in the container hierarchy that the widget is a part
of. If the widget has no parent widgets, it will be returned as the topmost widget.

Note the difference in behavior as compared to the get_ancestor() method that returns None if the
widget isn't inside a toplevel window, and if the window is inside a widget derived from gtk.Window that is
in turn inside the toplevel gtk.Window. While the second case may seem unlikely, it actually happens when
a gtk.Plug is embedded inside a gtk.Socket within the same application.

To reliably find the toplevel gtk.Window, use the get_toplevel() method and check if the
gtk.TOPLEVEL flag is set on the result.

gtk.Widget.get_ancestor

 def get_ancestor(widget_type)

widget_type : a widget type
Returns : the ancestor widget, or None if not found
The get_ancestor() method returns the first ancestor of the widget with the type specified by
widget_type. For example:

 widget.get_ancestor(gtk.Box)

returns the first gtk.Box that's an ancestor of the widget. See the get_toplevel() method for
information about checking for a toplevel gtk.Window.

gtk.Widget.get_colormap

 def get_colormap()

Returns : the colormap used by the widget
The get_colormap() method returns the colormap that will be used to render the widget.

gtk.Widget.get_visual

 def get_visual()

Returns : the visual for the widget
The get_visual() method returns the visual that will be used to render the widget.

gtk.Widget.get_screen

 def get_screen()

Returns : the gtk.gdk.Screen for the toplevel for this widget.

PyGTK 2.0 Reference Manual

gtk.Widget.get_toplevel 794

Note

This method is available in PyGTK 2.2 and above.

The get_screen() method returns the gtk.gdk.Screen from the toplevel window associated with the
widget. This method can only be called after the widget has been added to a widget hierarchy with a
gtk.Window at the top.

gtk.Widget.has_screen

 def has_screen()

Returns : TRUE if there is a gtk.gdk.Screen associated with the widget.

Note

This method is available in PyGTK 2.2 and above.

The has_screen() method returns TRUE if a gtk.gdk.Screen is associated with the widget. All
toplevel widgets have an associated screen, as do all widgets added into a hierarchy with a toplevel window.

gtk.Widget.get_display

 def get_display()

Returns : the gtk.gdk.Display for the toplevel for this widget.

Note

This method is available in PyGTK 2.2 and above.

The get_display() method returns the gtk.gdk.Display for the toplevel window associated with the
widget. This method can only be called after the widget has been added to a widget hierarchy with a toplevel
gtk.Window

gtk.Widget.get_root_window

 def get_root_window()

Returns : the gtk.gdk.Window root window for the toplevel for this widget.

Note

This method is available in PyGTK 2.2 and above.

The get_root_window() method returns the root window containing the widget. This method should only
be called after the widget has been added to a widget hierarchy with a toplevel gtk.Window

The root window is useful for such purposes as creating a popup gtk.gdk.Window associated with the
window.

PyGTK 2.0 Reference Manual

Note 795

gtk.Widget.get_settings

 def get_settings()

Returns : the associated gtk.Settings object
The get_settings() method returns the settings object holding the settings (global property settings, RC
file information, etc) used for this widget.

gtk.Widget.get_clipboard

 def get_clipboard(selection)

selection :
a gtk.gdk.Atom or string that identifies the clipboard to use.
gtk.gdk.SELECTION_CLIPBOARD gives the default clipboard. Another common value is
gtk.gdk.SELECTION_PRIMARY, which gives the primary X selection.

Returns : the appropriate gtk.Clipboard object. If no clipboard already exists, a new one will be
created. Once a clipboard object has been created, it is persistent for all time.

Note

This method is available in PyGTK 2.2 and above.

The get_clipboard() method returns the gtk.Clipboard object for the selection specified by
selection. The widget must have a gtk.gdk.Display associated with it, and so must be attached to a
toplevel window.

gtk.Widget.set_colormap

 def set_colormap(colormap)

colormap : a gtk.gdk.Colormap
The set_colormap() method sets the gtk.gdk.Colormap for the widget to the value specified by
colormap. Widget must not have been realized.

gtk.Widget.get_events

 def get_events()

Returns : the event mask for the widget
The get_events() method returns the event mask for the widget that determines the events that the widget
will receive. See the set_events() method for more detail about events.

gtk.Widget.get_pointer

 def get_pointer()

Returns : a tuple containing the X and Y coordinates of the mouse pointer
The get_pointer() method returns a tuple containing the location of the mouse pointer in widget
coordinates. Widget coordinates are a bit odd; for historical reasons, they are defined as:

the widget gtk.gdk.Window coordinates for widgets that are not gtk.NO_WINDOW widgets, or•
the coordinates relative to the widget allocation for widgets that are gtk.NO_WINDOW widgets.•

PyGTK 2.0 Reference Manual

gtk.Widget.get_settings 796

gtk.Widget.is_ancestor

 def is_ancestor(ancestor)

ancestor : another gtk.Widget
Returns : TRUE if ancestor contains the widget as a child, grandchild, great grandchild, etc.
The is_ancestor() method returns TRUE if the widget is somewhere inside the hierarchy of the widget
specified byancestor

gtk.Widget.translate_coordinates

 def translate_coordinates(dest_widget, src_x, src_y)

dest_widget : a gtk.Widget
src_x : the X position relative to the widget
src_y : the Y position relative to the widget
Returns : a tuple containing the X and Y position relative to dest_widget
The translate_coordinates() method returns a tuple containing the translation of the widget x and y
coordinates specified by src_x and src_y respectively to coordinates relative to dest_widget. In order
to perform this operation, both widgets must be realized, and must share a common toplevel.

gtk.Widget.hide_on_delete

 def hide_on_delete()

Returns : TRUE

The hide_on_delete() method is a utility method that is intended to be connected to the "delete_event"
signal on a gtk.Window. The method calls the hide() method on the widget, then returns TRUE. If
connected to "delete_event", the result is that clicking the close button for a window (on the window frame,
top right corner usually) will hide but not destroy the window. By default, PyGTK destroys windows when
"delete_event" is received.

gtk.Widget.set_style

 def set_style(style)

style : a gtk.Style, or None to revert to the default style
The set_style() method sets the "style" property to the value of style. The "style" property contains the
gtk.Style for the widget. This method interacts badly with themes, because themes work by replacing the
gtk.Style.

gtk.Widget.ensure_style

 def ensure_style()

The ensure_style() method makes sure that the widget has a style. This method is useful if applied to an
unrealized widget. Usually, if you want the style, the widget is realized, and guaranteed to have a style.

gtk.Widget.get_style

 def get_style()

PyGTK 2.0 Reference Manual

gtk.Widget.is_ancestor 797

Returns : the widget's gtk.Style
The get_style() method returns the value of the "style" property.

gtk.Widget.modify_style

 def modify_style(style)

style : the gtk.RcStyle holding the style modifications
The modify_style() method modifies the style values on the widget using the values in style.
Modifications made using this technique take precedence over style values set via an RC file, however, they
will be overridden if a style is explicitly set on the widget using the set_style() method. The
gtk.RcStyle object is designed so each attribute can either be set or unset, so it is possible, using this
method, to modify some style values and leave the others unchanged.

Note that modifications made with this method are not cumulative with previous calls to the
modify_style() method or with such methods as the modify_fg() method. If you wish to retain
previous values, you must first call the get_modifier_style() method, make your modifications to the
returned style, then call the modify_style() method with that style. On the other hand, if you first call the
modify_style() method, subsequent calls to such methods as the modify_fg() method will have a
cumulative effect with the initial modifications.

gtk.Widget.get_modifier_style

 def get_modifier_style()

Returns : the modifier style for the widget. This gtk.RcStyle is owned by the widget.
The get_modifier_style() method returns the current modifier style for the widget as set by the
modify_style() method. If no style was previously set, a new gtk.RcStyle object will be created(with
all values unset), and set as the modifier style for the widget. If you make changes to this rc style, you must
call the modify_style() method, passing in the returned rc style, to make sure that your changes take
effect.

Caution

Passing the style back to the modify_style() method will normally end up destroying it, because the
modify_style() method copies the passed−in style and sets the copy as the new modifier style, thus
dropping any reference to the old modifier style.

gtk.Widget.modify_fg

 def modify_fg(state, color)

state : a widget state.
color : the gtk.gdk.Color to assign.
The modify_fg() method sets the foreground color to the gtk.gdk.Color specified by color for the
widget in the specified state. All other style values are left untouched. The value of state must be one of the
GTK State Type Constants.

PyGTK 2.0 Reference Manual

gtk.Widget.get_style 798

gtk.Widget.modify_bg

 def modify_bg(state, color)

state : a widget state.
color : the gtk.gdk.Color to assign
The modify_bg() method sets the background color to the gtk.gdk.Color specified by color for the
widget in the specified state. All other style values are left untouched. See modify_fg() method for detail
on the possible values of state.

Note

modify_bg() only affects widgets that have an associated gtk.gdk.Window. Widgets that do not have an
associated window include gtk.Arrow, gtk.Bin, gtk.Box, gtk.Button, gtk.CheckButton,
gtk.Fixed, gtk.Image, gtk.Label, gtk.MenuItem, gtk.Notebook, gtk.Paned,
gtk.RadioButton, gtk.Range, gtk.ScrolledWindow, gtk.Separator, gtk.Table,
gtk.Toolbar, gtk.AspectFrame, gtk.Frame, gtk.VBox, gtk.HBox, gtk.VSeparator,
gtk.HSeparator. These widgets can be added to a gtk.EventBox to overcome this limitation.

gtk.Widget.modify_text

 def modify_text(state, color)

state : a widget state.
color : the gtk.gdk.Color to assign.
The modify_text() method sets the text color to the gtk.gdk.Color specified by color for the
widget in the specified state. All other style values are left untouched. The text color is the foreground
color used along with the base color (see the modify_base() method) for widgets such as gtk.Entry and
gtk.TextView. See the modify_fg() method for detail on the possible values of state.

gtk.Widget.modify_base

 def modify_base(state, color)

state : a widget state.
color : the gtk.gdk.Color to assign
The modify_base() method sets the base color to the gtk.gdk.Color specified by color for the
widget in the specified state. All other style values are left untouched. The base color is the background
color used along with the text color (see the modify_text() method) for widgets such as gtk.Entry and
gtk.TextView. See modify_fg() method for detail on the possible values of state.

gtk.Widget.modify_font

 def modify_font(font_desc)

font_desc : a font description to use
The modify_font() method sets the font to use to the value specified by font_desc for the widget. All
other style values are left untouched.

PyGTK 2.0 Reference Manual

gtk.Widget.modify_bg 799

gtk.Widget.create_pango_context

 def create_pango_context()

Returns : the new pango.Context
The create_pango_context() method creates a new pango.Context with the appropriate colormap,
font description, and base direction for drawing text for this widget. See the get_pango_context()
method.

gtk.Widget.get_pango_context

 def get_pango_context()

Returns : the pango.Context for the widget.
The get_pango_context() method returns the pango.Context with the appropriate colormap, font
description and base direction for this widget. Unlike the context returned by the
create_pango_context() method, this context is owned by the widget (it can be used as long as widget
exists), and will be updated to match any changes to the widget's attributes.

If you create and keep a pango.Layout using this context, you must deal with changes to the context by
calling the pango.Layout.context_changed() method on the layout in response to the "style−set" and
"direction−set" signals for the widget.

gtk.Widget.create_pango_layout

 def create_pango_layout(text)

text : the text to set on the layout
Returns : the new pango.Layout
The create_pango_layout() method creates a new pango.Layout with the appropriate colormap,
font description, and base direction for drawing the specified text for this widget. If you keep a
pango.Layout created by this method, you must call pango.Layout.context_changed() in
response to the "style−set" and "direction−set" signals for the widget to notify the layout of changes to the
base direction or font of this widget.

gtk.Widget.render_icon

 def render_icon(stock_id, size, detail)

stock_id : a stock ID
size : a stock size
detail : the render detail to pass to the theme engine
Returns : a new pixbuf, or None if the stock ID wasn't known
The render_icon() method is a convenience method that uses the theme engine and RC file settings for
the widget to look up the stock icon specified by stock_id of the specified size and to render it to a
pixbuf that is returned. stock_id should be a stock icon ID such as gtk.STOCK_OPEN or
gtk.STOCK_OK. size should be one of the GTK Icon Size Constants:

detail should be a string that identifies the widget or code doing the rendering, so that theme engines can
special−case rendering for that widget or code.

PyGTK 2.0 Reference Manual

gtk.Widget.create_pango_context 800

gtk.Widget.set_composite_name

 def set_composite_name(name)

name : the name to set.
The set_composite_name() method sets a widgets composite name to the value specified by name. The
widget must be a composite child of its parent

gtk.Widget.get_composite_name

 def get_composite_name()

Returns : the composite name of the widget or None
The get_composite_name() method returns the composite name of a widget or None if the widget is not
a composite.

gtk.Widget.reset_rc_styles

 def reset_rc_styles()

The reset_rc_styles() method resets the styles of widget and all descendants to the correct values for
the currently loaded RC file settings. This method is not useful for applications.

gtk.Widget.style_get_property

 def style_get_property(property_name)

property_name : the name of a style property
Returns : the property value

Note

This method is available in PyGTK 2.4 and above.

The style_get_property() method returns the value of a style property specified by
property_name.

gtk.Widget.set_direction

 def set_direction(dir)

dir : the new direction
The set_direction() method sets the "direction" property to the value specified by dir. The "direction"
property determines the reading direction of the widget that controls the primary direction for widgets
containing text, and also the direction in which the children of a container are packed. The ability to set the
direction is to handle localization for languages with right−to−left reading directions. Generally, applications
will use the default reading direction, except for containers that are arranged in an order that is explicitly
visual rather than logical (such as buttons for text justification). The values of dir must be one of the GTK
Text Direction Constants.

If the direction is set to gtk.TEXT_DIR_NONE, then the value set by the
gtk.widget.set_default_direction() function will be used.

PyGTK 2.0 Reference Manual

gtk.Widget.set_composite_name 801

gtk.Widget.get_direction

 def get_direction()

Returns : the reading direction for the widget.
The get_direction() method returns the reading direction for the widget. See the set_direction()
method for more information.

gtk.Widget.shape_combine_mask

 def shape_combine_mask(shape_mask, offset_x, offset_y)

shape_mask : the shape to be added.
offset_x : the X position of shape mask with respect to the widget's gtk.gdk.Window.
offset_y : Y position of shape mask with respect to the widget's gtk.gdk.Window.
The shape_combine_mask() method sets a shape for the widget's gtk.gdk.Window using the mask
specified by shape_mask at the location specified by offset_x and offset_y. This allows for
transparent windows etc., see the gtk.gdk.Window.shape_combine_mask() method for more
information.

gtk.Widget.reset_shapes

 def reset_shapes()

The reset_shapes() method recursively resets the shapes of the widget and its descendants.

gtk.Widget.path

 def path()

Returns : the widget's path
The path() method returns the full path to the widget. The path is simply the name of a widget and all its
parents in the container hierarchy, separated by periods. The name of a widget comes from the get_name()
method. Paths are used to apply styles to a widget in gtkrc configuration files. Widget names are the type of
the widget by default (e.g. "GtkButton") or can be set to an application−specific value with the set_name()
method. By setting the name of a widget, you allow users or theme authors to apply styles to that specific
widget in their gtkrc file.

gtk.Widget.class_path

 def class_path()

Returns : the widget's class path
The class_path() method is similar to the path() method, but does not use a custom name set with the
set_name() (e.g. always uses "GtkButton" even if a custom name is available).

gtk.Widget.list_mnemonic_labels

 def list_mnemonic_labels()

Returns : the list of mnemonic labels

PyGTK 2.0 Reference Manual

gtk.Widget.get_direction 802

Note

This method is available in PyGTK 2.4 and above.

The list_mnemonic_labels() method returns a list of the widgets, normally labels, for which this
widget is a the target of a mnemonic (see for example, the gtk.Label.set_mnemonic_widget()
method).

gtk.Widget.add_mnemonic_label

 def add_mnemonic_label(label)

label : a gtk.Widget that acts as a mnemonic label.

Note

This method is available in PyGTK 2.4 and above.

The add_mnemonic_label() method adds the widget specified by label to the list of mnemonic labels
for the widget.(See the list_mnemonic_labels() method for more detail).

gtk.Widget.remove_mnemonic_label

 def remove_mnemonic_label(label)

label : a gtk.Widget that was previously set as a mnemonic label.

Note

This method is available in PyGTK 2.4 and above.

The remove_mnemonic_label() method removes the widget specified by label from the list of
mnemonic labels for the widget. (See the list_mnemonic_labels() method). label must have
previously been added to the list with the add_mnemonic_label().

gtk.Widget.menu_get_for_attach_widget

 def menu_get_for_attach_widget()

Returns : a list of menus attached to this widget.

Note

This method is available in PyGTK 2.6 and above.

The menu_get_for_attach_widget() method returns a list of the menus that are attached to this
widget.

Functions

PyGTK 2.0 Reference Manual

Note 803

gtk.widget_push_colormap

 def gtk.widget_push_colormap(cmap)

cmap : a gtk.gdk.Colormap
The gtk.widget_push_colormap() function pushes the gtk.gdk.Colormap specified by cmap
onto a global stack of colormaps. The topmost colormap on the stack will be used when creating widgets.
Remove cmap with the gtk.widget_pop_colormap() function. There's little reason to use this function.

gtk.widget_push_composite_child

 def gtk.widget_push_composite_child()

The gtk.widget_push_composite_child() function creates all new widgets as composite children
until the corresponding gtk.widget_pop_composite_child() function call. A composite child is a
child that's an implementation detail of the container it's inside and should not be visible to people using the
container. Composite children aren't treated differently (but see the gtk.Container.foreach() method
vs. the gtk.Container.forall() method), but e.g. GUI builders might want to treat them in a different
way.

gtk.widget_pop_composite_child

 def gtk.widget_pop_composite_child()

The gtk.widget_pop_composite_child() function cancels the effect of a previous call to the
gtk.widget_push_composite_child() function.

gtk.widget_pop_colormap

 def gtk.widget_pop_colormap()

The gtk.widget_pop_colormap() function removes the gtk.gdk.Colormap on the top of the
global stack of colormaps. This function reverses the effect of the gtk.widget_push_colormap()
function.

gtk.widget_get_default_style

 def gtk.widget_get_default_style()

Returns : the default gtk.Style
The gtk.widget_get_default_style() function returns the default gtk.Style used by all newly
created widgets

gtk.widget_set_default_colormap

 def gtk.widget_set_default_colormap(colormap)

colormap : a gtk.gdk.Colormap object
The gtk.widget_set_default_colormap() function sets the default gtk.gdk.Colormap to use
when creating widgets to the value specified by colormap. The gtk.widget_push_colormap()
function is a better function to use if you only want to affect a few widgets, rather than all widgets.

PyGTK 2.0 Reference Manual

gtk.widget_push_colormap 804

gtk.widget_get_default_colormap

 def gtk.widget_get_default_colormap()

Returns : the default gtk.gdk.Colormap object
The gtk.widget_get_default_colormap() function returns the default gtk.gdk.Colormap used
when creating new widgets.

gtk.widget_get_default_visual

 def gtk.widget_get_default_visual()

Returns : the default gtk.gdk.Visual object
The gtk.widget_get_default_visual() function returns the default gtk.gdk.Visual of the
default gtk.gdk.Colormap.

gtk.widget_set_default_direction

 def gtk.widget_set_default_direction(dir)

dir : the new default direction − either gtk.TEXT_DIR_RTL or gtk.TEXT_DIR_LTR.
The gtk.widget_set_default_direction() function sets the default text direction to the value
specified by dir. The value of dir must be either gtk.TEXT_DIR_RTL or gtk.TEXT_DIR_LTR. The
default text direction is used for widgets that have not had a text direction set by the set_direction()
method.

gtk.widget_get_default_direction

 def gtk.widget_get_default_direction()

Returns : the default text direction
The gtk.widget_get_default_direction() function returns the default text direction as set by the
gtk.widget_set_default_direction() function.

gtk.widget_list_style_properties

 def gtk.widget_list_style_properties(widget)

widget : a gtk.Widget
Returns : a list of style properties as GParam objects

Note

This function is available in PyGTK 2.4 and above.

The gtk.widget_list_style_properties() function returns a list of the style properties of the
gtk.Widget specified by widget. The list contains a GParam object for each style property.

gtk.widget_class_install_style_property

 def gtk.widget_class_install_style_property(widget)

widget : a gtk.Widget

PyGTK 2.0 Reference Manual

gtk.widget_get_default_colormap 805

pspec : a 4−tuple containing the property spec

Note

This function is available in PyGTK 2.4 and above.

The gtk.widget_class_install_style_property() function installs the style property specified
by pspec on the gtk.Widget specified by widget. pspec is a 4−tuple containing the property name,
the property type, a nickname (or None) and a description of the property (or None).

This function raises the TypeError exception if widget is not a gtk.Widget or if the property is already
installed.

Signals

The "accel−closures−changed" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "accel−closures−changed" signal is emitted when an accelerator is added to or removed from the
gtk.AccelGroup for widget or an accelerator path is setup.

The "button−press−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "button−press−event" signal is emitted when a mouse button is pressed.

The "button−release−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "button−release−event" signal is emitted when a mouse button is released.

PyGTK 2.0 Reference Manual

gtk.widget_class_install_style_property 806

The "can−activate−accel" gtk.Widget Signal

 def callback(widget, signal_id, user_param1, ...)

widget : the widget that received the signal
signal_id : the ID of a signal installed on widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

Note

This signal is available in GTK+ 2.4 and above.

The "can−activate−accel" signal is emitted when an accelerator is about to activate widget. The handler
determines if the accelerator that activates the signal identified by signal_id can currently be activated.
This signal is present to allow applications and derived widgets to override the default GtkWidget handling
for determining whether an accelerator can be activated.

The "child−notify" gtk.Widget Signal

 def callback(widget, child_property, user_param1, ...)

widget : the widget that received the signal
child_property : the name of a child property
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "child−notify" signal is emitted when child_property is changed.

Child properties are available with objects derived from gtk.Container. Those properties are not specific
to either the container or the child widget but to their relation. For example, the "pack−type" property of
gtk.Box or the "menu−label" property of gtk.Notebook are child properties.

The "client−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "client−event" signal is emitted when another application has sent an event to widget.

The "configure−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal

PyGTK 2.0 Reference Manual

The "can−activate−accel" gtk.Widget Signal 807

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "configure−event" signal is emitted when the widget's window is allocated a size and width.

The "delete−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "delete−event" signal is emitted when a request is made to delete widget.

The "destroy−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "destroy−event" signal is emitted when a gtk.gdk.Window is destroyed. You rarely get this signal,
because most widgets disconnect themselves from their window before they destroy it, so no widget owns the
window at destroy time.

The "direction−changed" gtk.Widget Signal

 def callback(widget, direction, user_param1, ...)

widget : the widget that received the signal

direction : the previous direction: gtk.TEXT_DIR_NONE, gtk.TEXT_DIR_LTR or
gtk.TEXT_DIR_RTL

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "direction−changed" signal is emitted when the reading direction of widget is changed (usually with the
set_direction() method)

The "drag−begin" gtk.Widget Signal

 def callback(widget, drag_context, user_param1, ...)

widget : the widget that received the signal
drag_context : the gtk.gdk.DragContext

PyGTK 2.0 Reference Manual

The "configure−event" gtk.Widget Signal 808

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "drag−begin" signal is emitted when the user initiates a drag operation on widget. A typical reason to
connect to this signal is to set up a custom drag icon with the drag_source_set_icon() method.

The "drag−data−delete" gtk.Widget Signal

 def callback(widget, drag_context, user_param1, ...)

widget : the widget that received the signal
drag_context : the gtk.gdk.DragContext
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "drag−data−delete" signal is emitted when the drag completes a move operation and requires the source
data to be deleted. The signal handler is responsible for deleting the data that has been dropped.

The "drag−data−get" gtk.Widget Signal

 def callback(widget, drag_context, selection_data, info, timestamp, user_param1, ...)

widget : the widget that received the signal
drag_context : the gtk.gdk.DragContext
selection_data : a gtk.SelectionData object
info : an integer ID for the drag
timestamp : the time of the drag event
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "drag−data−get" signal is emitted when a drag operation completes that copies data or when a drag drop
occurs using the gtk.gdk.DRAG_PROTO_ROOTWIN protocol. The drag source rev=ceives this signal when
the drag destination requests the data using the drag_get_data() method. The handler needs to fill
selection_data with the data in the format specified by the target associated with info.

The "drag−data−received" gtk.Widget Signal

 def callback(widget, drag_context, x, y, selection_data, info, timestamp, user_param1, ...)

widget : the widget that received the signal
drag_context : the gtk.gdk.DragContext
x : the X position of the drop
y : the Y position of the drop
selection_data : a gtk.SelectionData object
info : an integer ID for the drag
timestamp : the time of the drag event
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "drag−data−received" signal is emitted when the drag destination receives the data from the drag
operation. If the data was received in order to determine whether the drop will be accepted, the handler is
expected to call the gtk.gdk.DragContext.drag_status() method and not finish the drag. If the
data was received in response to a "drag−drop" signal (and this is the last target to be received), the handler

PyGTK 2.0 Reference Manual

The "drag−begin" gtk.Widget Signal 809

for this signal is expected to process the received data and then call the
gtk.gdk.DragContext.finish() method, setting the success parameter to TRUE if the data was
processed successfully.

The "drag−drop" gtk.Widget Signal

 def callback(widget, drag_context, x, y, timestamp, user_param1, ...)

widget : the widget that received the signal
drag_context : the gtk.gdk.DragContext
x : the X position of the drop
y : the Y position of the drop
timestamp : the time of the drag event
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the cursor is in a drop zone
The "drag−drop" signal is emitted when the drag initiates a drop operation on the destination widget. The
signal handler must determine whether the cursor position is in a drop zone or not. If it is not in a drop zone, it
returns FALSE and no further processing is necessary. Otherwise, the handler returns TRUE. In this case, the
handler must ensure that the gtk.gdk.DragContext.finish() method is called to let the source know
that the drop is done. The call to the gtk.gdk.DragContext.finish() method can be done either
directly or in a "drag−data−received" handler that gets triggered by calling the drag_get_data() method
to receive the data for one or more of the supported targets.

The "drag−end" gtk.Widget Signal

 def callback(widget, drag_context, user_param1, ...)

widget : the widget that received the signal
drag_context : the gtk.gdk.DragContext
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "drag−end" signal is emitted when the drag operation is completed. A typical reason to connect to this
signal is to undo things done in a "drag−begin" handler.

The "drag−leave" gtk.Widget Signal

 def callback(widget, drag_context, timestamp, user_param1, ...)

widget : the widget that received the signal
drag_context : the gtk.gdk.DragContext
timestamp : the time of the drag event
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "drag−leave" signal is emitted when the drag operation moves off of a drop target widget. A typical
reason to connect to this signal is to undo things done in a "drag−motion" handler, e.g. undo highlighting with
the drag_unhighlight() method.

PyGTK 2.0 Reference Manual

The "drag−data−received" gtk.Widget Signal 810

The "drag−motion" gtk.Widget Signal

 def callback(widget, drag_context, x, y, timestamp, user_param1, ...)

widget : the widget that received the signal
drag_context : the gtk.gdk.DragContext
x : the X position of the drop
y : the Y position of the drop
timestamp : the time of the drag event
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE if the cursor is in a drop zone
The "drag−motion" signal is emitted when the drag operation moves over a drop target widget. The signal
handler must determine if the cursor position is in a drop zone or not. If it is not in a drop zone, it should
return FALSE and no further processing is necessary. Otherwise, the handler should return TRUE. In this case,
the handler is responsible for providing the necessary information for displaying feedback to the user, by
calling the gtk.gdk.DragContext.drag_status() method. If the decision to accept or reject the drop
can't be made based solely on the cursor position and the type of the data, the handler may inspect the dragged
data by calling the drag_get_data() method and defer the
gtk.gdk.DragContext.drag_status() method call to the "drag−data−received" handler.

Note

There is no "drag−enter" signal. The drag receiver has to keep track of any "drag−motion" signals received
since the last "drag−leave" signal. The first "drag−motion" signal received after a "drag_leave" signal should
be treated as an "enter" signal. Upon an "enter", the handler will typically highlight the drop site with the
drag_highlight() method.

The "enter−notify−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "enter−notify−event" signal is emitted when the mouse pointer enters widget.

The "event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

PyGTK 2.0 Reference Manual

The "drag−motion" gtk.Widget Signal 811

The "event" signal is emitted when any gtk.gdk.Event occurs on widget. The "event" signal is emitted
before any of the specific gtk.gdk.Event signals are emitted.

The "event−after" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "event−after" signal is emitted after any other event handling has occurred for widget

The "expose−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "expose−event" signal is emitted when widget needs to be repainted because it is first displayed or has
been partially or fully obscured by another window.

The "focus" gtk.Widget Signal

 def callback(widget, direction, user_param1, ...)

widget : the widget that received the signal

direction : the direction: gtk.DIR_TAB_FORWARD, gtk.DIR_TAB_BACKWARD, gtk.DIR_UP,
gtk.DIR_DOWN, gtk.DIR_LEFT or gtk.DIR_RIGHT

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "focus" signal is emitted when widget receives the focus.

The "focus−in−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

PyGTK 2.0 Reference Manual

The "event" gtk.Widget Signal 812

The "focus−in−event" signal is emitted when the focus changes to widget.

The "focus−out−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "focus−out−event" signal is emitted when the focus leaves widget.

The "grab−focus" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "grab−focus" signal is emitted when widget grabs the focus usually by calling the grab_focus()
method or by the user using a mnemonic accelerator..

The "grab−notify" gtk.Widget Signal

 def callback(widget, was_grabbed, user_param1, ...)

widget : the widget that received the signal
was_grabbed : if TRUE widget had grabbed the focus
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "grab−notify" signal is emitted when widget (or its ancestor) either is grabbing the focus or has the focus
grabbed from it.

The "hide" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "hide" signal is emitted when widget is hidden usually by calling the hide() method.

The "hierarchy−changed" gtk.Widget Signal

 def callback(widget, previous_toplevel, user_param1, ...)

widget : the widget that received the signal
previous_toplevel : the toplevel widget in the previous hierarchy containing widget

PyGTK 2.0 Reference Manual

The "focus−in−event" gtk.Widget Signal 813

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "hierarchy−changed" signal is emitted when widget is unparented or has a new parent set.

The "key−press−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "key−press−event" signal is emitted when the user presses a key on the keyboard.

The "key−release−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "key−release−event" signal is emitted when the user releases a key on the keyboard.

The "leave−notify−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "leave−notify−event" signal is emitted when the mouse pointer leaves the area of widget.

The "map" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "map" signal is emitted when widget requests to be mapped onto the display usually by calling the
show() or map() methods.

PyGTK 2.0 Reference Manual

The "hierarchy−changed" gtk.Widget Signal 814

The "map−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "map−event" signal is emitted when widget has been mapped onto the display.

The "mnemonic−activate" gtk.Widget Signal

 def callback(widget, group_cycling, user_param1, ...)

widget : the widget that received the signal
group_cycling : if TRUE shifts the focus instead of activating widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "mnemonic−activate" signal is emitted when the user uses a mnemonic accelerator to activate widget.

The "motion−notify−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "motion−notify−event" signal is emitted when the mouse pointer moves while over widget.

The "no−expose−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

The "no−expose−event" signal is emitted when a no expose event occurs.

PyGTK 2.0 Reference Manual

The "map−event" gtk.Widget Signal 815

The "parent−set" gtk.Widget Signal

 def callback(widget, old_parent, user_param1, ...)

widget : the widget that received the signal
old_parent : the previous parent of widget
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "parent−set" signal is emitted when the parent of widget is set or unset.

The "popup−menu" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further

Returns : TRUE if a menu was activated
The "popup−menu" signal is emitted when the user presses the Shift+F10 or Menu keys when widget has
the focus to popup a menu.

The "property−notify−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "property−notify−event" signal is emitted when a window property value has changed. This is used for
selection data retrieval.

The "proximity−in−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "proximity−in−event" (available for devices like touch screens or graphics tablets) is emitted when the
pen touches the tablet or when the user's finger touches the screen.

PyGTK 2.0 Reference Manual

The "parent−set" gtk.Widget Signal 816

The "proximity−out−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "proximity−out−event" (available for devices like touch screens or graphics tablets) is emitted when the
pen leaves the tablet or when the user's finger leaves the screen.

The "realize" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "realize" signal is emitted when widget requests to be realized by calling the realize() method.

The "screen−changed" gtk.Widget Signal

 def callback(widget, screen, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Note

This signal is available in GTK+ 2.4 and above.

The "screen−changed" signal is emitted when screen becomes the new gtk.gdk.Screen for widget.

The "scroll−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "scroll−event" signal is emitted when widget receives a scroll event.

PyGTK 2.0 Reference Manual

The "proximity−out−event" gtk.Widget Signal 817

The "selection−clear−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "selection−clear−event" signal is emitted when the selection needs to be cleared.

The "selection−get" gtk.Widget Signal

 def callback(widget, selection_data, info, timestamp, user_param1, ...)

widget : the widget that received the signal
selection_data : a gtk.SelectionData object
info : an integer ID for the selection
timestamp : the time the event occurred
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "selection−get" signal is emitted when the selection data is requested from widget.

The "selection−notify−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "selection−notify−event" signal is emitted when the selection owner has responded to the selection
conversion request.

The "selection−received" gtk.Widget Signal

 def callback(widget, selection_data, timestamp, user_param1, ...)

widget : the widget that received the signal
selection_data : a gtk.SelectionData object
timestamp : the time the event occurred
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "selection−received" signal is emitted when the selection owner has responded to the request for the
selection data.

PyGTK 2.0 Reference Manual

The "selection−clear−event" gtk.Widget Signal 818

The "selection−request−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "selection−request−event" signal is emitted when a selection request is made on widget.

The "show" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "show" signal is emitted when widget requests to be displayed using either the show() or show_all()
method.

The "show−help" gtk.Widget Signal

 def callback(widget, help_type, user_param1, ...)

widget : the widget that received the signal

help_type : the help type; either gtk.WIDGET_HELP_TOOLTIP or
gtk.WIDGET_HELP_WHATS_THIS

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
Returns : TRUE to stop other handlers from being invoked.
The "show−help" signal is emitted when the user presses the Control+F1 key combination.

The "size−allocate" gtk.Widget Signal

 def callback(widget, allocation, user_param1, ...)

widget : the widget that received the signal
allocation : the widget's space allocation in a gtk.gdk.Rectangle
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "size−allocate" signal is emitted when widget is given a new space allocation.

The "size−request" gtk.Widget Signal

 def callback(widget, requisition, user_param1, ...)

widget : the widget that received the signal
requisition : the widget's requested size as a gtk.Requisition

PyGTK 2.0 Reference Manual

The "selection−request−event" gtk.Widget Signal 819

user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "size−request" signal is emitted when a new size is requested for widget using the
set_size_request() method.

The "state−changed" gtk.Widget Signal

 def callback(widget, state, user_param1, ...)

widget : the widget that received the signal

state : the previous widget state: gtk.STATE_NORMAL, gtk.STATE_ACTIVE,
gtk.STATE_PRELIGHT, gtk.STATE_SELECTED or gtk.STATE_INSENSITIVE

user_param1 :the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "state−changed" signal is emitted when the state of widget changes.

The "style−set" gtk.Widget Signal

 def callback(widget, previous_style, user_param1, ...)

widget : the widget that received the signal
previous_style : the previous widget gtk.Style
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "style−set" signal is emitted when the gtk.Style of widget is set.

The "unmap" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "unmap" signal is emitted when widget requests to be unmapped from the display.

The "unmap−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "unmap−event" signal is emitted when widget has been unmapped from the display.

PyGTK 2.0 Reference Manual

The "size−request" gtk.Widget Signal 820

The "unrealize" gtk.Widget Signal

 def callback(widget, user_param1, ...)

widget : the widget that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "unrealize" signal is emitted when widget requests to be unrealized (i.e. have all its resources released).

The "visibility−notify−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "visibility−notify−event" signal is emitted when the visibility of widget changes i.e. it has been
obscured or unobscured.

The "window−state−event" gtk.Widget Signal

 def callback(widget, event, user_param1, ...)

widget : the widget that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "window−state−event" signal is emitted when window state of widget changes. For example, for a
toplevel window this event is signaled when the window is iconified, deiconified, minimized, maximized,
made sticky, made not sticky, shaded or unshaded.

Prev Up Next
gtk.Viewport Home gtk.Window

gtk.Window
Prev The gtk Class Reference Next

gtk.Window

gtk.Window � a top−level window that holds one child widget.

Synopsis

class gtk.Window(gtk.Bin):
gtk.Window(type=gtk.WINDOW_TOPLEVEL)

PyGTK 2.0 Reference Manual

The "unrealize" gtk.Widget Signal 821

 def set_title(title)
 def get_title()
 def set_wmclass(wmclass_name, wmclass_class)
 def set_role(role)
 def get_role()
 def add_accel_group(accel_group)
 def remove_accel_group(accel_group)
 def set_position(position)
 def activate_focus()
 def set_focus(focus)
 def get_focus()
 def set_default(default_widget)
 def activate_default()
 def set_transient_for(parent)
 def get_transient_for()
 def set_type_hint(hint)
 def get_type_hint()
 def set_destroy_with_parent(setting)
 def get_destroy_with_parent()
 def set_resizable(resizable)
 def get_resizable()
 def set_gravity(gravity)
 def get_gravity()
 def set_geometry_hints(geometry_widget, min_width=−1, min_height=−1, max_width=−1, max_height=−1, base_width=−1, base_height=−1, width_inc=−1, height_inc=−1, min_aspect=−1.0, max_aspect=−1.0)
 def set_screen(screen)
 def get_screen()
 def is_active()
 def has_toplevel_focus()
 def set_has_frame(setting)
 def get_has_frame()
 def set_frame_dimensions(left, top, right, bottom)
 def get_frame_dimensions()
 def set_decorated(setting)
 def get_decorated()
 def set_icon_list(...)
 def get_icon_list()
 def set_icon(icon)
 def set_icon_from_file(filename)
 def get_icon()
 def set_modal(modal)
 def get_modal()
 def add_mnemonic(keyval, target)
 def remove_mnemonic(keyval, target)
 def mnemonic_activate(keyval, modifier)
 def set_mnemonic_modifier(modifier)
 def get_mnemonic_modifier()
 def activate_key(event)
 def propagate_key_event(event)
 def present()
 def iconify()
 def deiconify()
 def stick()
 def unstick()
 def maximize()
 def unmaximize()
 def fullscreen()
 def unfullscreen()
 def set_keep_above(setting)
 def set_keep_below(setting)
 def begin_resize_drag(edge, button, root_x, root_y, timestamp)
 def begin_move_drag(button, root_x, root_y, timestamp)
 def set_default_size(width, height)
 def get_default_size()
 def resize(width, height)
 def get_size()

PyGTK 2.0 Reference Manual

Synopsis 822

 def move(x, y)
 def get_position()
 def parse_geometry(geometry)
 def reshow_with_initial_size()
 def tooltips_get_info_from_tip_window()
 def set_focus_on_map(setting)
 def get_focus_on_map()
 def set_icon_name(name)
 def get_icon_name()

Functions

 def gtk.window_set_default_icon(icon)
 def gtk.window_set_default_icon_from_file(filename)
 def gtk.window_set_default_icon_list(...)
 def gtk.window_get_default_icon_list()
 def gtk.window_set_auto_startup_notification(setting)
 def gtk.window_list_toplevels()
 def gtk.window_set_default_icon_name(name)

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.Widget
 +−− gtk.Container
 +−− gtk.Bin
 +−− gtk.Window

Properties

"accept−focus" Read−Write If TRUE, the window should receive the input focus.
Default value: TRUE. Available in GTK+ 2.4 and
above.

"allow−grow" Read−Write If TRUE, the user can expand the window beyond its
minimum size. Default value: TRUE.

"allow−shrink" Read−Write If TRUE, the window has no minimum size. Setting
this to TRUE is a bad idea 99% of the time. Default
value: FALSE.

"decorated" Read−Write If TRUE, the window should be decorated by the
window manager. Default value: TRUE. Available in
GTK+ 2.4 and above.

"default−height" Read−Write The default height of the window, used when initially
showing the window. Allowed values: >= −1. Default
value: −1

"default−width" Read−Write The default width of the window, used when initially
showing the window. Allowed values: >= −1. Default
value: −1

"destroy−with−parent" Read−Write If TRUE, the window should be destroyed when its
parent is destroyed. Default value: FALSE.

"focus−on−map" Read−Write If TRUE, the window should receive the input focus
when mapped. Default value: TRUE. Available in
GTK+ 2.6 and above.

"gravity" Read−Write The window gravity of the window. See the move()
method and the GDK Gravity Constants for more
details about window gravity. Default value:

PyGTK 2.0 Reference Manual

Ancestry 823

gtk.gdk.GRAVITY_NORTH_WEST. Available in
GTK+ 2.4 and above.

"has−toplevel−focus" Read If TRUE, the input focus is within the window. Default
value: FALSE. Available in GTK+ 2.2 and above.

"icon" Read−Write The icon for this window
"icon−name" Read−Write The name of the themed icon to use as the window

icon. See gtk.IconTheme for more details. Default
value: None. Available in GTK+ 2.6 and above.

"is−active" Read If TRUE, the toplevel is the current active window.
Default value: FALSE. Available in GTK+ 2.2 and
above.

"modal" Read−Write If TRUE, the window is modal (other windows are not
usable while this one is up). Default value: FALSE.

"resizable" Read−Write If TRUE, the user can resize the window. Default
value: TRUE.

"role" Read−Write Unique identifier for the window to be used when
restoring a session. Default value: None. Available in
GTK+ 2.4

"screen" Read−Write The screen where this window will be displayed.
Available in GTK+ 2.2

"skip−pager−hint" Read−Write If TRUE, the window should not be in the pager.
Default value: FALSE. Available in GTK+ 2.2 and
above.

"skip−taskbar−hint" Read−Write If TRUE, the window should not be in the task bar.
Default value: FALSE. Available in GTK+ 2.2 and
above.

"title" Read−Write The title of the window. Default value: None.
"type" Read−Write The type of the window. Default value:

gtk.WINDOW_TOPLEVEL

"type−hint" Read−Write Hint to help the desktop environment understand what
kind of window this is and how to treat it. Default
value: gtk.gdk.WINDOW_TYPE_HINT_NORMAL.
Available in GTK+ 2.2 and above.

"window−position" Read−Write The initial position of the window. Default value:
gtk.WIN_POS_NONE

Attributes

"allow_grow" Read If TRUE, users can expand the window beyond its minimum size.

"allow_shrink" Read If TRUE, the window has no minimum size.

"configure_notify_received" Read If TRUE a window resize configuration event has been received.

"configure_request_count" Read The number of outstanding configuration requests.

"decorated" Read If TRUE the window will have decorations like a titlebar, resize
controls, etc. See the set_decorated() method.

"default_widget" Read The child widget that will be activated by default. See the
set_default() method.

PyGTK 2.0 Reference Manual

Properties 824

"destroy_with_parent" Read If TRUE the window is destroyed when its transient parent is
destroyed.

"focus_widget" Read The child widget that has the focus.

"frame" Read The frame gtk.gdk.Window (if any). See the
set_has_frame() and set_frame_dimensions() methods.

"frame_bottom" Read The height of the bottom frame border. See the
set_frame_dimensions() and set_has_frame() methods.

"frame_left" Read The width of the left frame border. See the
set_frame_dimensions() and set_has_frame() methods.

"frame_right" Read The width of the right frame border. See the
set_frame_dimensions() and set_has_frame() methods.

"frame_top" Read The height of the top frame border. See the
set_frame_dimensions() and set_has_frame() methods.

"gravity" Read The window's gravity. See the move() and set_gravity()
methods.

"group" Read The gtk.WindowGroup (if any) the window belongs to.

"has_focus" Read If TRUE the window has the focus.

"has_frame" Read If TRUE the window has a frame window. See the
set_has_frame() method.

"has_user_ref_count" Read If TRUE the window has not been destroyed.

"iconify_initially" Read If TRUE the window has been iconified by a call to the iconify()
method.

"keys_changed_handler" Read The idle handler ID for handling accelerator group changes.

"maximize_initially" Read If TRUE the window has been maximized by a call to the
maximize() method.

"mnemonic_modifier" Read The mnemonic modifier used with a key to activate an accelerator.
See the set_mnemonic_modifier() method

"modal" Read If TRUE the window is modal. See the set_modal() method.

"need_default_position" Read If TRUE the window needs an initial position calculated.

"need_default_size" Read If TRUE the window needs an initial size calculated.

"position" Read The initial position of the window. See the set_position()
method.

"stick_initially" Read If TRUE the window has been made sticky by a call to the stick()
method.

"title" Read The title of the window.

"transient_parent" Read The transient parent window. See the set_transient_for()
method.

"type" Read The type of the window: gtk.WINDOW_TOPLEVEL or
gtk.WINDOW_POPUP.

PyGTK 2.0 Reference Manual

Attributes 825

"type_hint" Read The window's type hint. See the set_type_hint() method.

"wmclass_class" Read The window system class hint. See the set_wmclass() method.

"wmclass_name" Read The window system name hint. See the set_wmclass() method.

"wm_role" Read The unique identifier for the window. See the set_role() method.

Signal Prototypes

"activate−default" def callback(window, user_param1, ...)

"activate−focus" def callback(window, user_param1, ...)

"frame−event" def callback(window, event, user_param1, ...)

"keys−changed" def callback(window, user_param1, ...)

"move−focus" def callback(window, direction, user_param1, ...)

"set−focus" def callback(window, widget, user_param1, ...)

Description

A gtk.Window provides a widget that users commonly think of as a window. That is, an area of the display
that is managed by the window manager and usually decorated with a title bar, and items to allow the user to
close, resize and move the window. PyGTK provides two types of windows (see the GTK Window Type
Constants section for more information):

gtk.WINDOW_TOPLEVEL
A window that has no parent and usually has a frame and decorations supplied
by a window manager. Toplevels windows are the main application window and
dialogs.

gtk.WINDOW_POPUP
A window that is ignored by the window manager and has no frame or
decorations. A popup window is used for menus and tooltips.

Typically, applications only directly create and use toplevel windows.

A gtk.Window is a container (subclass of gtk.Bin) holding one child widget.

Constructor

gtk.Window(type=gtk.WINDOW_TOPLEVEL)

type : the type of window: gtk.WINDOW_TOPLEVEL or gtk.WINDOW_POPUP
Returns : a new gtk.Window.
Creates a new gtk.Window, which is a toplevel window that can contain other widgets. Nearly always, the
type of the window should be gtk.WINDOW_TOPLEVEL (see the GTK Window Type Constants for more
details). gtk.WINDOW_POPUP is used to create a pop−up menu or pop−up tooltip. On X11, popup windows
are not controlled by the window manager. If you simply want an undecorated window (no window borders),
use the set_decorated() method with a toplevel window, don't use a popup window.

Methods

PyGTK 2.0 Reference Manual

Signal Prototypes 826

gtk.Window.set_title

 def set_title(title)

title : the title of the window
The set_title() method sets the "title" property of the gtk.Window to the value specified by title.
The title of a window will be displayed in its title bar. On the X Window System, the title bar is rendered by
the window manager, so exactly how the title appears to users may vary according to a user's exact
configuration. The title should help a user distinguish this window from other windows they may have open.
A good title might include the application name and current document filename.

gtk.Window.get_title

 def get_title()

Returns : the title of the window, or None.
The get_title() method returns the value of the "title" property of the window. See the set_title()
method.

gtk.Window.set_wmclass

 def set_wmclass(wmclass_name, wmclass_class)

wmclass_name : the window name hint
wmclass_class : the window class hint
The set_wmclass() method sets the X Window System "class" and "name" hints for a window.
Applications should not call this method. According to the ICCCM, you should always set these to the same
value for all windows in an application, and PyGTK sets them to that value by default, so calling this method
is sort of pointless. However, you may want to call the set_role() method on each window in your
application, for the benefit of the session manager. Setting the role allows the window manager to restore
window positions when loading a saved session.

gtk.Window.set_role

 def set_role(role)

role : a unique identifier for the window
The set_role() method sets a unique identifier (specified by role) for the window to be used when
restoring a session. This method is only useful on X11. In combination with the window title, the window role
allows a window manager to identify "the same" window when an application is restarted. So for example you
might set the "toolbox" role on your app's toolbox window, so that when the user restarts their session, the
window manager can put the toolbox back in the same place. If a window already has a unique title, you don't
need to set the role, since the WM can use the title to identify the window when restoring the session.d

gtk.Window.get_role

 def get_role()

Returns : the role of the window if set, or None.
The get_role() method returns the role of the window. See the set_role() method for further
explanation.

PyGTK 2.0 Reference Manual

gtk.Window.set_title 827

gtk.Window.add_accel_group

 def add_accel_group(accel_group)

accel_group : a gtk.AccelGroup
The add_accel_group() method associates the accelerator group specified by accel_group with the
window.

gtk.Window.remove_accel_group

 def remove_accel_group(accel_group)

accel_group : a gtk.AccelGroup
The remove_accel_group() method dissociates the accelerator group specified by accel_group from
the widget. This method reverses the effects of the add_accel_group() method.

gtk.Window.set_position

 def set_position(position)

position : a position constraint.
The set_position() method sets the "window−position" property to the value of position. The value
of position must be one of the GTK Window Position Constants.

If the old or new window position constraint is gtk.WIN_POS_CENTER_ALWAYS, this will also cause the
window to be repositioned to satisfy the new constraint.

gtk.Window.activate_focus

 def activate_focus()

Returns : TRUE if the window has a focus widget
The activate_focus() method activates the child widget with the focus. This method returns TRUE if the
window has a widget with the focus.

gtk.Window.set_focus

 def set_focus(focus)

focus : the widget to be the new focus widget or None to unset a focus widget
The set_focus() method sets the widget specified by focus to be the focus widget for the window. If
focus is None the window's focus widget is unset. To set the focus to a particular widget in the toplevel, it
is usually more convenient to use the gtk.Widget.grab_focus() method instead of this method.

gtk.Window.get_focus

 def get_focus()

Returns : the currently focused widget.
The get_focus() method returns the current focused widget within the window. The focus widget is the
widget that would have the focus if the toplevel window is focused.

PyGTK 2.0 Reference Manual

gtk.Window.add_accel_group 828

gtk.Window.set_default

 def set_default(default_widget)

default_widget : the widget to be the default, or None to unset the default widget.
The set_default() method sets the window's default widget to the value specified by
default_widget. If default_widget is None the window's default widget is unset. The default
widget is the widget that's activated when the user presses Enter in a window. When setting (rather than
unsetting) the default widget it's generally easier to call the gtk.Widget.grab_default() method on
the widget. Before making a widget the default widget, you must set the gtk.CAN_DEFAULT flag on the
widget you'd like to make the default using the gtk.Object.set_flags() method.

gtk.Window.activate_default

 def activate_default()

Returns : TRUE if the window has a default widget or a focus widget.
The activate_default() method activates the default widget. If there is no default widget or the default
widget cannot be activated, the window's focus widget (if any) is activated. This method returns FALSE if no
default widget could be activated or there is no focus widget.

gtk.Window.set_transient_for

 def set_transient_for(parent)

parent : the parent window or None to remove the transient parent
The set_transient_for() method sets the window as a transient window for the window specified by
parent. Dialog windows should be set transient for the main application window they were spawned from.
This allows window managers to keep the dialog on top of the main window, or center the dialog over the
main window. The gtk.Dialog() constructor and other convenience functions in PyGTK will sometimes call
the set_transient_for() method on your behalf.

On Windows, this method will and put the child window on top of the parent, much as the window manager
would have done on X.

gtk.Window.get_transient_for

 def get_transient_for()

Returns : the transient parent for this window, or None if no transient parent has been set.
The get_transient_for() method returns the transient parent for this window or None if no transient
window is set. See the set_transient_for() method.

gtk.Window.set_type_hint

 def set_type_hint(hint)

hint : the window type
The set_type_hint() method sets the window type hint for the window to the value specified by hint.
The value of hint must be one of the GDK Window Type Hint Constants.

By setting the type hint for the window, you allow the window manager to decorate and handle the window in
a way which is suitable to the method of the window in your application. This method should be called before

PyGTK 2.0 Reference Manual

gtk.Window.set_default 829

the window becomes visible. The gtk.Dialog() constructor and other convenience functions in PyGTK will
sometimes call this method on your behalf.

gtk.Window.get_type_hint

 def get_type_hint()

Returns : the type hint for the window.
The get_type_hint() method returns the type hint for this window. See the set_type_hint() method.

gtk.Window.set_destroy_with_parent

 def set_destroy_with_parent(setting)

setting : if TRUE destroy the window with its transient parent
The set_destroy_with_parent() method sets the "destroy−with−parent" property to the value
specified by setting. If setting is TRUE, destroying the transient parent of the window will also destroy
the window itself. This is useful for dialogs that shouldn't persist beyond the lifetime of the main window
they're associated with.

gtk.Window.get_destroy_with_parent

 def get_destroy_with_parent()

Returns : TRUE if the window will be destroyed with its transient parent.
The get_destroy_with_parent() method returns the value of the "destroy−with−parent" property that
determines if the window will be destroyed with its transient parent. See the
set_destroy_with_parent() method.

gtk.Window.set_resizable

 def set_resizable(resizable)

resizable : if TRUE the user can resize this window
The set_resizable() method sets the "resizable" property to the value of resizable. If resizable
is TRUE the user can resize the window. Windows are user resizable by default.

gtk.Window.get_resizable

 def get_resizable()

Returns : TRUE if the user can resize the window
The get_resizable() method returns the value of the "resizable" property. See the set_resizable()
method.

gtk.Window.set_gravity

 def set_gravity(gravity)

gravity : the window gravity
The set_gravity() method sets the gravity of the window to the value specified by gravity. The
window gravity defines the meaning of coordinates passed to the move() method. The value of gravity must

PyGTK 2.0 Reference Manual

gtk.Window.set_type_hint 830

be one of the GDK Gravity Constants.

The default window gravity is gtk.gdk.GRAVITY_NORTH_WEST which will typically "do what you
want."

gtk.Window.get_gravity

 def get_gravity()

Returns : the window gravity
The get_gravity() method returns window gravity. See the set_gravity() method.

gtk.Window.set_geometry_hints

 def set_geometry_hints(geometry_widget, min_width=−1, min_height=−1, max_width=−1, max_height=−1, base_width=−1, base_height=−1, width_inc=−1, height_inc=−1, min_aspect=−1.0, max_aspect=−1.0)

geometry_widget : the widget the geometry hints will be applied to
min_width : the minimum width of window (or −1 to use requisition)
min_height : the minimum height of window (or −1 to use requisition)
max_width : the maximum width of window (or −1 to use requisition)
max_height : the maximum height of window (or −1 to use requisition)
base_width : allowed window widths are base_width + width_inc * N where N is any integer
base_height : allowed window heights are base_height + width_inc * N where N is any integer
width_inc : the width resize increment
height_inc : the height resize increment
min_aspect : the minimum width to height ratio
max_aspect : the maximum width to height ratio
The set_geometry_hints() method sets up hints about how a window can be resized by the user. You
can set the minimum and maximum widths and heights, the base width and height for resizing, the allowed
width and height resize increments (e.g. for xterm, you can only resize by the size of a character), and the
minimum and maximum aspect ratios. If geometry_widget is not None it specifies the widget to figure
the geometry on.

gtk.Window.set_screen

 def set_screen(screen)

screen : a gtk.gdk.Screen.

Note

This method is available in PyGTK 2.2 and above.

The set_screen() method sets the "screen" property to the gtk.gdk.Screen specified by screen.
The "screen" property contains the screen that the window is displayed on. If the window is already mapped,
it will be unmapped, and then remapped on the new screen.

gtk.Window.get_screen

 def get_screen()

PyGTK 2.0 Reference Manual

gtk.Window.set_gravity 831

Returns : a gtk.gdk.Screen.

Note

This method is available in PyGTK 2.2 and above.

The get_screen() method returns the gtk.gdk.Screen that the window is displayed on.

gtk.Window.is_active

 def is_active()

Returns : TRUE if the window is part of the current active window.

Note

This method is available in PyGTK 2.4 and above.

The is_active() method returns TRUE if the window is part of the current active toplevel, i.e., the toplevel
window receiving keystrokes. The return value is TRUE if the window is active the toplevel itself, or if it is,
for example, a gtk.Plug embedded in the active toplevel. You might use this method if you wanted to draw
a widget differently in an active window from a widget in an inactive window. See the
has_toplevel_focus() method.

gtk.Window.has_toplevel_focus

 def has_toplevel_focus()

Returns : TRUE if the the input focus is within the window

Note

This method is available in PyGTK 2.4 and above.

The has_toplevel_focus() method returns TRUE if the input focus is within the window. For real
toplevel windows, this is identical to is_active(), but for embedded windows, like a gtk.Plug, the
results will differ.

gtk.Window.set_has_frame

 def set_has_frame(setting)

setting : if TRUE PyGTK draws the window border
The set_has_frame() method sets the flag that causes PyGTK to draw its own window border for the
window.

Note

This is a special−purpose method for the framebuffer port. For most applications, you want the
set_decorated() method instead,that tells the window manager whether to draw the window border.

If this method is called on a window with setting of TRUE, before it is realized or showed, it will have a
"frame" window around the window's gtk.gdk.Window, accessible in the window's frame. Using the
signal "frame−event" you can receive all events targeted at the frame. This method is used by the linux−fb
port to implement managed windows, but it could conceivably be used by X−programs that want to do their

PyGTK 2.0 Reference Manual

gtk.Window.get_screen 832

own window decorations.

gtk.Window.get_has_frame

 def get_has_frame()

Returns : TRUE if a frame has been added to the window via the set_has_frame() method.
The get_has_frame() method returns the value of the window's "has_frame" flag that determines if the
window has a frame window exterior to its gtk.gdk.Window. See the set_has_frame() method for
more information.

gtk.Window.set_frame_dimensions

 def set_frame_dimensions(left, top, right, bottom)

left : the width of the left border
top : the height of the top border
right : the width of the right border
bottom : the height of the bottom border
The set_frame_dimensions() method sets the size of the frame around the window to the values
specified by left, top, bottom and right.

Note

This is a special−purpose method intended for the framebuffer port. See the set_has_frame() method. It
will have no effect on the window border drawn by the window manager, which is the normal case when
using the X Window system.

For windows with frames (see the set_has_frame() method) this method can be used to change the size of
the frame border.

gtk.Window.get_frame_dimensions

 def get_frame_dimensions()

Returns :a tuple containing the frame dimensions: the width of the frame at the left; the height of the frame at
the top; the width of the frame at the right; and, the height of the frame at the bottom.

The get_frame_dimensions() method returns a tuple containing the frame dimensions: the width of the
frame at the left; the height of the frame at the top; the width of the frame at the right; and, the height of the
frame at the bottom.

Note

This is a special−purpose method intended for the framebuffer port See the set_has_frame() method. It
will not return the size of the window border drawn by the window manager, which is the normal case when
using a windowing system. See the get_frame_extents() to get the standard window border extents.

See the set_has_frame() and set_frame_dimensions() methods for more information.

PyGTK 2.0 Reference Manual

Note 833

gtk.Window.set_decorated

 def set_decorated(setting)

setting : if TRUE decorate the window
The set_decorated() method sets the decorated flag to the value specified by setting. If setting is
TRUE the window will be decorated. By default, windows are decorated with a title bar, resize controls, etc.
Some window managers allow PyGTK to disable these decorations, creating a borderless window. If you set
the decorated property to FALSE using this method, PyGTK will do its best to convince the window manager
not to decorate the window. On Windows, this method always works, since there's no window manager policy
involved.

gtk.Window.get_decorated

 def get_decorated()

Returns : TRUE if the window has been set to have decorations
The get_decorated() method returns the value of the decorated flag that determines if the window has
been set to have decorations such as a title bar. See the set_decorated() method.

gtk.Window.set_icon_list

 def set_icon_list(...)

... : zero or more gtk.gdk.Pixbuf objects
The set_icon_list() method sets up the icon representing the window using the set of
gtk.gdk.Pixbuf objects passed as arguments. If no gtk.gdk.Pixbuf objects are passed in the icon is
unset and reverts to the default icon. The icon is used when the window is minimized (also known as
iconified). Some window managers or desktop environments may also place it in the window frame, or
display it in other contexts. This method allows you to pass in the same icon in several hand−drawn sizes. The
gtk.gdk.Pixbuf objects should contain the natural sizes your icon is available in; i.e., don't scale the
image before passing it to PyGTK. Scaling is postponed until the last minute, when the desired final size is
known, to allow best quality. By passing several sizes, you may improve the final image quality of the icon,
by reducing or eliminating automatic image scaling. The recommended sizes to provide are: 16x16, 32x32,
48x48 at minimum, and larger images (64x64, 128x128) if you have them.

See the gtk.window_set_default_icon_list() function to set the icon for all windows in your
application in one go. Note that transient windows (those who have been set transient for another window
using the set_transient_for() method) will inherit their icon from their transient parent. So there's no
need to explicitly set the icon on transient windows.

gtk.Window.get_icon_list

 def get_icon_list()

Returns : a copy of the window's icon list
The get_icon_list() method returns the list of icons set by the set_icon_list() method.

gtk.Window.set_icon

 def set_icon(icon)

icon : an icon image, or None

PyGTK 2.0 Reference Manual

gtk.Window.set_decorated 834

The set_icon() method sets the "icon" property to the value specified by icon. This icon is used when the
window is minimized (also known as iconified). Some window managers or desktop environments may also
place it in the window frame, or display it in other contexts. The icon should be provided in whatever size it
was naturally drawn; that is, don't scale the image before passing it to PyGTK. Scaling is postponed until the
last minute, when the desired final size is known, to allow best quality. If you have your icon hand−drawn in
multiple sizes, use the set_icon_list() method. Then the best size will be used.

This method is equivalent to calling the set_icon_list() method with a 1−element list. See the
gtk.window_set_default_icon_list() function to set the icon for all windows in your application
in one go.

gtk.Window.set_icon_from_file

 def set_icon_from_file(filename)

filename : the name of a file containing an icon image
Returns : TRUE if the icon was loaded.
The set_icon_from_file() method sets the "icon" property to the icon loaded from the file specified by
filename. The icon is used when the window is minimized (also known as iconified). See the
set_icon()) method for more information. This method is equivalent to calling the set_icon() method
with a pixbuf created by loading the image from filename.

The GError exception is raised if an error occurs while loading the pixbuf from filename.

gtk.Window.get_icon

 def get_icon()

Returns : the icon for window
The get_icon() method returns the value of the "icon" property set by the set_icon() (or if you've called
the set_icon_list() method, returns the first icon in the icon list).

gtk.Window.set_modal

 def set_modal(modal)

modal : if TRUE the window is modal
The set_modal() method sets the "modal" property to the value of modal. If modal is TRUE the window
becomes modal. Modal windows prevent interaction with other windows in the same application. Typically
modal windows are used for gtk.Dialog windows that require a user response before the application can
continue. To keep modal dialogs on top of the main application windows, use the set_transient_for()
method to make the dialog transient for the parent − most window managers will then disallow lowering the
dialog below the parent.

gtk.Window.get_modal

 def get_modal()

Returns : TRUE if the window is set to be modal and establishes a grab when shown
The get_modal() method returns the value of the "modal" property. If "modal" is TRUE the window is
modal. See the set_modal() method.

PyGTK 2.0 Reference Manual

gtk.Window.set_icon 835

gtk.Window.add_mnemonic

 def add_mnemonic(keyval, target)

keyval : the mnemonic key
target : the widget that gets activated by the mnemonic
The add_mnemonic() method adds a mnemonic key specified by keyval to this window. When the
mnemonic key is pressed the widget specified by target will be activated.

gtk.Window.remove_mnemonic

 def remove_mnemonic(keyval, target)

keyval : the mnemonic key
target : the widget that gets activated by the mnemonic
The remove_mnemonic() method removes the mnemonic specified by keyval for the widget specified by
target from this window.

gtk.Window.mnemonic_activate

 def mnemonic_activate(keyval, modifier)

keyval : the mnemonic key
modifier : the modifiers
Returns : TRUE if the activation was done
The mnemonic_activate() method activates the targets associated with the mnemonic specified by
keyval. The window's mnemonic modifier must match modifier to allow the activation to proceed. See
the set_mnemonic_modifier() method for more information.

gtk.Window.set_mnemonic_modifier

 def set_mnemonic_modifier(modifier)

modifier : the modifier mask used to activate mnemonics on this window.
The set_mnemonic_modifier() method sets the mnemonic modifier for this window to the value
specified by modifier. The value of modifier is one of:

gtk.gdk.SHIFT_MASK The Shift key.
gtk.gdk.CONTROL_MASK The Control key.

gtk.gdk.MOD1_MASK
The fourth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier, but normally it is the Alt key).

gtk.Window.get_mnemonic_modifier

 def get_mnemonic_modifier()

Returns : the modifier mask used to activate mnemonics on this window.
The get_mnemonic_modifier() method returns the mnemonic modifier for this window. See the
set_mnemonic_modifier() method for more detail.

PyGTK 2.0 Reference Manual

gtk.Window.add_mnemonic 836

gtk.Window.activate_key

 def activate_key(event)

event : a gtk.gdk.Event
Returns : TRUE if a mnemonic or accelerator was found and activated.

Note

This method is available in PyGTK 2.4 and above.

The activate_key() method activates mnemonics and accelerators for the window. This is normally
called by the default gtk.Widget "key−press−event" signal handler for toplevel windows, however in some
cases it may be useful to call this directly when overriding the standard key handling for a toplevel window.

gtk.Window.propagate_key_event

 def propagate_key_event(event)

event : a gtk.gdk.Event
Returns : TRUE if a widget in the focus chain handled the event.

Note

This method is available in PyGTK 2.4 and above.

The propagate_key_event() method propagates a key press or release event to the focus widget and up
the focus container chain until a widget handles the key event specified by event. This is normally called by
the default gtk.Widget "key−press−event" and "key−release−event" signal handlers for toplevel windows,
however in some cases it may be useful to call this directly when overriding the standard key handling for a
toplevel window.

gtk.Window.present

 def present()

The present() method presents a window to the user. This may mean raising the window in the stacking
order, deiconifying it, moving it to the current desktop, and/or giving it the keyboard focus, possibly
dependent on the user's platform, window manager, and preferences. If the window is hidden, this method
calls the the gtk.Widget.show() method as well. This method should be used when the user tries to open
a window that's already open. Say for example the preferences dialog is currently open, and the user chooses
Preferences from the menu a second time; use the present() method to move the already−open dialog
where the user can see it.

gtk.Window.iconify

 def iconify()

The iconify() method asks the window manager to iconify (i.e. minimize) the specified the window. Note
that you shouldn't assume the window is definitely iconified afterward, because other entities (e.g. the user or
window manager) could deiconify it again, or there may not be a window manager in which case iconification
isn't possible, etc. But normally the window will end up iconified. Just don't write code that crashes if not.
This method can be called before showing a window, in which case the window will be iconified before it
ever appears on−screen. You can track iconification via the gtk.Widget "window−state−event" signal.

PyGTK 2.0 Reference Manual

gtk.Window.activate_key 837

gtk.Window.deiconify

 def deiconify()

The deiconify() method asks the window manager to deiconify (i.e. unminimize) the specified the
window. Note that you shouldn't assume the window is definitely deiconified afterward, because other entities
(e.g. the user or window manager) could iconify it again before your code which assumes deiconification gets
to run. You can track iconification via the gtk.Widget "window−state−event" signal.

gtk.Window.stick

 def stick()

The stick() method asks the window manager to stick the window, which means that it will appear on all
user desktops. Note that you shouldn't assume the window is definitely stuck afterward, because other entities
(e.g. the user or window manager) could unstick it again, and some window managers do not support sticking
windows. But normally the window will end up stuck. Just don't write code that crashes if not. This method
can be called before showing a window. You can track stickiness via the gtk.Widget
"window−state−event" signal.

gtk.Window.unstick

 def unstick()

The unstick() method asks the window manager to unstick the window, which means that it will appear on
only one of the user's desktops. Note that you shouldn't assume the window is definitely unstuck afterward,
because other entities (e.g. the user or window manager) could stick it again. But normally the window will
end up stuck. Just don't write code that crashes if not. You can track stickiness via the gtk.Widget
"window−state−event" signal.

gtk.Window.maximize

 def maximize()

The maximize() method asks the window manager to maximize the window, so that it becomes full−screen.
Note that you shouldn't assume the window is definitely maximized afterward, because other entities (e.g. the
user or window manager) could unmaximize it again, and not all window managers support maximization.
But normally the window will end up maximized. This method can be called before showing a window, in
which case the window will be maximized when it appears on−screen initially. You can track maximization
via the gtk.Widget "window−state−event" signal.

gtk.Window.unmaximize

 def unmaximize()

The unmaximize() method asks the window manager to unmaximize the window. Note that you shouldn't
assume the window is definitely unmaximized afterward, because other entities (e.g. the user or window
manager) could maximize it again, and not all window managers honor requests to unmaximize. But normally
the window will end up unmaximized. You can track maximization via the gtk.Widget
"window−state−event" signal.

PyGTK 2.0 Reference Manual

gtk.Window.deiconify 838

gtk.Window.fullscreen

 def fullscreen()

Note

This method is available in PyGTK 2.2 and above.

The fullscreen() method requests the window manager to place the window in the fullscreen state. Note
you shouldn't assume the window is definitely full screen afterward, because other entities (e.g. the user or
window manager) could unfullscreen it again, and not all window managers honor requests to fullscreen
windows. But normally the window will end up fullscreen. Just don't write code that crashes if not.

You can track the fullscreen state via the gtk.Widget "window−state−event" signal.

gtk.Window.unfullscreen

 def unfullscreen()

Note

This method is available in PyGTK 2.2 and above.

The unfullscreen() method requests the window manager to toggle off the fullscreen state for the
window. Note that you shouldn't assume the window is definitely not full screen afterward, because other
entities (e.g. the user or window manager) could fullscreen it again, and not all window managers honor
requests to unfullscreen windows. But normally the window will end up restored to its normal state. Just don't
write code that crashes if not.

You can track the fullscreen state via the gtk.Widget "window_state_event" signal.

gtk.Window.set_keep_above

 def set_keep_above(setting)

setting : if TRUE keep the window above other windows

Note

This method is available in PyGTK 2.4 and above.

The set_keep_above() method requests the window manager to keep the window on top if setting is
TRUE. Note that you shouldn't assume the window is definitely above afterward, because other entities (e.g.
the user or window manager) could not keep it above, and not all window managers support keeping windows
above. But normally the window will end kept above. Just don't write code that crashes if not.

It's permitted to call this method before showing a window, so the window will be kept above when it appears
on−screen initially.

You can track the above state via the gtk.Widget "window_state_event" signal.

Note that, according to the Extended Window Manager Hints specification, the above state is mainly meant
for user preferences and should not be used by applications e.g. for drawing attention to their dialogs.

PyGTK 2.0 Reference Manual

gtk.Window.fullscreen 839

http://www.freedesktop.org/standards/wm-spec

gtk.Window.set_keep_below

 def set_keep_below(setting)

setting : if TRUE keep the window below other windows

Note

This method is available in PyGTK 2.4 and above.

The set_keep_below() method requests the window manager to keep the window on the bottom (i.e.
below all other windows). Note that you shouldn't assume the window is definitely below afterward, because
other entities (e.g. the user or window manager) could not keep it below, and not all window managers
support putting windows below. But normally the window will be kept below. Just don't write code that
crashes if not.

It's permitted to call this function before showing a window, in which case the window will be kept below
when it appears on−screen initially.

You can track the below state via the gtk.Widget "window_state_event" signal.

Note that, according to the Extended Window Manager Hints specification, the above state is mainly meant
for user preferences and should not be used by applications e.g. for drawing attention to their dialogs.

gtk.Window.begin_resize_drag

 def begin_resize_drag(edge, button, root_x, root_y, timestamp)

edge : the position of the resize control
button : the mouse button that initiated the drag
root_x : the X position where the user clicked to initiate the drag, in root window coordinates
root_y : the Y position where the user clicked to initiate the drag
timestamp : the timestamp from the click event that initiated the drag
The begin_resize_drag() method starts resizing a window from the edge specified by edge. The
mouse button that started the resize is specified by button; the location, by root_x and root_y; and the
time of the event, by timestamp. The value of edge must be one of the GDK Window Edge Constants.

This method is used if an application has window resizing controls. When PyGTK can support it, the resize
will be done using the standard mechanism for the window manager or windowing system. Otherwise,
PyGTK will try to emulate window resizing, potentially not all that well, depending on the windowing system.

gtk.Window.begin_move_drag

 def begin_move_drag(button, root_x, root_y, timestamp)

button : the mouse button that initiated the drag
root_x : the X position where the user clicked to initiate the drag, in root window coordinates
root_y : the Y position where the user clicked to initiate the drag
timestamp : the timestamp from the click event that initiated the drag
The begin_move_drag() method starts moving a window when the user presses the mouse button
specified by button at the location specified by root_x and root_y at the time specified by
timestamp. This method is used if an application has window movement grips. When PyGTK can support
it, the window movement will be done using the standard mechanism for the window manager or windowing

PyGTK 2.0 Reference Manual

gtk.Window.set_keep_below 840

http://www.freedesktop.org/standards/wm-spec

system. Otherwise, PyGTK will try to emulate window movement, potentially not all that well, depending on
the windowing system.

gtk.Window.set_default_size

 def set_default_size(width, height)

width : the width in pixels, or −1 to unset the default width
height : the height in pixels, or −1 to unset the default height
The set_default_size() method sets the default size of the window to the specified width and
height. If the window's "natural" size (its size request) is larger than the default, the default will be ignored.
More generally, if the default size does not obey the geometry hints for the window (the
set_geometry_hints() method can be used to set these explicitly), the default size will be clamped to
the nearest permitted size.

Unlike the gtk.Widget.set_size_request() method, which sets a size request for a widget and thus
would keep users from shrinking the window, this method only sets the initial size, just as if the user had
resized the window themselves. Users can still shrink the window again as they normally would. Setting a
default size of −1 means to use the "natural" default size (the size request of the window). For more control
over a window's initial size and how resizing works, investigate the set_geometry_hints() method.

For some uses, the resize() method is more appropriate as it changes the current size of the window, rather
than the size to be used on initial display. The resize() method always affects the window itself, not the
geometry widget. The default size of a window only affects the first time a window is shown; if a window is
hidden and re−shown, it will remember the size it had prior to hiding, rather than using the default size.
Windows can't actually be 0x0 in size, they must be at least 1x1, but passing 0 for width and height is
OK, resulting in a 1x1 default size.

gtk.Window.get_default_size

 def get_default_size()

Returns : a tuple containing the default width and height of the window
The get_default_size() method returns a tuple containing the default width and height of the window.
A value of −1 for the returned width or height indicates that a default size has not been explicitly set for that
dimension, so the "natural" size of the window will be used. See the set_default_size() method for
more information

gtk.Window.resize

 def resize(width, height)

width : the width in pixels to resize the window to
height : the height in pixels to resize the window to
The resize() method resizes the window to the specified width and height as if the user had done so,
obeying geometry constraints. The default geometry constraint is that windows may not be smaller than their
size request; to override this constraint, call the gtk.Widget.set_size_request() method to set the
window's request to a smaller value. If the resize() method is called before showing a window for the first
time, it overrides any default size set with the set_default_size() method. Windows may not be resized
smaller than 1 by 1 pixels.

PyGTK 2.0 Reference Manual

gtk.Window.begin_move_drag 841

gtk.Window.get_size

 def get_size()

Returns : a tuple containing the width and height of the window
The get_size() method returns a tuple containing the current width and height of the window. If the
window is not on−screen, it returns the size PyGTK will suggest to the window manager for the initial
window size (but this is not reliably the same as the size the window manager will actually select). The size
obtained by the get_size() method is the last size received in a configure event, that is, PyGTK uses its
locally−stored size, rather than querying the X server for the size. As a result, if you call the resize()
method then immediately call the get_size() method, the size won't have taken effect yet. After the
window manager processes the resize request, PyGTK receives notification that the size has changed via a
configure event, and the size of the window gets updated.

Note

Nearly any use of this method creates a race condition, because the size of the window may change between
the time that you get the size and the time that you perform some action assuming that size is the current size.
To avoid race conditions, connect to "configure_event" on the window and adjust your size−dependent state
to match the size delivered in the configure event.

The returned size does not include the size of the window manager decorations (aka the window frame or
border). Those are not drawn by PyGTK which has no reliable method of determining their size.

If you are getting a window size in order to position the window on−screen, there may be a better way. The
preferred way is to simply set the window's semantic type with the set_type_hint() method, that allows
the window manager to center dialogs, etc. Also, if you set the transient parent of dialogs with the
set_transient_for() method, window managers will often center the dialog over its parent window. It's
much preferred to let the window manager handle these things rather than doing it yourself, because all apps
will behave consistently and according to user prefs if the window manager handles it. Also, the window
manager can take the size of the window decorations/border into account, while your application cannot.

In any case, if you insist on application−specified window positioning, there's still a better way than doing it
yourself − the set_position() method will frequently handle the details for you.

gtk.Window.move

 def move(x, y)

x : the X coordinate to move window to
y : the Y coordinate to move window to
The move() method asks the window manager to move the window to the position specified by x and y.
Window managers are free to ignore this. In fact, most window managers ignore requests for initial window
positions (instead using a user−defined placement algorithm) and honor requests after the window has already
been shown.

The position is the position of the gravity−determined reference point for the window. The gravity determines
two things: first, the location of the reference point in root window coordinates; and second, which point on
the window is positioned at the reference point. By default the gravity is
gtk.gdk.GRAVITY_NORTH_WEST, so the reference point is simply the x, y supplied to the move()
method. The top−left corner of the window decorations (aka window frame or border) will be placed at x, y.
Therefore, to position a window at the top left of the screen, you want to use the default gravity (which is
gtk.gdk.GRAVITY_NORTH_WEST) and move the window to 0,0.

PyGTK 2.0 Reference Manual

gtk.Window.get_size 842

To position a window at the bottom right corner of the screen, you would set
gtk.gdk.GRAVITY_SOUTH_EAST, which means that the reference point is at x + the window width and
y + the window height, and the bottom−right corner of the window border will be placed at that reference
point. So, to place a window in the bottom right corner you would first set gravity to south east, then move the
window:

 window.set_gravity(gtk.gdk.GRAVITY_SOUTH_EAST)
 width, height = window.get_size()
 window.move(gtk.gdk.screen_width() − width, gtk.gdk.screen_height() − height)

The extended window manager hints specification at http://www.freedesktop.org/standards/wm−spec.html
has a nice table of gravities in the "implementation notes" section. The get_position() method
documentation may also be relevant.

gtk.Window.get_position

 def get_position()

Returns : a tuple containing the X and Y coordinates of the gravity−determined reference point
The get_position() method returns a tuple containing the x and y coordinates of the window that you
would need to pass to the move() method to keep the window in its current position. This means that the
meaning of the returned value varies with window gravity. See the move() method for more details. If you
haven't changed the window gravity, its gravity will be gtk.gdk.GRAVITY_NORTH_WEST. This means
that the get_position() method gets the position of the top−left corner of the window manager frame for
the window. The move() method sets the position of this same top−left corner.

The get_position() method is not 100% reliable because the X Window System does not specify a way
to obtain the geometry of the decorations placed on a window by the window manager. Thus PyGTK is using
a "best guess" that works with most window managers. Moreover, nearly all window managers are
historically broken with respect to their handling of window gravity. So moving a window to its current
position as returned by the get_position() method tends to result in moving the window slightly.
Window managers are slowly getting better over time.

If a window has gravity gtk.gdk.GRAVITY_STATIC the window manager frame is not relevant, and thus
the get_position() method will always produce accurate results. However you can't use static gravity to
do things like place a window in a corner of the screen, because static gravity ignores the window manager
decorations. If you are saving and restoring your application's window positions, you should know that it's
impossible for applications to do this without getting it somewhat wrong because applications do not have
sufficient knowledge of window manager state. The correct mechanism is to support the session management
protocol (see the "GnomeClient" object in the GNOME libraries for example) and allow the window manager
to save your window sizes and positions.

gtk.Window.parse_geometry

 def parse_geometry(geometry)

geometry : the geometry string
Returns : TRUE if string was parsed successfully
The parse_geometry() method parses the standard X Window System geometry string specified by
geometry. The geometry string has the format "WIDTHxHEIGHT+XOFFSET+YOFFSET" where
WIDTH, HEIGHT, XOFFSET and YOFFSET are specified in pixels (see the X documentation for more
details). This method works work on all PyGTK ports including Win32 but is primarily intended for an X
environment. If either a size or a position can be extracted from the geometry string, the
parse_geometry() method returns TRUE and calls the set_default_size() and move() methods to
resize and move the window.

PyGTK 2.0 Reference Manual

gtk.Window.move 843

http://www.freedesktop.org/standards/wm-spec.html

If the parse_geometry() method returns TRUE, it will also set the gtk.gdk.HINT_USER_POS and
gtk.gdk.HINT_USER_SIZE hints indicating to the window manager that the size and position of the
window was user−specified. This causes most window managers to honor the geometry.

gtk.Window.reshow_with_initial_size

 def reshow_with_initial_size()

The reshow_with_initial_size() method hides the window, then reshows it, resetting the default size
and position of the window. Used by GUI builders only.

gtk.Window.tooltips_get_info_from_tip_window

 def tooltips_get_info_from_tip_window()

Returns : a 2−tuple containing the gtk.Tooltips and gtk.Widget displayed in the window or
None.

Note

This method is available in PyGTK 2.4 and above.

The tooltips_get_info_from_tip_window() method returns a 2−tuple containing the
gtk.Tooltips and gtk.Widget displayed in the window. If the window is not displaying tooltips this
method returns None. This method is mostly intended for use by accessibility technologies − applications
should have little use for it.

gtk.Window.set_focus_on_map

 def set_focus_on_map(setting)

setting : If TRUE this window would like to receive focus when mapped.

Note

This method is available in PyGTK 2.6 and above.

The set_focus_on_map() method sets the "focus−on−map" property to the value of setting. If
setting is TRUE a hint is set asking the desktop environment to give focus to the window when it is
mapped.

gtk.Window.get_focus_on_map

 def get_focus_on_map()

Returns : TRUE if the window would like to receive focus when mapped.

Note

This method is available in PyGTK 2.6 and above.

The get_focus_on_map() method returns the value of the "focus−on−map" property. See the
set_focus_on_map() method for more information.

PyGTK 2.0 Reference Manual

gtk.Window.parse_geometry 844

gtk.Window.set_icon_name

 def set_icon_name(name)

name : he name of the themed icon or None

Note

This method is available in PyGTK 2.6 and above.

The set_icon_name() method sets the "icon−name" property to the value of name. If name is None, then
the default themed icon will be used. The "icon−name" property contains the name of the icon used for the
window. See the gtk.IconTheme reference for more information.

gtk.Window.get_icon_name

 def get_icon_name()

Returns : The name of the themed icon used for the window icon or None if no icon is set.

Note

This method is available in PyGTK 2.6 and above.

The get_icon_name() method returns the name of the themed icon for the window, see the
set_icon_name() method for more information.

Functions

gtk.window_set_default_icon_list

 def gtk.window_set_default_icon_list(...)

... : zero or more gtk.gdk.Pixbuf objects
The gtk.window_set_default_icon_list() function sets an icon list to be used as fallback for
windows that haven't had the set_icon_list() method called on them to set up a window−specific icon
list. This function allows you to set up the icon for all windows in your app at once. See the
set_icon_list() method documentation for more details.

gtk.window_set_default_icon

 def gtk.window_set_default_icon(icon)

icon : a gtk.gdk.Pixbuf

Note

This function is available in PyGTK 2.4 and above.

The gtk.window_set_default_icon() function sets an icon specified by icon to be used as the
fallback for windows that haven't had the set_icon() method called on them to set up a window−specific
icon. This function allows you to set up the icon for all windows in your app at once.

PyGTK 2.0 Reference Manual

gtk.Window.set_icon_name 845

gtk.window_set_default_icon_from_file

 def gtk.window_set_default_icon_from_file(filename)

filename : an icon file name

Note

This function is available in PyGTK 2.2 and above.

The gtk.window_set_default_icon_from_file() function sets an icon contained in the file
specified by filename to be used as the fallback for windows that haven't had the set_icon() method
called on them to set up a window−specific icon. This function allows you to set up the icon for all windows
in your app at once.

The GError exception is raised if an error occurs while loading the icon pixbuf from filename.

gtk.window_get_default_icon_list

 def gtk.window_get_default_icon_list()

Returns : a copy of the applications default icon list
The gtk.window_get_default_icon_list() function returns the application's default icon list as set
by the gtk.window_set_default_icon_list() function. See the set_icon_list() method
documentation for more details.

gtk.window_set_auto_startup_notification

 def gtk.window_set_auto_startup_notification()

setting : if TRUE, automatically do startup notification

Note

This function is available in PyGTK 2.2 and above.

The gtk.window_set_auto_startup_notification() function sets the auto startup notification
setting to the value of setting. If setting is TRUE startup notification will be done automatically.

By default, after showing the first gtk.Window for each gtk.gdk.Screen, GTK+ calls the
gdk_notify_startup_complete() function. Call this function to disable the automatic startup
notification. You might do this if your first window is a splash screen, and you want to delay notification until
after your real main window has been shown. In that example, you would disable startup notification
temporarily, show your splash screen, then re−enable it so that showing the main window would
automatically result in notification.

gtk.window_list_toplevels

 def gtk.window_list_toplevels()

Returns : a list of all the toplevel gtk.Window widgets
The gtk.window_list_toplevels() function returns a list of all the toplevel gtk.Window widgets in
the application.

PyGTK 2.0 Reference Manual

gtk.window_set_default_icon_from_file 846

gtk.window_set_default_icon_name

 def gtk.window_set_default_icon_name()

setting : if TRUE, automatically do startup notification

Note

This function is available in PyGTK 2.6 and above.

The gtk.window_set_default_icon_name() function sets an icon to be used as fallback for
windows that haven't had the set_icon_list() method called on them from a named themed icon, see the
set_icon_name() method.

Signals

The "activate−default" gtk.Window Signal

 def callback(window, user_param1, ...)

window : the window that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "activate−default" signal is emitted when the default child widget of window is activated usually by the
user pressing the Return or Enter key.

The "activate−focus" gtk.Window Signal

 def callback(window, user_param1, ...)

window : the window that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "activate−focus" signal is emitted when the child widget with the focus is activated usually by the user
pressing the Space key.

The "frame−event" gtk.Window Signal

 def callback(window, event, user_param1, ...)

window : the window that received the signal
event : the event that triggered the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)

Returns : TRUE to stop other handlers from being invoked for the event. FALSE to propagate the
event further.

The "frame−event" signal is emitted when an event other than key press or release or focus change is received
on the window's frame.

PyGTK 2.0 Reference Manual

gtk.window_set_default_icon_name 847

The "keys−changed" gtk.Window Signal

 def callback(window, user_param1, ...)

window : the window that received the signal
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "keys−changed" signal is emitted when a mnemonic accelerator is added, removed or changed or the
mnemonic modifier is set.

The "move−focus" gtk.Window Signal

 def callback(window, direction, user_param1, ...)

window : the window that received the signal

direction : the move direction: gtk.DIR_TAB_FORWARD, gtk.DIR_TAB_BACKWARD,
gtk.DIR_UP, gtk.DIR_DOWN, gtk.DIR_LEFT or gtk.DIR_RIGHT

user_param1 :the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "move−focus" signal is emitted when the focus is changed within the window's child widgets. Usually
this happens when the user presses the Tab, the Shift+Tab or the Up, Down, Left or Right arrow keys.

The "set−focus" gtk.Window Signal

 def callback(window, widget, user_param1, ...)

window : the window that received the signal
widget : the widget that receives the focus
user_param1 : the first user parameter (if any) specified with the connect() method
... : additional user parameters (if any)
The "set−focus" signal is emitted when the focus changes to widget in window.

Prev Up Next
gtk.Widget Home gtk.WindowGroup

gtk.WindowGroup
Prev The gtk Class Reference Next

gtk.WindowGroup

gtk.WindowGroup � a group of gtk.Window widgets

Synopsis

class gtk.WindowGroup(gobject.GObject):
gtk.WindowGroup()

 def add_window(window)
 def remove_window(window)

PyGTK 2.0 Reference Manual

The "keys−changed" gtk.Window Signal 848

Ancestry

+−− gobject.GObject
 +−− gtk.WindowGroup

Description

A gtk.WindowGroup object contains a set of gtk.Window widgets that are managed together by some
PyGTK functions and methods.

Constructor

gtk.WindowGroup()

Returns : a new gtk.WindowGroup.
Creates a new gtk.WindowGroup object. Grabs added with gtk.Widget.grab_add() only affect
windows within the same gtk.WindowGroup.

Methods

gtk.WindowGroup.add_window

 def add_window(window)

window : the gtk.Window to add
The add_window() method adds the gtk.Window specified by window to the windowgroup.

gtk.WindowGroup.remove_window

 def remove_window(window)

window : the gtk.Window to remove
The remove_window() method removes the gtk.Window specified by window from the windowgroup.

Prev Up Next
gtk.Window Home gtk Functions

PyGTK Class Hierarchy
Prev Next

PyGTK Class Hierarchy

gobject.GBoxed
gtk.Border
gtk.IconInfo
gtk.IconSet
gtk.IconSource
gtk.Requisition
gtk.SelectionData
gtk.TextAttributes
gtk.TextIter
gtk.TreeIter

PyGTK 2.0 Reference Manual

Ancestry 849

gtk.TreeRowReference
gtk.gdk.Color
gtk.gdk.Cursor
gtk.gdk.Event
gtk.gdk.Rectangle
pango.AttrList
pango.Color
pango.FontDescription
pango.FontMetrics
pango.GlyphString
pango.Language
pango.TabArray

gobject.GInterface
gtk.CellEditable
gtk.CellLayout
gtk.Editable
gtk.FileChooser
gtk.TreeDragDest
gtk.TreeDragSource
gtk.TreeModel
gtk.TreeSortable

gobject.GObject
gtk.AccelGroup
gtk.Action

gtk.ToggleAction
gtk.RadioAction

gtk.ActionGroup
gtk.Clipboard
gtk.EntryCompletion (implements gtk.CellLayout)
gtk.GenericTreeModel (implements gtk.TreeModel)
gtk.IconFactory
gtk.IconTheme
gtk.ListStore (implements gtk.TreeModel, gtk.TreeDragSource, gtk.TreeDragDest, gtk.TreeSortable)
gtk.Object

gtk.Adjustment
gtk.CellRenderer

gtk.CellRendererPixbuf
gtk.CellRendererText
gtk.CellRendererToggle
gtk.GenericCellRenderer

gtk.FileFilter
gtk.IMContext

gtk.IMContextSimple
gtk.IMMulticontext

gtk.Tooltips
gtk.TreeViewColumn (implements gtk.CellLayout)
gtk.Widget

gtk.Calendar
gtk.Container

gtk.Bin
gtk.Alignment
gtk.Button

gtk.ColorButton
gtk.FontButton
gtk.ToggleButton

gtk.CheckButton
gtk.RadioButton

gtk.ComboBox (implements gtk.CellLayout)
gtk.ComboBoxEntry (implements gtk.CellLayout)

gtk.EventBox
gtk.Expander
gtk.Frame

gtk.AspectFrame
gtk.HandleBox
gtk.Item

PyGTK 2.0 Reference Manual

PyGTK Class Hierarchy 850

gtk.MenuItem
gtk.CheckMenuItem

gtk.RadioMenuItem
gtk.ImageMenuItem
gtk.SeparatorMenuItem
gtk.TearoffMenuItem

gtk.ScrolledWindow
gtk.ToolItem

gtk.SeparatorToolItem
gtk.ToolButton

gtk.ToggleToolButton
gtk.RadioToolButton

gtk.Viewport
gtk.Window

gtk.Dialog
gtk.ColorSelectionDialog
gtk.FileChooserDialog (implements gtk.FileChooser)
gtk.FileSelection
gtk.FontSelectionDialog
gtk.InputDialog
gtk.MessageDialog

gtk.Plug
gtk.Box

gtk.ButtonBox
gtk.HButtonBox
gtk.VButtonBox

gtk.HBox
gtk.Statusbar

gtk.VBox
gtk.ColorSelection
gtk.FileChooserWidget (implements gtk.FileChooser)
gtk.FontSelection
gtk.GammaCurve

gtk.Fixed
gtk.Layout
gtk.MenuShell

gtk.Menu
gtk.MenuBar

gtk.Notebook
gtk.Paned

gtk.HPaned
gtk.VPaned

gtk.Socket
gtk.Table
gtk.TextView
gtk.Toolbar
gtk.TreeView

gtk.DrawingArea
gtk.Curve

gtk.Entry (implements gtk.Editable, gtk.CellEditable)
gtk.SpinButton

gtk.Invisible
gtk.Misc

gtk.Arrow
gtk.Image
gtk.Label

gtk.AccelLabel
gtk.ProgressBar

gtk.Range
gtk.Scale

gtk.HScale
gtk.VScale

gtk.Scrollbar
gtk.HScrollbar
gtk.VScrollbar

PyGTK 2.0 Reference Manual

PyGTK Class Hierarchy 851

gtk.Ruler
gtk.HRuler
gtk.VRuler

gtk.Separator
gtk.HSeparator
gtk.VSeparator

gtk.RcStyle
gtk.Settings
gtk.SizeGroup
gtk.Style
gtk.TextBuffer
gtk.TextChildAnchor
gtk.TextMark
gtk.TextTag
gtk.TextTagTable
gtk.TreeModelFilter (implements gtk.TreeModel, gtk.TreeDragSource)
gtk.TreeModelSort (implements gtk.TreeModel, gtk.TreeSortable)
gtk.TreeSelection
gtk.TreeStore (implements gtk.TreeModel, gtk.TreeDragSource, gtk.TreeDragDest, gtk.TreeSortable)
gtk.UIManager
gtk.WindowGroup
gtk.gdk.Colormap
gtk.gdk.Device
gtk.gdk.Display
gtk.gdk.DisplayManager
gtk.gdk.DragContext
gtk.gdk.Drawable

gtk.gdk.Pixmap
gtk.gdk.Window

gtk.gdk.GC
gtk.gdk.Image
gtk.gdk.Keymap
gtk.gdk.Pixbuf
gtk.gdk.PixbufAnimation
gtk.gdk.PixbufAnimationIter
gtk.gdk.PixbufLoader
gtk.gdk.Screen
gtk.gdk.Visual
pango.Context
pango.Font
pango.FontFace
pango.FontFamily
pango.FontMap
pango.Fontset

pango.FontsetSimple
pango.Layout

gobject.GPointer

Prev Up Next
Copyright and License Notice Home The gobject Class Reference

pango.Attribute
Prev The pango Class Reference Next

pango.Attribute

pango.Attribute � an attribute that applies to a section of text

PyGTK 2.0 Reference Manual

pango.Attribute 852

Synopsis

class pango.Attribute:
 def copy()

Functions

 def pango.attr_type_register(name)
 def pango.AttrLanguage(language, start_index=0, end_index=1)
 def pango.AttrFamily(family, start_index=0, end_index=1)
 def pango.AttrForeground(red, green, blue, start_index=0, end_index=1)
 def pango.AttrBackground(red, green, blue, start_index=0, end_index=1)
 def pango.AttrSize(size, start_index=0, end_index=1)
 def pango.AttrStyle(style, start_index=0, end_index=1)
 def pango.AttrWeight(weight, start_index=0, end_index=1)
 def pango.AttrVariant(variant, start_index=0, end_index=1)
 def pango.AttrStretch(stretch, start_index=0, end_index=1)
 def pango.AttrFontDesc(desc, start_index=0, end_index=1)
 def pango.AttrUnderline(underline, start_index=0, end_index=1)
 def pango.AttrStrikethrough(strikethrough, start_index=0, end_index=1)
 def pango.AttrRise(rise, start_index=0, end_index=1)
 def pango.AttrShape(ink_rect, logical_rect, start_index=0, end_index=1)
 def pango.AttrScale(scale, start_index=0, end_index=1)
 def pango.AttrFallback(fallback, start_index=0, end_index=1)

Attributes

All pango.Attribute objects support the following three attributes.

"end_index" Read−Write The index of the end of the application of the attribute in the associated text.

"start_index" Read−Write The index of the start of the application of the attribute in the associated text.

"type" Read The attribute type.

In addition each pango.Attribute type supports one or more additional attributes that are specific to the
type:

"value" Read ATTR_LANGUAGE The pango.Language.

"value" Read ATTR_FAMILY The string containing the font family name list (e.g.
"normal,sans,serif,monospace")

"value" Read ATTR_STYLE The font slant style. See the pango.AttrStyle()
function for more details.

"value" Read ATTR_WEIGHT The font weight. See the pango.AttrWeight()
function for more detail.

"value" Read ATTR_VARIANT The font variant. See the pango.AttrVariant()
function for more detail.

"value" Read ATTR_STRETCH The font stretch. See the pango.AttrStretch()
function for more details.

"value" Read ATTR_SIZE The font size.in thousandths of a point.

"desc" Read ATTR_FONT_DESC The pango.FontDescription object.

"color" Read ATTR_FOREGROUND The foreground pango.Color object.

PyGTK 2.0 Reference Manual

Synopsis 853

"color" Read ATTR_BACKGROUND The background pango.Color object.

"value" Read ATTR_UNDERLINE The underline style. See the
pango.AttrUnderline() function for more
details.

"value" Read ATTR_STRIKETHROUGH TRUE if the text is struck through.

"value" Read ATTR_RISE The displacement of the text from the baseline.

"ink_rect" Read ATTR_SHAPE The 4−tuple specifying the ink rectangle. See the
pango.AttrShape() function for more details.

"logical_rect" Read ATTR_SHAPE The 4−tuple specifying the logical rectangle. See the
pango.AttrShape() function for more details.

"value" Read ATTR_SCALE The font size scale factor as a float.

"value" Read ATTR_FALLBACK TRUE if font fallback is enabled.

Description

The pango.Attribute object contains an attribute that applies to a section of text. The predefined
attribute types are:

pango.ATTR_LANGUAGE Specifies a pango.Language.
pango.ATTR_FAMILY Specifies a font family name list as a string.

pango.ATTR_STYLE
Specifies a font slant style. See the pango.AttrStyle() function for
more details.

pango.ATTR_WEIGHT
Specifies a font weight. See the pango.AttrWeight() function for
more detail.

pango.ATTR_VARIANT
Specifies a font variant (normal or small caps). See the
pango.AttrVariant() function for more detail.

pango.ATTR_STRETCH
Specifies a font stretch. See the pango.AttrStretch() function for
more details.

pango.ATTR_SIZE Specifies a font size in thousandths of a point.
pango.ATTR_FONT_DESC Specifies a pango.FontDescription.
pango.ATTR_FOREGROUND Specifies a foreground pango.Color.
pango.ATTR_BACKGROUND Specifies a background pango.Color.

pango.ATTR_UNDERLINE
Specifies an underline style. See the pango.AttrUnderline()
function for more details.

pango.ATTR_STRIKETHROUGH If TRUE the text is struck through.
pango.ATTR_RISE Specifies the displacement of the text from the baseline.

pango.ATTR_SHAPE
Specifies a shape. See the pango.AttrShape() function for more
details.

pango.ATTR_SCALE Specifies a font size scale factor.
pango.ATTR_FALLBACK if TRUE, fallback to other fonts is enabled (
Additional attribute types can be registered with the pango.attr_type_register() function.

PyGTK 2.0 Reference Manual

Attributes 854

Methods

pango.Attribute.copy

 def copy()

Returns : a new pango.Attribute object
The copy() method returns a new pango.Attribute object that is a copy of this attribute.

Functions

pango.attr_type_register

 def pango.attr_type_register(name)

name : a name for the type. (Currently not used.)
Returns : the new attribute type ID integer.
The attr_type_register() function returns a new attribute type ID integer value.

pango.AttrLanguage

 def pango.AttrLanguage(language, start_index=0, end_index=1)

language : a pango.Language object.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object.
The AttrLanguage() function creates a new pango.Attribute object of the type
pango.ATTR_LANGUAGE with the pango.Language specified by language and the text range
specified by start_index and end_index.

pango.AttrFamily

 def pango.AttrFamily(family, start_index=0, end_index=1)

family : the string containing a font family name list.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object.
The AttrFamily() function creates a new pango.Attribute object of the type
pango.ATTR_FAMILY with the font family name list specified by the string family and the text range
specified by start_index and end_index.

pango.AttrForeground

 def pango.AttrForeground(red, green, blue, start_index=0, end_index=1)

red : the red component of the color in the range 0 to 65535.
green : the green component of the color in the range 0 to 65535.

PyGTK 2.0 Reference Manual

Methods 855

blue : the blue component of the color in the range 0 to 65535.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object.
The AttrForeground() function creates a new pango.Attribute of the type
pango.ATTR_FOREGROUND with the RGB color specified by red, green and blue and the text range
specified by start_index and end_index.

pango.AttrBackground

 def pango.AttrBackground(red, green, blue, start_index=0, end_index=1)

red : the red component of the color in the range 0 to 65535.
green : the green component of the color in the range 0 to 65535.
blue : the blue component of the color in the range 0 to 65535.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object.
The AttrBackground() function creates a new pangoAttribute of the type pango.ATTR_BACKGROUND
with the RGB color specified by red, green and blue and the text range specified by start_index and
end_index.

pango.AttrSize

 def pango.AttrSize(size, start_index=0, end_index=1)

size : the font size in thousandths of a point.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrSize() function creates a new pango.Attribute object of the type pango.ATTR_SIZE with
the font size specified by size and the text range specified by start_index and end_index.

pango.AttrStyle

 def pango.AttrStyle(style, start_index=0, end_index=1)

style : the font slant style.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrStyle() function creates a new pango.Attribute object of the type pango.ATTR_STYLE
with the font slant style specified by style and the text range specified by start_index and
end_index. The value of style must be one of:

pango.STYLE_NORMAL The font is upright.
pango.STYLE_OBLIQUE The font is slanted in a roman style.
pango.STYLE_ITALIC The font is slanted in an italic style.

PyGTK 2.0 Reference Manual

pango.AttrForeground 856

pango.AttrWeight

 def pango.AttrWeight(weight, start_index=0, end_index=1)

weight : the font weight.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrWeight() function creates a new pango.Attribute object of the type
pango.ATTR_WEIGHT with the font weight specified by weight and the text range specified by
start_index and end_index. The value of style must be one of:

pango.WEIGHT_ULTRALIGHT The ultralight weight (= 200).
pango.WEIGHT_LIGHT The light weight (=300).
pango.WEIGHT_NORMAL The default weight (= 400).
pango.WEIGHT_BOLD The bold weight (= 700).
pango.WEIGHT_ULTRABOLD The ultrabold weight (= 800).
pango.WEIGHT_HEAVY The heavy weight (= 900).

pango.AttrVariant

 def pango.AttrVariant(variant, start_index=0, end_index=1)

variant : the font variant.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrVariant() function creates a new pango.Attribute object of the type
pango.ATTR_VARIANT with the font variant specified by variant and the text range specified by
start_index and end_index. The value of variant must be one of:

pango.VARIANT_NORMAL A normal font.

pango.VARIANT_SMALL_CAPS
A font with the lower case characters replaced by smaller variants of the
capital characters.

pango.AttrStretch

 def pango.AttrStretch(stretch, start_index=0, end_index=1)

stretch : the font stretch style.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrStretch() function creates a new pango.Attribute object of the type
pango.ATTR_STRETCH with the font stretch style specified by stretch and the text range specified by
start_index and end_index. The value of stretch must be one of:

pango.STRETCH_ULTRA_CONDENSED The most narrow width
pango.STRETCH_EXTRA_CONDENSED

pango.STRETCH_CONDENSED

PyGTK 2.0 Reference Manual

pango.AttrWeight 857

pango.STRETCH_SEMI_CONDENSED

pango.STRETCH_NORMAL The normal width.
pango.STRETCH_SEMI_EXPANDED

pango.STRETCH_EXPANDED

pango.STRETCH_EXTRA_EXPANDED

pango.STRETCH_ULTRA_EXPANDED The most expanded width

pango.AttrFontDesc

 def pango.AttrFontDesc(desc, start_index=0, end_index=1)

desc : a pango.FontDescription object.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrFontDesc() function creates a new pango.Attribute object of the type
pango.ATTR_FONT_DESC with the pango.FontDescription specified by desc and the text range
specified by start_index and end_index.

pango.AttrUnderline

 def pango.AttrUnderline(underline, start_index=0, end_index=1)

underline : the underline style.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrUnderline() function creates a new pango.Attribute object of the type
pango.ATTR_UNDERLINE with the underline style specified by underline and the text range specified
by start_index and end_index. The value of underline must be one of:

pango.UNDERLINE_NONE No underline should be drawn.
pango.UNDERLINE_SINGLE A single underline should be drawn.
pango.UNDERLINE_DOUBLE A double underline should be drawn.

pango.UNDERLINE_LOW

A single underline should be drawn at a position beneath
the ink extents of the text being underlined. This should be
used only for underlining single characters, such as for
keyboard accelerators. pango.UNDERLINE_SINGLE
should be used for extended portions of text.

pango.AttrStrikethrough

 def pango.AttrStrikethrough(strikethrough, start_index=0, end_index=1)

strikethrough : if TRUE the text should be struck through.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object

PyGTK 2.0 Reference Manual

pango.AttrStretch 858

The AttrStrikethrough() function creates a new pango.Attribute object of the type
pango.ATTR_STRIKETHROUGH with the value specified by strikethrough and the text range
specified by start_index and end_index. If strikethough is TRUE the text should be struck through.

pango.AttrRise

 def pango.AttrRise(rise, start_index=0, end_index=1)

rise : the displacement of the text from the baseline.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrRise() function creates a new pango.Attribute object of the type pango.ATTR_RISE with
the text displacement from the baseline specified by rise and the text range specified by start_index
and end_index.

pango.AttrShape

 def pango.AttrShape(ink_rect, logical_rect, start_index=0, end_index=1)

ink_rect : the ink rectangle of the shape.
logical_rect : the logical rectangle of the shape.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrShape() function creates a new pango.Attribute object of the type pango.ATTR_SHAPE
with the shape rectangles specified by ink_rect and logical_rect and the text range specified by
start_index and end_index. A shape is used to impose a particular ink and logical rect on the result of
shaping a particular glyph. This might be used, for instance, for embedding a picture or a widget inside a
pango.Layout.

pango.AttrScale

 def pango.AttrScale(scale, start_index=0, end_index=1)

scale : the font size scale factor as a float.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object
The AttrScale() function creates a new pango.Attribute object of the type pango.ATTR_SCALE
with the font size scale factor specified by scale and the text range specified by start_index and
end_index. The value of scale can also be one of the following pre−defined values:

pango.SCALE_XX_SMALL
0.5787037037037 − the scale factor for three shrinking steps (1 / (1.2
* 1.2 * 1.2)).

pango.SCALE_X_SMALL
0.6444444444444 − the scale factor for two shrinking steps (1 / (1.2 *
1.2)).

pango.SCALE_SMALL 0.8333333333333 − the scale factor for one shrinking step (1 / 1.2).
pango.SCALE_MEDIUM 1.0 − The scale factor for normal size.
pango.SCALE_LARGE 1.2 − the scale factor for one magnification step.

PyGTK 2.0 Reference Manual

pango.AttrStrikethrough 859

pango.SCALE_X_LARGE
1.4399999999999 − the scale factor for two magnification steps (1.2
* 1.2).

pango.SCALE_XX_LARGE 1.728 − the scale factor for three magnification steps (1.2 * 1.2 * 1.2).

pango.AttrFallback

 def pango.AttrFallback(fallback, start_index=0, end_index=1)

fallback : if TRUE, we should fall back on other fonts for characters the active font is missing.
start_index : the index of the start of the attribute application in the text.
end_index : the index of the end of the attribute application in the text.
Returns : a new pango.Attribute object

Note

This function is available in PyGTK 2.4 and above.

The AttrFallback() function creates a new pango.Attribute object of the type
pango.ATTR_FALLBACK. If fallback is TRUE other fonts on the system can be used to provide characters
missing from the current font. Otherwise, only characters from the closest matching font can be used.

Prev Up Next
The pango Class Reference Home pango.AttrIterator

pango.AttrIterator
Prev The pango Class Reference Next

pango.AttrIterator

pango.AttrIterator � an object pointing to a location in a pango.AttrList.

Synopsis

class pango.AttrIterator:
 def copy()
 def range()
 def next()
 def get(type)
 def get_font()
 def get_attrs()

Description

The pango.AttrIterator object contains a pointer into a pango.AttrList. A
pango.AttrIterator object is created using the pango.AttrList.get_iterator() method and
then can be advanced through the attribute changes in the text using the next() method. The
pango.AttrIterator object can access information about the current attributes applied at the iterator
location (using the get() method) and the range of text that the current attribute change applies to (using the
range() method).

The pango.AttrIterator object is only valid as long as the associated pango.AttrList is not
changed.

PyGTK 2.0 Reference Manual

pango.AttrScale 860

Methods

pango.AttrIterator.copy

 def copy()

Returns : a new pango.AttrIterator object
The copy() method returns a new pango.AttrIterator object that is a copy of this attribute iterator.

pango.AttrIterator.range

 def range()

Returns : a 2−tuple containing the start and end index of the current attribute in the text.
The range() method returns a 2−tuple containing the start and end index of the application of the current
attribute change in the text.

pango.AttrIterator.next

 def next()

Returns : FALSE if the iterator is at the end of the pango.AttrList.
The next() method advances the iterator to the next attribute change in its pango.AttrList. The next
method returns FALSE if the iterator is at the end of the pango.AttrList; otherwise, TRUE.

pango.AttrIterator.get

 def get(type)

type : the pango.Attribute type to find.
Returns : the pango.Attribute matching type or None.
The get() method returns the pango.Attribute at the iterator location that matches the specified type.
When multiple attributes of the same type overlap, the attribute whose range starts closest to the current
location is returned. If no attribute matches, None is returned.

pango.AttrIterator.get_font

 def get_font()

Returns :a 3−tuple containing a pango.FontDescription, a pango.Language and a list of non−font
pango.Attribute objects at the current iterator location.

The get_font() method returns a 3−tuple containing a pango.FontDescription holding the current
font attributes, a pango.Language object (if a language is set) or None and a list of non−font
pango.Attribute objects in effect at the current iterator location.

pango.AttrIterator.get_attrs

 def get_attrs()

Returns : a tuple containing the pango.Attribute objects in effect at the current iterator location.

PyGTK 2.0 Reference Manual

Methods 861

Note

This method is available in PyGTK 2.4 and above.

The get_attrs() method returns a tuple containing the pango.Attribute objects in effect at the
current iterator location.

Prev Up Next
pango.Attribute Home pango.AttrList

pango.AttrList
Prev The pango Class Reference Next

pango.AttrList

pango.AttrList � an object holding attributes that apply to a section of text

Synopsis

class pango.AttrList(gobject.GBoxed):
pango.AttrList()

 def copy()
 def insert(attr)
 def insert_before(attr)
 def change(attr)
 def splice(other, pos, len)
 def get_iterator()
 def filter(func, data=None)

Functions

 def pango.parse_markup(markup_text, accel_marker)

Description

The pango.AttrList object contains a list of attributes that apply to a section of text. The attributes are,
in general, allowed to overlap in an arbitrary fashion, however, if the attributes are manipulated only through
the change() method, the overlap between properties will meet stricter criteria. Since the
pango.AttrList object is stored as a linear list, it is not suitable for storing attributes for large amounts of
text. In general, you should not use a single pango.AttrList for more than one paragraph of text.

Constructor

pango.AttrList()

Returns : a new pango.AttrList object.
Creates a new pango.AttrList object.

Methods

PyGTK 2.0 Reference Manual

Note 862

pango.AttrList.copy

 def copy()

Returns : a new pango.AttrList object
The copy() method returns a new pango.AttrList object that is a copy of the attribute list

pango.AttrList.insert

 def insert(attr)

attr : the pango.Attribute to insert.
The insert() method inserts the pango.Attribute specified by attr into the attribute list. It will be
inserted after all other attributes with a matching "start_index".

pango.AttrList.insert_before

 def insert_before(attr)

attr : the pango.Attribute to insert.
The insert_before() method inserts the pango.Attribute specified by attr into the attribute list. It
will be inserted before all other attributes with a matching "start_index".

pango.AttrList.change

 def change(attr)

attr : the pango.Attribute to insert.
The change() method inserts the pango.Attribute specified by attr into the attribute list. It will
replace any attributes of the same type on that segment and be merged with any adjoining attributes that are
identical. This method is slower than the insert() method for creating an attribute list in order (potentially
much slower for large lists). However, the insert() method is not suitable for continually changing a set of
attributes since it never removes or combines existing attributes.

pango.AttrList.splice

 def splice(other, pos, len)

other : another pango.AttrList
pos : the position in this attribute list to insert other

len : the length of the spliced segment. (Note that this must be specified since the attributes in
other may only be present at some subsection of this range)

The splice() method splices the pango.AttrList specified by other into this attribute list. This
method stretches each attribute with a range including the position specified by pos in the list by the amount
specified by len, and then calls the change() method with a copy of each attribute in other in sequence
(offset in position by pos).

pango.AttrList.get_iterator

 def get_iterator()

Returns : a new pango.AttrIterator.

PyGTK 2.0 Reference Manual

pango.AttrList.copy 863

The get_iterator() method creates and returns a pango.AttrIterator initialized to the beginning
of the attribute list.

pango.AttrList.filter

 def filter(func, data=None)

func : a callback function that returns TRUE if an attribute should be filtered out.
data : data to be passed to func
Returns : a new pango.AttrList or None.

Note

This method is available in PyGTK 2.4 and above.

The filter() method arranges for the callback function specified by function to be called on each
pango.Attribute in the attribute list with the optional user data specified by data. The callback
function signature is:

 def func(attribute, user_data)

where attribute is an attribute of the attribute list and user_data is data. The callback function
returns TRUE if the attribute should be filtered out of the attribute list. The filter method returns a new
pango.AttrList containing the attributes that were filtered out (removed from) the attribute list.

Functions

pango.parse_markup

 def pango.parse_markup(markup_text, accel_marker)

markup_text : a string containing the markup to parse.
accel_marker : the Unicode character that precedes an accelerator, or 0 for none

Returns : a 3−tuple containing a pango.AttrList, the plain text in markup_text, and the
first accelerator character in the text.

The parse_markup() function parses the text specified by markup_text and returns a 3−tuple
containing a pango.AttrList, the plain text from markup_text and the first accelerator character that
is preceded by the Unicode character specified by accel_marker. The returned accelerator character is a
Unicode character that may be u'\x00' if there is no accelerator character.

See the The Pango Markup Language reference for more information.

The GError exception is raised if an error occurs while parsing the markup text.

Prev Up Next
pango.AttrIterator Home pango.Color

pango.Color
Prev The pango Class Reference Next

PyGTK 2.0 Reference Manual

pango.AttrList.get_iterator 864

pango.Color

pango.Color � an object representing a RGB color

Synopsis

class pango.Color(gobject.GBoxed):
 def parse(spec)

Attributes

"red" Read The red component of the color with a value between 0 and 65535.

"green" Read The green component of the color with a value between 0 and 65535.

"blue" Read The blue component of the color with a value between 0 and 65535.

Description

A pango.Color object is a gobject.GBoxed type that represents a color with RGB components. Each
component value ranges from 0 to 65535.

Methods

pango.Color.parse

 def parse(spec)

spec : a string specifying the new color
Returns : TRUE if spec was successfully parsed
The parse() method fills in the color attributes of the pango.Color from the string spec. The string in
spec can either one of a large set of standard names. (Taken from the X11 rgb.txt file), or it can be a hex
value in the form 'rgb' 'rrggbb' 'rrrgggbbb' or 'rrrrggggbbbb' where 'r', 'g' and 'b' are hex digits of
the red, green, and blue components of the color, respectively. (White in the four forms is 'fff' 'ffffff'
'fffffffff' and 'ffffffffffff')

Prev Up Next
pango.AttrList Home pango.Context

pango.Context
Prev The pango Class Reference Next

pango.Context

pango.Context � stores global information used to control rendering.

PyGTK 2.0 Reference Manual

pango.Color 865

Synopsis

class pango.Context(gobject.GObject):
 def list_families()
 def load_font(desc)
 def load_fontset(desc, language)
 def get_metrics(desc, language)
 def set_font_description(desc)
 def get_font_description()
 def get_language()
 def set_language(language)
 def set_base_dir(direction)
 def get_base_dir()

Ancestry

+−− gobject.GObject
 +−− pango.Context

Description

A pango.Context object contains global information used to control the rendering process. The
information accessible using the pango.Context methods includes:

the default pango.FontDescription•
the default pango.Language•
the base direction of the text•

A pango.Context can be created with the gtk.Widget.create_pango_context() method. The
pango.Context associated with a gtk.Widget is retrieved using the
gtk.Widget.get_pango_context()) method.

Methods

pango.Context.list_families

 def list_families()

Returns : a tuple containing a set of pango.FontFamily objects.
The list_families() method returns a tuple containing the list of all the pango.FontFamily objects
for a context.

pango.Context.load_font

 def load_font(desc)

desc : a pango.FontDescription describing the font to load
Returns : the pango.Font loaded, or None if no font matched.
The load_font() method loads and returns the pango.Font from one of the fontmaps in the context that
is the closest match for the pango.FontDescription specified by desc.

PyGTK 2.0 Reference Manual

Synopsis 866

pango.Context.load_fontset

 def load_fontset(desc, language)

desc : a pango.FontDescription describing the fonts to load
language : a pango.Language the fonts will be used for
Returns : the pango.FontSet, or None if no font matched.
The load_fontset() method loads and returns a set of fonts (in a pango.FontSet) from the context
that can be used to render a font matching the pango.FontDescription specified by desc with the
pango.Language specified by language.

pango.Context.get_metrics

 def get_metrics(desc, language)

desc : a pango.FontDescription object

language : the pango.Language that determines the script to get the metrics for, or None to get the
metrics for the entire font.

Returns : a pango.FontMetrics object.
The get_metrics() method returns the overall metric information for the font described by the
pango.FontDescription specified by desc. Since the metrics may be substantially different for
different scripts, a pango.Language (specified by language) can be provided to indicate that the metrics
should correspond to the script(s) used by that language. If the value of language is None, the returned
pango.FontMetrics covers the entire font.

The family name in the pango.FontDescription may be a comma separated list of families. If
characters from multiple of these families would be used to render the string, then the returned fonts would be
a composite of the metrics for the fonts loaded for the individual families.

pango.Context.set_font_description

 def set_font_description(desc)

desc : a pango.FontDescription object
The set_font_description() method sets the default pango.FontDescription (specified by
desc) for the context.

pango.Context.get_font_description

 def get_font_description()

Returns : the default font description of the context.
The get_font_description() method returns the default pango.FontDescription for the
context.

pango.Context.get_language

 def get_language()

Returns : the global pango.Language.
The get_language() method returns the global pango.Language for the context.

PyGTK 2.0 Reference Manual

pango.Context.load_fontset 867

pango.Context.set_language

 def set_language(language)

language : a pango.Language.
The set_language() method sets the global pango.Language for the context to the value specified by
language.

pango.Context.set_base_dir

 def set_base_dir(direction)

direction : the new base direction
The set_base_dir() method sets the base text direction for the context to the value specified by
direction. The value of direction must be one of:

pango.DIRECTION_LTR The text is written left−to−right
pango.DIRECTION_RTL The text is written right−to−left

pango.DIRECTION_TTB_LTR
The text is written vertically top−to−bottom, with the rows ordered from
left to right.

pango.DIRECTION_TTB_RTL
The text is written vertically top−to−bottom, with the rows ordered from
right to left.

pango.Context.get_base_dir

 def get_base_dir()

Returns : the base direction for the context.
The get_base_dir() method returns the base text direction for the context. See the set_base_dir()
method for more information.

Prev Up Next
pango.Color Home pango.Font

pango.Font
Prev The pango Class Reference Next

pango.Font

pango.Font � a rendering−system independent font representation.

Synopsis

class pango.Font(gobject.GObject):
 def describe()
 def get_metrics(language)
 def get_glyph_extents(glyph)

Functions

 def pango.PIXELS(size)
 def pango.ASCENT(rect)
 def pango.DESCENT(rect)
 def pango.RBEARING(rect)

PyGTK 2.0 Reference Manual

pango.Context.set_language 868

 def pango.LBEARING(rect)

Ancestry

+−− gobject.GObject
 +−− pango.Font

Description

A pango.Font object represents a font in a rendering−system independent way. A pango.Font is
returned from the pango.Context.load_font(), pango.FontSet.get_font() and
pango.FontMap.load_font()) methods.

Methods

pango.Font.describe

 def describe()

Returns : a pango.FontDescription object.
The describe() method returns a description of the font in a pango.FontDescription object.

pango.Font.get_metrics

 def get_metrics(language)

language : a pango.Language that determines the script to get the metrics for, or None to get the
metrics for the entire font.

Returns : a pango.FontMetrics object.
The get_metrics() method returns a pango.FontMetrics object containing the metric information
for a font using the pango.Language specified by language to limit the metrics to the script(s) used by
language. If the value of language is None, the font metrics for the entire font is returned.

pango.Font.get_glyph_extents

 def get_glyph_extents(glyph)

glyph : the glyph index

Returns : a 2−tuple containing two 4−tuples representing the ink and logical rectangles used to store
the extents of glyph as drawn.

The get_glyph_extents() method returns a 2−tuple containing two 4−tuples representing the values of
the logical and ink extent rectangles of the specified glyph within a font. The coordinate system for each
rectangle has its origin at the base line and horizontal origin of the character with increasing coordinates
extending to the right and down. The pango.ASCENT(), pango.DESCENT(), pango.LBEARING(),
and pango.RBEARING functions can be used to convert from the extents rectangle to more traditional font
metrics. The units of the rectangles are in 1/pango.SCALE of a device unit.

PyGTK 2.0 Reference Manual

Synopsis 869

Functions

pango.PIXELS

 def pango.PIXELS(size)

size : the integer value to convert to pango pixels
Returns : the pixel value
The pango.PIXELS() function converts and returns the integer value specified by size to pango pixels.

pango.ASCENT

 def pango.ASCENT(rect)

rect : a 4−tuple representing an extent rectangle's (x, y, width, height) value
Returns : the ascent value of rect
The pango.ASCENT() function returns the ascent value of the extent rectangle specified by rect.

pango.DESCENT

 def pango.DESCENT(rect)

rect : a 4−tuple representing an extent rectangle's (x, y, width, height) value
Returns : the descent value of rect
The pango.DESCENT() function returns the descent value of the extent rectangle specified by rect.

pango.RBEARING

 def pango.RBEARING(rect)

rect : a 4−tuple representing an extent rectangle's (x, y, width, height) value
Returns : the right bearing value of rect
The pango.RBEARING() function returns the right bearing value of the extent rectangle specified by rect.

pango.LBEARING

 def pango.LBEARING(rect)

rect : a 4−tuple representing an extent rectangle's (x, y, width, height) value
Returns : the left bearing value of rect
The pango.LBEARING() function returns the left bearing value of the extent rectangle specified by rect.

Prev Up Next
pango.Context Home pango.FontDescription

pango.FontDescription
Prev The pango Class Reference Next

PyGTK 2.0 Reference Manual

Functions 870

pango.FontDescription

pango.FontDescription � an object representing a description of a font.

Synopsis

class pango.FontDescription(gobject.GBoxed):
pango.FontDescription(str=None)

 def copy()
 def copy_static()
 def hash()
 def set_family(family)
 def set_family_static(family)
 def get_family()
 def set_style(style)
 def get_style()
 def set_variant(variant)
 def get_variant()
 def set_weight(weight)
 def get_weight()
 def set_stretch(stretch)
 def get_stretch()
 def set_size(size)
 def get_size()
 def get_set_fields()
 def unset_fields(to_unset)
 def merge(desc_to_merge, replace_existing)
 def merge_static(desc_to_merge, replace_existing)
 def better_match(old_match, new_match)
 def to_string()
 def to_filename()

Description

A pango.FontDescription represents the description of an ideal font. They are used to both specify the
characteristics of a font to load and to list the available fonts on the system.

Constructor

pango.FontDescription()

Returns : a pango.FontDescription object.
Creates a new pango.FontDescription object from the representation in the string specified by str.
The format of the string representation is:

 "[FAMILY−LIST] [STYLE−OPTIONS] [SIZE]"

where FAMILY−LIST is a comma separated list of families optionally terminated by a comma,
STYLE_OPTIONS is a whitespace separated list of words where each WORD describes one of style, variant,
weight, or stretch, and SIZE is an decimal number (size in points). For example the following are all valid
string representations:

 "sans bold 12"
 "serif,monospace bold italic condensed 16"
 "normal 10"

The commonly available font families are: Normal, Sans, Serif and Monospace. The available styles are:

PyGTK 2.0 Reference Manual

pango.FontDescription 871

Normal the font is upright.
Oblique the font is slanted, but in a roman style.
Italic the font is slanted in an italic style.
The available weights are:

Ultra−Light the ultralight weight (= 200)
Light the light weight (=300)
Normal the default weight (= 400)
Bold the bold weight (= 700)
Ultra−Bold the ultra−bold weight (= 800)
Heavy the heavy weight (= 900)
The available variants are:

Normal
Small−Caps
The available stretch styles are:

Ultra−Condensed the smallest width
Extra−Condensed
Condensed
Semi−Condensed
Normal the normal width
Semi−Expanded
Expanded
Extra−Expanded
Ultra−Expanded the widest width

Methods

pango.FontDescription.copy

 def copy()

Returns : a new pango.FontDescription
The copy() method returns a new copy of this font description.

pango.FontDescription.copy_static

 def copy_static()

Returns : a new pango.FontDescription..
The copy_static() method is like the copy() method, but only a shallow copy is made of the family name
and other allocated attribute fields. The result can only be used until the original font description is modified
or freed. This is meant to be used when the copy is only needed temporarily.

PyGTK 2.0 Reference Manual

Constructor 872

pango.FontDescription.hash

 def hash()

Returns : the hash value.
The hash() method computes and returns a hash of the pango.FontDescription.

pango.FontDescription.set_family

 def set_family(family)

family : a string representing the family name.
The set_family() method sets the family name attribute field of the font description to the value specified
by family. The family name represents a family of related font styles, and will resolve to a particular
pango.FontFamily. In some uses of pango.FontDescription, it is also possible to use a comma
separated list of family names for this field.

pango.FontDescription.set_family_static

 def set_family_static(family)

family : a string representing the family name.
The set_family_static() method is like the set_family(), except that no copy of family is made. The
caller must make sure that the string passed in stays around until the font description is no longer needed or
the family name is set again. This method can be used if family is only needed temporarily.

pango.FontDescription.get_family

 def get_family()

Returns : the family name or None if not previously set.
The get_family() method returns the family name attribute field of the font description. See the
set_family() method for more information.

pango.FontDescription.set_style

 def set_style(style)

style : the style for the font description
The set_style() method sets the slant style attribute field of the pango.FontDescription to the
value specified by style. The value of style must be either pango.STYLE_NORMAL,
pango.STYLE_ITALIC, or pango.STYLE_OBLIQUE. Most fonts will either have a italic style or an
oblique style, but not both, and font matching in Pango will match italic specifications with oblique fonts and
vice−versa if an exact match is not found.

pango.FontDescription.get_style

 def get_style()

Returns : the slant style for the font description.
The get_style() method returns the slant style attribute field of the pango.FontDescription. See
the set_style() method for more details. Use the get_set_fields() method to find out if the field was
explicitly set.

PyGTK 2.0 Reference Manual

pango.FontDescription.hash 873

pango.FontDescription.set_variant

 def set_variant(variant)

variant : the variant type for the font description.
The set_variant() method sets the variant attribute field of a font description to the value specified by
variant. The value of variant must be either pango.VARIANT_NORMAL or
pango.VARIANT_SMALL_CAPS.

pango.FontDescription.get_variant

 def get_variant()

Returns : the variant style of the font description.
The get_variant() method returns the variant style of a pango.FontDescription. See the
set_variant() method for more information. Use the get_set_fields() method to find out if the field
was explicitly set.

pango.FontDescription.set_weight

 def set_weight(weight)

weight : the weight for the font description.
The set_weight() method sets the weight attribute field of a font description to the value specified by
weight. The value of weight specifies how bold or light the font should be in a range from 100 to 900.
The predefined values of weight are:

pango.WEIGHT_ULTRALIGHT the ultralight weight (= 200)
pango.WEIGHT_LIGHT the light weight (=300)
pango.WEIGHT_NORMAL the default weight (= 400)
pango.WEIGHT_BOLD the bold weight (= 700)
pango.WEIGHT_ULTRABOLD the ultrabold weight (= 800)
pango.WEIGHT_HEAVY the heavy weight (= 900)

pango.FontDescription.get_weight

 def get_weight()

Returns : the weight field for the font description.
The get_weight() method returns the value of the weight attribute of a font description. See the
set_weight() method for more information. Use the get_set_fields() method to determine if the
attribute was explicitly set.

pango.FontDescription.set_stretch

 def set_stretch(stretch)

stretch : the stretch for the font description
The set_stretch() method sets the stretch attribute field of a font description to the value specified by
stretch. The value of stretch specifies how narrow or wide the font should be relative to the base width
of the font family:

PyGTK 2.0 Reference Manual

pango.FontDescription.set_variant 874

pango.STRETCH_ULTRA_CONDENSED the narrowest width
pango.STRETCH_EXTRA_CONDENSED

pango.STRETCH_CONDENSED

pango.STRETCH_SEMI_CONDENSED

pango.STRETCH_NORMAL the normal (base) width
pango.STRETCH_SEMI_EXPANDED

pango.STRETCH_EXPANDED

pango.STRETCH_EXTRA_EXPANDED

pango.STRETCH_ULTRA_EXPANDED the widest width

pango.FontDescription.get_stretch

 def get_stretch()

Returns : the stretch field for the font description
The get_stretch() method returns the stretch attribute field of a font description. See the
set_stretch() method for more details. Use the get_set_fields() method to determine if the field
was explicitly set.

pango.FontDescription.set_size

 def set_size(size)

size : the size for the font description in pango units.
The set_size() method sets the size attribute field of a font description to the value specified by size.
The value of size is specified in pango units. There are pango.SCALE (1024) pango units in one device
unit (the device unit is a point for font sizes).

pango.FontDescription.get_size

 def get_size()

Returns : the size for the font description in pango units.
The get_size() method returns the value of the size attribute field of a font description. See the
get_size() method for more information. There are pango.SCALE pango units in one device unit (point).
If the stretch attribute field has not previously been set, 0 is returned. Use the get_set_fields() method
to determine if the field was explicitly set.

pango.FontDescription.get_set_fields

 def get_set_fields()

Returns : a bitmask with bits set corresponding to the font description attribute fields that have been set.
The get_set_fields() method returns a value that indicates which attribute fields in a font description
have been set. The value returned is a combination of:

pango.FONT_MASK_FAMILY the font family has been set.
pango.FONT_MASK_STYLE the font slant style has been set.
pango.FONT_MASK_VARIANT the font variant has been set.
pango.FONT_MASK_WEIGHT the font weight has been set.

PyGTK 2.0 Reference Manual

pango.FontDescription.set_stretch 875

pango.FONT_MASK_STRETCH the font stretch has been set.
pango.FONT_MASK_SIZE the font size has been set.

pango.FontDescription.unset_fields

 def unset_fields(to_unset)

to_unset : a bitmask of attribute fields in the font description to unset.
The unset_fields() method unsets the attribute fields (specified by to_unset) in the
pango.FontDescription. Note that this merely marks the attribute fields cleared, it does not clear the
settings.

pango.FontDescription.merge

 def merge(desc_to_merge, replace_existing)

desc_to_merge : the pango.FontDescription to merge into the font description

replace_existing :if TRUE, replace attribute fields in the font description with the corresponding
values from desc_to_merge, even if they are already exist.

The merge() method merges the attribute fields that are set in the pango.FontDescription specified
by desc_to_merge into the attribute fields in the font description. If replace_existing is FALSE,
only fields in the font description that are not already set are affected. If replace_existing is TRUE,
attribute fields that are already set will also be replaced.

pango.FontDescription.merge_static

 def merge_static(desc_to_merge, replace_existing)

desc_to_merge : the pango.FontDescription to merge from

replace_existing :if TRUE, replace attribute fields in the font description with the corresponding
values from desc_to_merge, even if they are already exist.

The merge_static() method is similar to the merge() method, but only a shallow copy is made of the
family name and other allocated fields. The font description can only be used until desc_to_merge is
modified or freed. This is meant to be used when the merged font description is only needed temporarily.

pango.FontDescription.better_match

 def better_match(old_match, new_match)

old_match : a pango.FontDescription, or None
new_match : a pango.FontDescription
Returns : TRUE if new_match is a better match
The better_match() method determines if the attributes of the pango.FontDescription specified
by new_match are a closer match for the font description than the pango.FontDescription specified
by old_match. If old_match is None, determines if new_match is a match at all. The weight and style
attribute need only match approximately but the other attributes must match exactly.

PyGTK 2.0 Reference Manual

pango.FontDescription.get_set_fields 876

pango.FontDescription.to_string

 def to_string()

Returns : a string representation of the font description.
The to_string() method returns a string representation of the font description. See the
pango.FontDescription() constructor for a description of the format of the string representation. The family list
in the string description will only have a terminating comma if the last word of the list is a valid style option.

pango.FontDescription.to_filename

 def to_filename()

Returns : a string representation of the font description as a filename.
The to_filename() method returns a filename representation of a font description. The filename is
identical to the result from calling the to_string() method, but underscores replace characters that are not
typically used in filenames, and it is in lower case only.

Prev Up Next
pango.Font Home pango.FontFace

pango.FontFace
Prev The pango Class Reference Next

pango.FontFace

pango.FontFace � an object representing a group of fonts varying only in size.

Synopsis

class pango.FontFace(gobject.GObject):
 def describe()
 def get_face_name()
 def list_sizes()

Description

A pango.FontFace object represents a group of fonts with the same family, weight, slant, stretch and
width but varying sizes. A list of font faces can be retrieved from a pango.FontFamily object using the
pango.FontFamily.list_faces() method.

Ancestry

+−− gobject.GObject
 +−− pango.FontFace

Methods

PyGTK 2.0 Reference Manual

pango.FontDescription.to_string 877

pango.FontFace.describe

 def describe()

Returns : a pango.FontDescription object containing the description of the face.
The describe() method returns a pango.FontDescription object containing the family, style,
variant, weight and stretch of the pango.FontFace. The size attribute field will be unset.

pango.FontFace.get_face_name

 def get_face_name()

Returns : the face name for the face.
The get_face_name() method returns a string representing this font face. This name is unique among all
faces in the family and is suitable for displaying to users.

pango.FontFace.list_sizes

 def list_sizes()

Returns : a tuple containing a list of face sizes in pango units or None

Note

This method is available in PyGTK 2.4 and above.

The list_sizes() method returns a tuple containing the available sizes for a bitmap font. If the font face is
a scalable font this method returns None.

Prev Up Next
pango.FontDescription Home pango.FontFamily

pango.FontFamily
Prev The pango Class Reference Next

pango.FontFamily

pango.FontFamily � an object representing a family of related font faces.

Synopsis

class pango.FontFamily(gobject.GObject):
 def list_faces()
 def get_name()
 def is_monospace()

Ancestry

+−− gobject.GObject
 +−− pango.FontFamily

PyGTK 2.0 Reference Manual

pango.FontFace.describe 878

Description

The pango.FontFamily object is used to represent a family of related font faces. The faces in a family
share a common design, but differ in slant, weight, width and other aspects. A list of pango.FontFamily
objects can be retrieved from a pango.Context object using the pango.Context.list_families()
method and from a pango.FontMap object using the pango.FontMap.list_families() method.

Methods

pango.FontFamily.list_faces

 def list_faces()

Returns : a list of pango.FontFace objects.
The list_faces() method returns a list of the different pango.FontFace object that make up the font
family>. The faces in a family share a common design, but differ in slant, weight, width and other aspects.

pango.FontFamily.get_name

 def get_name()

Returns : the name of the family.
The get_name() method returns a string containing the name of the font family. The name is unique among
all fonts for the font backend and can be used in a pango.FontDescription to specify that a face from
this family is desired.

pango.FontFamily.is_monospace

 def is_monospace()

Returns : the name of the family.
The is_monospace() method returns TRUE if the font family describes a monospace font. A monospace
font is a font designed for text display where the the characters form a regular grid. For Western languages
this would mean that the advance width of all characters are the same, but this categorization also includes
Asian fonts which include double−width characters: characters that occupy two grid cells. The best way to
find out the grid−cell size is to call the get_approximate_digit_width() method, since the results of
the get_approximate_char_width()

Prev Up Next
pango.FontFace Home pango.FontMap

pango.FontMap
Prev The pango Class Reference Next

pango.FontMap

pango.FontMap � an object that represents the set of fonts available for a particular rendering system.

PyGTK 2.0 Reference Manual

Description 879

Synopsis

class pango.FontMap(gobject.GObject):
 def load_font(context, desc)
 def load_fontset(context, desc, language)
 def list_families()
 def get_shape_engine_type()

Ancestry

+−− gobject.GObject
 +−− pango.FontMap

Description

A pango.FontMap object represents the set of fonts available for a particular rendering system. There
appears to be no way to retrieve a pango.FontMap object in PyGTK.

Methods

pango.FontMap.load_font

 def load_font(context, desc)

context : the pango.Context the font will be used with
desc : a pango.FontDescription describing the font to load
Returns : the loaded font , or None if no font matched.
The load_font() method loads the pango.Font in the fontmap that is the closest match for the
pango.FontDescription specified by desc in the pango.Context specified by context.

pango.FontMap.load_fontset

 def load_fontset(context, desc, language)

context : the pango.Context the font will be used with
desc : a pango.FontDescription describing the font to load
language : a pango.Language the fonts will be used for
Returns : a pango.FontSet, or None if no font matched.
The load_fontset() method loads a set of pango.Font objects in the fontmap that can be used to
render a font matching the pango.FontDescription specified by desc for the pango.Language
specified by language in the pango.Context specified by context.

pango.FontMap.list_families

 def list_families()

Returns : a list of pango.FontFamily objects.
The list_families() method returns a list of all pango.FontFamily objects for the fontmap.

PyGTK 2.0 Reference Manual

Synopsis 880

pango.FontMap.get_shape_engine_type

 def get_shape_engine_type()

Returns : the ID string for the shape engines for the font map.

Note

This method is available in PyGTK 2.4 and above.

The get_shape_engine_type() method returns the render ID for the shape engines for the font map

Prev Up Next
pango.FontFamily Home pango.FontMetrics

pango.FontMetrics
Prev The pango Class Reference Next

pango.FontMetrics

pango.FontMetrics � an object containing overall metric information for a font.

Synopsis

class pango.FontMetrics(gobject.GBoxed):
 def get_ascent()
 def get_descent()
 def get_approximate_char_width()
 def get_approximate_digit_width()

Description

A pango.FontMetrics object holds the overall metric information for a font. A pango.FontMetrics
object is returned from the following methods:

pango.Context.get_metrics()•
pango.Font.get_metrics()•
pango.Fontset.get_metrics()•

Methods

pango.FontMetrics.get_ascent

 def get_ascent()

Returns : the ascent in pango units. (1 point == pango.SCALE pango units.)
The get_ascent() method returns the font ascent in pango units where one font point is equal to
pango.SCALE (1024) pango units. The ascent is the distance from the baseline to the logical top of a line of
text. (The logical top may be above or below the top of the actual drawn ink. It is necessary to lay out the text
to figure where the ink will be.)

PyGTK 2.0 Reference Manual

pango.FontMap.get_shape_engine_type 881

pango.FontMetrics.get_descent

 def get_descent()

Returns : the descent in pango units. (1 point == pango.SCALE pango units.)
The get_descent() method returns the font descent in pango units where one font point is equal to
pango.SCALE (1024) pango units. The descent is the distance from the baseline to the logical bottom of a line
of text. (The logical bottom may be above or below the bottom of the actual drawn ink. It is necessary to lay
out the text to figure where the ink will be.)

pango.FontMetrics.get_approximate_char_width

 def get_approximate_char_width()

Returns : the character width in pango units. (1 point == pango.SCALE pango units.)
The get_approximate_char_width() method returns the approximate character width for a font in
pango units where one font point is equal to pango.SCALE (1024) pango units. This is merely a representative
value that is useful, for example, for determining the initial size for a window. Actual characters in text will be
wider and narrower than this.

pango.FontMetrics.get_approximate_digit_width

 def get_approximate_digit_width()

Returns : the digit width in pango units. (1 point == pango.SCALE pango units.)
The get_approximate_digit_width() method returns the approximate digit width for a font in pango
units where one font point is equal to pango.SCALE (1024) pango units. This is merely a representative value
that is useful, for example, for determining the initial size for a window. Actual digits in text can be wider and
narrower than this, though this value is generally somewhat more accurate than the result of the
get_approximate_char_width() method.

Prev Up Next
pango.FontMap Home pango.Fontset

pango.Fontset
Prev The pango Class Reference Next

pango.Fontset

pango.Fontset � an object containing a set of pango.Font objects.

Synopsis

class pango.Fontset(gobject.GObject):
 def get_font(wc)
 def get_metrics()
 def foreach(func, data=None)

Ancestry

+−− gobject.GObject
 +−− pango.Fontset

PyGTK 2.0 Reference Manual

pango.FontMetrics.get_descent 882

Description

A pango.Fontset object holds a set of pango.Font objects. A pango.FontSet object is returned
from the following methods:

pango.Context.load_fontset()•
pango.FontMap.load_fontset()•

Methods

pango.Fontset.get_font

 def get_font(wc)

wc : a unicode character
Returns : a pango.Font.
The get_font() method returns the pango.Font in the fontset that contains the best glyph for the unicode
character specified by wc.

pango.Fontset.get_metrics

 def get_metrics()

Returns : a pango.FontMetrics object.
The get_metrics() method returns a pango.FontMetrics object that contains the overall metric
information for the fonts in the fontset.

pango.Fontset.foreach

 def foreach(func, data=None)

func : a callback function
data : user data to pass to func

Note

This method is available in PyGTK 2.4 and above.

The foreach() method invokes the function specified by func on each pango.Font of the font set
passing it the optional user data specified by data. The signature of func is:

 def func(fontset, font, user_data)

where fontset is the pango.Fontset containing the pango.Font font and user_data is data

Prev Up Next
pango.FontMetrics Home pango.FontsetSimple

pango.FontsetSimple
Prev The pango Class Reference Next

PyGTK 2.0 Reference Manual

Description 883

pango.FontsetSimple

pango.FontsetSimple � a simple container for a set of fonts

Synopsis

class pango.FontsetSimple(pango.Fontset):
pango.FontsetSimple(language)

 def append(font)
 def size()

Ancestry

+−− gobject.GObject
 +−− pango.Fontset
 +−− pango.FontsetSimple

Description

Note

This object is available in PyGTK 2.4 and above.

A pango.FontsetSimple is a subclass of pango.Fontset that provides a simple container for storing
a set of pango.Font objects. The set of fonts in a pango.FontsetSimple are assemble by using the
append() method.

Constructor

pango.FontsetSimple(language)

language : a pango.Language object
Returns : a new pango.FontsetSimple object.

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new pango.FontsetSimple for the pango.Language specified by language.

Methods

pango.FontsetSimple.append

 def append(font)

font : a pango.Font.

PyGTK 2.0 Reference Manual

pango.FontsetSimple 884

Note

This method is available in PyGTK 2.4 and above.

The append() method adds the pango.Font specified by font to the fontset.

pango.FontsetSimple.size

 def size()

Returns : the size of the font set.

Note

This method is available in PyGTK 2.4 and above.

The size() method returns the number of fonts in the fontset.

Prev Up Next
pango.Fontset Home pango.GlyphString

pango.GlyphString
Prev The pango Class Reference Next

pango.GlyphString

pango.GlyphString � an object holding strings of glyphs and glyph information.

Synopsis

class pango.GlyphString(gobject.GBoxed):
pango.GlyphString()

 def set_size(new_len)
 def copy()
 def extents(font)
 def extents_range(start, end, font)
 def get_logical_widths(text, embedding_level)

Attributes

"num_glyphs" Read The number of glyphs in the glyph string.

Description

A pango.GlyphString object contains strings of glyphs with geometry and visual attribute information.

Constructor

pango.GlyphString()

Returns : a new pango.GlyphString

PyGTK 2.0 Reference Manual

Note 885

Creates a new pango.GlyphString containing no glyphs.

Methods

pango.GlyphString.set_size

 def set_size(new_len)

new_len : the new length of the string.
The set_size() method resizes the glyph string to the length specified by new_len.

pango.GlyphString.copy

 def copy()

Returns : a pango.GlyphString
The copy() method returns a pango.GlyphString that is a copy of the glyph string.

pango.GlyphString.extents

 def extents(font)

font : a pango.Font

Returns : a 2−tuple containing two 4−tuples representing the ink and logical extents rectangles of the glyph
string.

The extents() method returns a 2−tuple containing two 4−tuples representing the logical and ink extents
rectangles of the glyph string as rendered in the pango.Font specified by font. See the
pango.Font.get_glyph_extents() for details about the interpretation of the rectangles.

pango.GlyphString.extents_range

 def extents_range(start, end, font)

start : start index
end : end index
font : a pango.Font

Returns : a 2−tuple containing two 4−tuples representing the ink and logical extents rectangles of the glyph
string range.

The extents_range() method returns a 2−tuple containing two 4−tuples representing the logical and ink
extents rectangles of a range (specified by start and end) of the glyph string as rendered in the
pango.Font specified by font. The extents are relative to the start of the glyph string range (the origin of
their coordinate system is at the start of the range, not at the start of the entire glyph string).

pango.GlyphString.get_logical_widths

 def get_logical_widths(text, embedding_level)

text : the text corresponding to the glyphs
embedding_level : the embedding level of the string

PyGTK 2.0 Reference Manual

Constructor 886

Returns : a list containing the calculated character widths.
The get_logical_widths() method returns a list of the screen width of the characters in the specified
text that corresponds to the glyph string. When multiple characters compose a single cluster, the width of
the entire cluster is divided equally among the characters.

Prev Up Next
pango.FontsetSimple Home pango.Language

pango.Language
Prev The pango Class Reference Next

pango.Language

pango.Language � an object that represents a language tag.

Synopsis

class pango.Language(gobject.GBoxed):
pango.Language(language)

 def matches(range_list)
 def to_string()

Functions

 def pango.pango_language_from_string(language)
 def pango.pango_language_matches(language, range_list)

Description

A pango.Language object represents a language tag meeting the RFC−3066 standard. The
pango.Language can be retrieved from a pango.Context by using the
pango.Context.get_language() method or created using the pango.Language() constructor. Example
RFC−3066 language tags include: "en−us", "fr", and "sgn−us−ma".

Constructor

pango.Language(language>)

language : a string representing a language tag
Returns : a new pango.Language object

Note

This constructor is available in PyGTK 2.4 and above.

Creates a new pango.Language object from the RFC−3066 language tag specified by language. This
constructor first canonicalizes the string in language by converting it to lowercase, mapping '_' to '−', and
stripping all characters other than letters and '−'.

Methods

PyGTK 2.0 Reference Manual

pango.GlyphString.get_logical_widths 887

pango.Language.matches

 def matches(range_list)

>range_list : a list of language ranges, separated by ';' characters.
Returns : TRUE if a match was found.

Note

This method is available in PyGTK 2.4 and above.

The matches() method returns TRUE if the language matches one of the language ranges in the list specified
by range_list.A language tag is considered to match a range in the list if

the range is '*'•
the range is exactly the same as the tag, or•
the range is a prefix of the tag, and the character after the matching portion of the tag is '−'•

each range must either be '*', or a canonicalized RFC−3066 language range (see the pango.Language()
constructor for more information).

pango.Language.matches

 def to_string()

Returns : the string representation of the language tag

Note

This method is available in PyGTK 2.4 and above.

The to_string() method returns a string representation of the canonicalized language tag. See the
pango.Language() constructor for more information.

Functions

pango.pango_language_from_string

 def pango.pango_language_from_string(language)

language : a string representing a language tag
Returns : a new pango.Language object

Note

This function is deprecated in PyGTK 2.4 and above. Use the pango.Language() constructor instead.

The pango.pango_language_from_string() function takes a RFC−3066 format language tag as a
string (specified by language) and converts it to a pango.Language object. This function first
canonicalizes the string by converting it to lowercase, mapping '_' to '−', and stripping all characters other than
letters and '−'.

PyGTK 2.0 Reference Manual

pango.Language.matches 888

pango.pango_language_matches

 def pango.pango_language_matches()

language :
a language tag (see the
pango.pango_language_from_string() function), None is
allowed and matches nothing but '*'

range_list :
a list of language ranges, separated by ';' characters. each element
must either be '*', or a RFC 3066 language range canonicalized as by
the pango.pango_language_from_string() function.

Returns : TRUE if a match was found.

Note

This function is deprecated in PyGTK 2.4 and above. Use the matches() method instead.

The pango.pango_language_matches() function checks if a language tag matches one of the
elements in a list of language ranges. A language tag is considered to match a range in the list if the range is
'*', the range is exactly the tag, or the range is a prefix of the tag, and the character after the tag is '−'.

Prev Up Next
pango.GlyphString Home pango.Layout

pango.Layout
Prev The pango Class Reference Next

pango.Layout

pango.Layout � an object representing a paragraph of text with attributes.

Synopsis

class pango.Layout(gobject.GObject):
pango.Layout(context)

 def copy()
 def get_context()
 def set_attributes(attrs)
 def get_attributes()
 def set_text(text)
 def get_text()
 def set_markup(markup)
 def set_markup_with_accel(markup, accel_marker)
 def set_font_description(desc)
 def set_width(width)
 def get_width()
 def set_wrap(wrap)
 def get_wrap()
 def set_indent(indent)
 def get_indent()
 def set_spacing(spacing)
 def get_spacing()
 def set_justify(justify)
 def get_justify()
 def set_alignment(alignment)
 def get_alignment()
 def set_tabs(tabs)
 def get_tabs()
 def set_single_paragraph_mode(setting)

PyGTK 2.0 Reference Manual

pango.pango_language_matches 889

 def get_single_paragraph_mode()
 def context_changed()
 def index_to_pos(index)
 def get_cursor_pos(index)
 def move_cursor_visually(strong, old_index, old_trailing, direction)
 def xy_to_index(x, y)
 def get_extents()
 def get_pixel_extents()
 def get_size()
 def get_pixel_size()
 def get_line_count()
 def get_iter()

Ancestry

+−− gobject.GObject
 +−− pango.Layout

Description

A pango.Layout object represents a paragraph of text with a pango.Context, a UTF−8 text string and
a set of attributes for that string. The set of formatted lines can be extracted from the object, the layout can be
rendered, and conversion between logical character positions within the layout's text, and the physical position
of the resulting glyphs can be made. Also there are a number of attributes that adjust the formatting of the
layout.

Constructor

pango.Layout(context)

context : a pango.Context
Returns : a new pango.Layout.
Creates a new pango.Layout object with attributes initialized to the default values of the
pango.Context specified by context.

Methods

pango.Layout.copy

 def copy()

Returns : a new pango.Layout that is a copy of the layout
The copy() method returns a pango.Layout that is a deep copy−by−value of the layout. The attribute list,
tab array, and text from the layout are all copied by value.

pango.Layout.get_context

 def get_context()

Returns : the pango.Context for the layout.
The get_context() method returns the pango.Context used for this layout.

PyGTK 2.0 Reference Manual

Synopsis 890

pango.Layout.set_attributes

 def set_attributes(attrs)

attrs : a pango.AttrList
The set_attributes() method sets the pango.AttrList for the layout object to the value specified
by attrs.

pango.Layout.get_attributes

 def get_attributes()

Returns : a pango.AttrList
The get_attributes() method returns the pango.AttrList for the layout, if any.

pango.Layout.set_text

 def set_text(text)

text : a UTF8−string
The set_text() method sets the text of the layout to the value specified by text.

pango.Layout.get_text

 def get_text()

Returns : the text in the layout
The get_text() method returns the text in the layout.

pango.Layout.set_markup

 def set_markup(markup)

markup : marked−up text
The set_markup() method is the same as the set_markup_with_accel() method but the markup text
isn't scanned for accelerators.

pango.Layout.set_markup_with_accel

 def set_markup_with_accel(markup, accel_marker)

markup : some marked−up text (see the Pango Markup Language reference page)
accel_marker : marker for accelerators in the text
Returns : the accelerator character if any
The set_markup_with_accel() method sets the layout text and attribute list from marked−up text to the
value specified by markup_format (see the Pango Markup Language reference page). The current text and
attribute list of the layout are replaced. If accel_marker is nonzero the markup will be parsed for the
marker and the character following the first marker becomes the accelerator character. For example, if the
accelerator marker is an underscore, the character after the first underscore will be the accelerator character.
All characters marked as an accelerator will be displayed with a pango.UNDERLINE_LOW attribute, and the
accelerator character will be returned in accel_char. A literal accel_marker character can be put in the
markup by using two accel_marker characters together.

PyGTK 2.0 Reference Manual

pango.Layout.set_attributes 891

pango.Layout.set_font_description

 def set_font_description(desc)

desc : the new pango.FontDescription, or None to unset the current font description.
The set_font_description() method set the default pango.FontDescription for the layout to
the value specified by desc. If no font description is set on the layout, the font description from the layout's
context is used.

pango.Layout.set_width

 def set_width(width)

width : the desired width, or −1 to indicate that no wrapping should be performed.
The set_width() method sets the wrap width for the lines of the pango.Layout to the value specified by
width. If the value of width is −1 no wrapping should be performed.

pango.Layout.get_width

 def get_width()

Returns : the width
The get_width() method returns the width at which the lines of the pango.Layout should be wrapped.

pango.Layout.set_wrap

 def set_wrap(wrap)

wrap : the wrap mode
The set_wrap() method sets the wrap style to the value specified by wrap. The value of wrap must be one
of:

pango.WRAP_WORD Wrap lines at word boundaries.
pango.WRAP_CHAR Wrap lines at character boundaries.
The wrap style is in effect if a width is set on the layout with the pango.Layout.set_width(). To turn
off wrapping, set the width to −1.

pango.Layout.get_wrap

 def get_wrap()

Returns : Active wrap mode.
The get_wrap() method returns the value of the wrap mode for the layout. See the set_wrap() method for
more information.

pango.Layout.set_indent

 def set_indent(indent)

indent : the amount by which to indent
The set_indent() method sets the indentation of the first line of the layout to the value specified by
indent. The value of indent may be negative to provide a hanging indent.

PyGTK 2.0 Reference Manual

pango.Layout.set_font_description 892

pango.Layout.get_indent

 def get_indent()

Returns : the indent
The get_indent() method returns the amount of indentation of the first line of the layout.

pango.Layout.set_spacing

 def set_spacing(spacing)

spacing : the amount of spacing (in thousandths of a device unit)
The set_spacing() method sets the amount of spacing between the lines of the layout to the value
specified by spacing.

pango.Layout.get_spacing

 def get_spacing()

Returns : the spacing (in thousandths of a device unit)
The get_spacing() method returns the amount of spacing between the lines of the layout.

pango.Layout.set_justify

 def set_justify(justify)

justify : if TRUE the lines in the layout should be justified.
The set_justify() method sets the justification attribute to the value of justify. If justify is TRUE
each complete line should be stretched to fill the entire width of the layout. This stretching is typically done
by adding whitespace, but for some scripts (such as Arabic), the justification is done by extending the
characters.

pango.Layout.get_justify

 def get_justify()

Returns : TRUE if justification will be used
The get_justify() method returns TRUE if each complete line should be stretched to fill the entire width
of the layout.

pango.Layout.set_alignment

 def set_alignment(alignment)

alignment : the new alignment
The set_alignment() method sets the alignment (how partial lines are positioned within the horizontal
space available) for the layout to the value specified by alignment. The value of alignment must be one
of:

pango.ALIGN_LEFT Put all available space on the right
pango.ALIGN_CENTER Center the line within the available space
pango.ALIGN_RIGHT Put all available space on the left

PyGTK 2.0 Reference Manual

pango.Layout.get_indent 893

pango.Layout.get_alignment

 def get_alignment()

Returns : the alignment value
The get_alignment() method returns the alignment (how partial lines are positioned within the horizontal
space available) for the layout. See the set_alignment() method for more information.

pango.Layout.set_tabs

 def set_tabs(tabs)

tabs : a pango.TabArray
The set_tabs() method sets the tabs to the value specified by tabs thereby overriding the default tabs
(every 8 spaces). If tabs is None, the default tabs are reinstated.

pango.Layout.get_tabs

 def get_tabs()

Returns : a copy of the tabs for this layout, or None
The get_tabs() method returns the current pango.TabArray used by this layout. If no
pango.TabArray has been set, then the default tabs (every 8 spaces) are in use and None is returned

pango.Layout.set_single_paragraph_mode

 def set_single_paragraph_mode(setting)

setting : if TRUE newlines, etc. are not treated as paragraph separators.
The set_single_paragraph_mode() method sets the single paragraph mode attribute to the value
specified by setting. If setting is TRUE, do not treat newlines and similar characters as paragraph
separators; instead, keep all text in a single paragraph, and display a glyph for paragraph separator characters.
Used when you want to allow editing of newlines on a single text line.

pango.Layout.get_single_paragraph_mode

 def get_single_paragraph_mode()

Returns : TRUE if the layout does not break paragraphs at paragraph separator characters
The get_single_paragraph_mode() method returns the value set by the
set_single_paragraph_mode() method.

pango.Layout.context_changed

 def context_changed()

The context_changed() method forces recomputation of any state in the pango.Layout that might
depend on the layout's context. This method should be called if you make changes to the pango.Context
subsequent to creating the layout.

PyGTK 2.0 Reference Manual

pango.Layout.get_alignment 894

pango.Layout.index_to_pos

 def index_to_pos(index)

index : byte index within the layout
Returns : a 4−tuple representing the grapheme's position
The index_to_pos() method converts from the specified index within a pango.Layout to the
onscreen position corresponding to the grapheme at that index, which is represented as a 4−tuple (x, y, width,
height). Note that x is always the leading edge of the grapheme and x + width the trailing edge of the
grapheme. If the directionality of the grapheme is right−to−left, then width will be negative.

pango.Layout.get_cursor_pos

 def get_cursor_pos(index)

index : the byte index of the cursor
Returns : a 2−tuple containing two 4−tuples representing the strong and weak cursor positions
The get_cursor_pos() method returns a 2−tuple containing two 4−tuples representing the strong and
weak cursor positions of the specified index within a layout. The position of each cursor is stored as a
zero−width rectangle represented by a 4−tuple (x, y, width, height). The strong cursor location is the
location where characters of the directionality equal to the base direction of the layout are inserted. The weak
cursor location is the location where characters of the directionality opposite to the base direction of the layout
are inserted.

pango.Layout.move_cursor_visually

 def move_cursor_visually(strong, old_index, old_trailing, direction)

strong :
if TRUE the moving cursor is the strong cursor; otherwise, the weak cursor. The
strong cursor is the cursor corresponding to text insertion in the base direction for
the layout.

old_index : the byte index of the grapheme for the old index

old_trailing : if 0, the cursor was at the trailing edge of the grapheme indicated by old_index,
if > 0, the cursor was at the leading edge.

direction : direction to move cursor. A negative value indicates motion to the left.

Returns :

a 2−tuple containing: the new cursor byte index (a value of −1 indicates that the
cursor has been moved off the beginning of the layout while a value of
G_MAXINT indicates that the cursor has been moved off the end of the layout);
and, the number of characters to move forward (from the new cursor position) to
get the position where the cursor should be displayed.

The move_cursor_visually() returns a 2−tuple containing:

a new cursor position calculated from an old position (specified by old_index) and the specified
direction to move visually

•

the number of characters to move forward (from the new cursor position) to get the position where the
cursor should be displayed. This allows distinguishing the position at the beginning of one line from
the position at the end of the preceding line. the first value is always on the line where the cursor
should be displayed.

•

If direction is positive, then the new strong cursor position will be one position to the right of the old
cursor position. If direction is negative then the new strong cursor position will be one position to the left
of the old cursor position.

PyGTK 2.0 Reference Manual

pango.Layout.index_to_pos 895

In the presence of bidirectional text, the correspondence between logical and visual order will depend on the
direction of the current run, and there may be jumps when the cursor is moved off of the end of a run.

Motion here is in cursor positions, not in characters, so a single call to the move_cursor_visually()
method may move the cursor over multiple characters when multiple characters combine to form a single
grapheme.

pango.Layout.xy_to_index

 def xy_to_index(x, y)

x : the X offset (in thousandths of a device unit) from the left edge of the layout.
y : the Y offset (in thousandths of a device unit) from the top edge of the layout

Returns :
a 2−tuple containing the calculated byte index and an integer indicating where in the
grapheme the user clicked (it will either be zero, or the number of characters in the grapheme
− 0 represents the trailing edge of the grapheme).

The xy_to_index() method returns the byte index of the character at the specified x and y position within
a layout. If the position is not inside the layout, the closest position is chosen (the (x, y) position will be
clamped inside the layout).

pango.Layout.get_extents

 def get_extents()

Returns : a 2−tuple containing two 4−tuples representing the as drawn and logical extents rectangles of the
layout

The get_extents() method returns a 2−tuple containing two 4−tuples representing the ink and logical
extents rectangles of the layout in device units (one pixel = pango.SCALE device units). Logical extents are
usually what you want for positioning things. The extents are given in layout coordinates which begin at the
top left corner of the layout.

pango.Layout.get_pixel_extents

 def get_pixel_extents()

Returns : a 2−tuple containing two 4−tuples representing the as drawn (ink) and logical extents rectangles of
the layout

The get_pixel_extents() method returns a 2−tuple containing two 4−tuples representing the logical and
ink extents rectangles of the layout in pixel units. See the get_extents() method for more information.
This method just calls the get_extents() and then converts the extents to pixels (one pixel =
pango.SCALE device units).

pango.Layout.get_size

 def get_size()

Returns : a 2−tuple containing the logical width and height of the pango.Layout
The get_size() method returns a 2−tuple containing the logical width and height of the pango.Layout
in pango device units (one pixel = pango.SCALE device units).

PyGTK 2.0 Reference Manual

pango.Layout.move_cursor_visually 896

pango.Layout.get_pixel_size

 def get_pixel_size()

Returns : a 2−tuple containing the logical width height of the pango.Layout
The get_pixel_size() method returns a 2−tuple containing the logical width and height of the
pango.Layout in pixels (one pixel = pango.SCALE device units). (The get_size() returns the width
and height in device units.)

pango.Layout.get_line_count

 def get_line_count()

Returns : the line count
The get_line_count() method returns the count of lines in the layout.

pango.Layout.get_iter

 def get_iter()

Returns : a new pango.LayoutIter object

Note

This method is available in PyGTK 2.6 and above.

The get_iter() method returns a pango.LayoutIter object that can be used to iterate over the visual
extents of the layout.

Prev Up Next
pango.Language Home pango.LayoutIter

pango.LayoutIter
Prev The pango Class Reference Next

pango.LayoutIter

pango.LayoutIter � an object used to iterate over the visual extents of a pango.Layout (new in PyGTK
2.6)

Synopsis

class pango.LayoutIter(gobject.GBoxed):
 def free()
 def next_char()
 def next_cluster()
 def next_line()
 def next_run()
 def at_last_line()
 def get_index()
 def get_baseline()
 def get_char_extents()
 def get_cluster_extents()
 def get_layout_extents()
 def get_line_extents()

PyGTK 2.0 Reference Manual

pango.Layout.get_pixel_size 897

 def get_run_extents()
 def get_line_yrange()

Ancestry

+−− gobject.GBoxed
 +−− pango.LayoutIter

Description

A pango.LayoutIter object can be used to iterate over the visual elements of a pango.Layout. A
pango.LayoutIter is created using the pango.Layout.get_iter() method.

Methods

pango.LayoutIter.free

 def free()

Returns : a new pango.Layout that is a copy of the layout
The free() method frees the pango.LayoutIter object.

pango.LayoutIter.next_char

 def next_char()

Returns : TRUE if the iter was moved.
The next_char() method returns TRUE if the pango.LayoutIter is moved to the next character in
visual order. If the iter was already at the end of the layout this method returns FALSE.

pango.LayoutIter.next_cluster

 def next_cluster()

Returns : TRUE if the iter was moved.
The next_cluster() method returns TRUE if the pango.LayoutIter is moved to the next cluster in
visual order. If the iter was already at the end of the layout this method returns FALSE.

pango.LayoutIter.next_line

 def next_line()

Returns : TRUE if the iter was moved.
The next_line() method returns TRUE if the pango.LayoutIter is moved to the next line in visual
order. If the iter was already at the end of the layout this method returns FALSE.

pango.LayoutIter.next_run

 def next_run()

PyGTK 2.0 Reference Manual

Synopsis 898

Returns : TRUE if the iter was moved.
The next_run() method returns TRUE if the pango.LayoutIter is moved to the next run in visual
order. If the iter was already at the end of the layout this method returns FALSE.

pango.LayoutIter.at_last_line

 def at_last_line()

Returns : TRUE if the iter is in the last line.
The at_last_line() method returns TRUE if the pango.LayoutIter points to a position in the last
line of the layout.

pango.LayoutIter.get_index

 def get_index()

Returns : the current byte index
The get_index() method returns the current byte index. Note that iterating forward by char moves in visual
order, not logical order, so indexes may not be sequential. Also, the index may be equal to the length of the
text in the layout.

pango.LayoutIter.get_baseline

 def get_baseline()

Returns : the baseline of the current line.
The get_baseline() method returns the y position of the current line's baseline, in layout coordinates
(origin at top left of the entire layout).

pango.LayoutIter.get_char_extents

 def get_char_extents()

Returns : a 4−tuple containing the logical extents of the character at the iter position.
The get_char_extents() method returns a 4−tuple (x, y, width, height) containing the logical extents of
the current character, in layout coordinates (origin is the top left of the entire layout). Only logical extents can
sensibly be obtained for characters; ink extents make sense only down to the level of clusters.

pango.LayoutIter.get_cluster_extents

 def get_cluster_extents()

Returns : a 2−tuple containing containing the ink and logical extents as 4−tuples.
The get_cluster_extents() method returns a 2−tuple containing the ink and logical extents (as
4−tuples: x, y, width, height) of the cluster at the iter position.

pango.LayoutIter.get_layout_extents

 def get_layout_extents()

Returns : a 2−tuple containing containing the ink and logical extents as 4−tuples.

PyGTK 2.0 Reference Manual

pango.LayoutIter.next_run 899

The get_layout_extents() method returns a 2−tuple containing the ink and logical extents (as 4−tuples:
x, y, width, height) of the layout at the iter position.

pango.LayoutIter.get_line_extents

 def get_line_extents()

Returns : a 2−tuple containing containing the ink and logical extents as 4−tuples.
The get_line_extents() method returns a 2−tuple containing the ink and logical extents (as 4−tuples: x,
y, width, height) of the line at the iter position.

pango.LayoutIter.get_run_extents

 def get_run_extents()

Returns : a 2−tuple containing containing the ink and logical extents as 4−tuples.
The get_run_extents() method returns a 2−tuple containing the ink and logical extents (as 4−tuples: x,
y, width, height) of the run at the iter position.

pango.LayoutIter.get_line_yrange

 def get_line_yrange()

Returns : a 2−tuple containing the start and end of the layout line.
The get_line_yrange() method returns a 2−tuple containing the start and end y positions of the layout
line. The vertical space in the pango.Layout associated with the iter is devided between the lines in the
layout, the space belonging to the current line is returned in the 2−tuple. A line's range includes the line's
logical extents, plus half of the spacing above and below the line, if the pango.Layout.set_spacing()
method has been called to set the layout spacing. The y positions are in layout coordinates (origin at top left of
the entire layout).

Prev Up Next
pango.Layout Home pango.TabArray

pango.TabArray
Prev The pango Class Reference Next

pango.TabArray

pango.TabArray � an object containing an array of tab stops.

Synopsis

class pango.TabArray(gobject.GBoxed):
pango.TabArray(initial_size, positions_in_pixels)

 def copy()
 def get_size()
 def resize(new_size)
 def set_tab(tab_index, alignment, location)
 def get_tab(tab_index)
 def get_tabs()
 def get_positions_in_pixels()

PyGTK 2.0 Reference Manual

pango.LayoutIter.get_layout_extents 900

Description

A pango.TabArray object contains an array of tab stops. Each tab stop has an alignment and a position.

Constructor

pango.TabArray(initial_size, positions_in_pixels)

initial_size : Initial number of tab stops to allocate, can be 0
positions_in_pixels : if TRUE the tab positions are in pixel units
Returns : a pango.TabArray
Creates a new pango.TabArray object with the number of tab stops specified by initial_size. If
positions_in_pixels is TRUE, the tab stop positions are specified in pixel units otherwise in pango
units (one pixel = pango.SCALE pango units). All tab stops are initially at position 0.

Methods

pango.TabArray.copy

 def copy()

Returns : a new pango.TabArray object
The copy() method returns a new pango.TabArray that is copy of this pango.TabArray.

pango.TabArray.get_size

 def get_size()

Returns : the number of tab stops in the array.
The get_size() method returns the number of tab stops in the tab array.

pango.TabArray.resize

 def resize(new_size)

new_size : the new size of the array
The resize() method sets the size of the tab array to the value specified by new_size. You must
subsequently initialize any tabs that were added to the array.

pango.TabArray.set_tab

 def set_tab(tab_index, alignment, location)

tab_index : the index of a tab stop
alignment : the tab alignment
location : the tab location in pango units
The set_tab() method sets the specified alignment and location of the tab stop specified by
tab_index. The value of alignment must always be pango.TAB_LEFT in the current implementation.

PyGTK 2.0 Reference Manual

Description 901

pango.TabArray.get_tab

 def get_tab(tab_index)

tab_index : the tab stop index
Returns : a 2−tuple containing the tab alignment and position
The get_tab() method returns a 2−tuple containing the alignment and position of the tab stop specified by
tab_index.

pango.TabArray.get_tabs

 def get_tabs()

Returns : a tuple containing a list of 2−tuples (each holding the alignment and position of a tab stop).
The get_tabs() method returns a tuple containing a list of 2−tuples (each holding the alignment and
position of a tab stop)

pango.TabArray.get_positions_in_pixels

 def get_positions_in_pixels()

Returns : TRUE if tab stop positions are specified in pixels
The get_positions_in_pixels() method returns TRUE if the tab positions are specified in pixels and
FALSE if they are in pango units.

Prev Up Next
pango.LayoutIter Home The Pango Markup Language

gtk.GenericCellRenderer
Prev The gtk Class Reference Next

gtk.GenericCellRenderer

gtk.GenericCellRenderer � a TreeView cell renderer that helps create cell renderers in Python

Synopsis

class gtk.GenericCellRenderer(gtk.CellRenderer):
gtk.GenericCellRenderer()

Ancestry

+−− gobject.GObject
 +−− gtk.Object
 +−− gtk.CellRenderer
 +−− gtk.GenericCellRenderer

Description

The gtk.GenericCellRenderer helps in the creation of gtk.TreeView cell renderers in Python.
The gtk.GenericCellRenderer is subclassed to provide a new cell renderer that provides cell renderer
behavior using methods with predefined names that are called by the gtk.GenericCellRenderer

PyGTK 2.0 Reference Manual

pango.TabArray.get_tab 902

methods as required to provide the various cell renderer operations. The methods that need to be defined by
the programmer in Python are:

def on_get_size(widget, cell_area)
 def on_render(window, widget, background_area, cell_area, expose_area,
flags)
 def on_activate(event, widget, path, background_area, cell_area, flags)
 def on_start_editing(event, widget, path, background_area, cell_area,
flags)

See the gtk.CellRenderer description for details of the above methods.

Constructor

gtk.GenericCellRenderer()

Returns : a new gtk.GenericCellRenderer object
Creates a new gtk.GenericCellRenderer

Prev Up Next
gtk.GammaCurve Home gtk.GenericTreeModel

gtk.GenericTreeModel
Prev The gtk Class Reference Next

gtk.GenericTreeModel

gtk.GenericTreeModel � a TreeView model that helps create tree models in Python

Synopsis

class gtk.GenericTreeModel(gobject.GObject, gtk.TreeModel):
gtk.GenericTreeModel()

 def invalidate_iters()
 def iter_is_valid(iter)

Ancestry

+−− gobject.GObject
 +−− gtk.GenericTreeModel (implements gtk.TreeModel)

Properties

"leak−references" Read−Write If TRUE, creating a gtk.TreeIter will bump the reference count of the
object used as the internal row reference. This may cause a memory leak but
will prevent problems with objects being destroyed while still in use in a
gtk.TreeIter. Set this to FALSE only if the model saves the objects used
in tree iters.

PyGTK 2.0 Reference Manual

Description 903

Description

The gtk.GenericTreeModel helps in the creation of gtk.TreeView tree models in Python. The
gtk.GenericTreeModel is subclassed to provide a new tree model that provides the tree model behavior
using methods with predefined names that are called by the gtk.GenericTreeModel methods as
required to provide the various tree model operations. The methods that need to be defined by the programmer
in Python are:

def on_get_flags(self)
 def on_get_n_columns(self)
 def on_get_column_type(self, index)
 def on_get_iter(self, path)
 def on_get_path(self, rowref)
 def on_get_value(self, rowref, column)
 def on_iter_next(self, rowref)
 def on_iter_children(self, parent)
 def on_iter_has_child(self, rowref)
 def on_iter_n_children(self, rowref)
 def on_iter_nth_child(self, parent, n)
 def on_iter_parent(self, child)

See the gtk.TreeModel description for details of the above methods.

In PyGTK 2.4 and above the invalidate_iters() and iter_is_valid() methods are available to
help manage the gtk.TreeIter objects and their Python object references. These are particularly useful
when the "leak−references" property is set to FALSE.

The tree models derived from gtk.GenericTreeModel are protected from problems with out of date
gtk.TreeIter objects because gtk.TreeIter objects are automatically checked for validity with the
tree model.

If a custom tree model doesn't support persistent iters (i.e. gtk.TREE_MODEL_ITERS_PERSIST is not set
in the return from the gtk.TreeModel.get_flags() method), it can call the invalidate_iters()
method to invalidate all its outstanding gtk.TreeIter objects when it changes the model (e.g. after
inserting a new row). The tree model can also dispose of any Python objects that it passed references to
gtk.TreeIter objects after calling the invalidate_iters() method.

Applications can use the iter_is_valid() method to determine if a gtk.TreeIter is still valid for the
custom tree model.

Constructor

gtk.GenericTreeModel()

Returns : a new gtk.GenericTreeModel object
Creates a new gtk.GenericTreeModel object

Methods

PyGTK 2.0 Reference Manual

Description 904

gtk.GenericTreeModel.invalidate_iters

 def invalidate_iters()

Note

This method is available in PyGTK 2.4 and above.

The invalidate_iters() method invalidates all the gtk.TreeIter objects for the custom tree model.

gtk.GenericTreeModel.iter_is_valid

 def iter_is_valid(iter)

iter : a gtk.TreeIter
Returns : TRUE if iter is valid for the tree model; otherwise, FALSE is returned.

Note

This method is available in PyGTK 2.4 and above.

The iter_is_valid() method returns TRUE if the gtk.TreeIter specified by iter is valid for the
custom tree model.

Prev Up Next
gtk.GenericCellRenderer Home gtk.HandleBox

gtk.TreeModelRow
Prev The gtk Class Reference Next

gtk.TreeModelRow

gtk.TreeModelRow � an object representing a row in a gtk.TreeModel

Synopsis

class gtk.TreeModelRow:
 def iterchildren()

Ancestry

+−− gobject.GBoxed
 +−− gtk.TreeModelRow

Attributes

PyGTK 2.0 Reference Manual

gtk.GenericTreeModel.invalidate_iters 905

"next" Read The next gtk.TreeModelRow or None

"parent" Read The parent gtk.TreeModelRow of this row or None

"model" Read The gtk.TreeModel that the row is part of.

"path" Read The tree path of the row

"iter" Read A gtk.TreeIter pointing at the row.

Description

A gtk.TreeModelRow object represents a row in a gtk.TreeModel. A gtk.TreeModelRow is
created by taking the mapping of a gtk.TreeModel. For example:

 treemodelrow = liststore[0]
 treemodelrow = liststore[(0,)]
 treemodelrow = liststore['0']

all create a gtk.TreeModelRow for the first row in liststore. The gtk.TreeModelRow implements
some of the Python sequence protocol that makes the row behave like a sequence of objects. Specifically a
tree model row has the capability of:

getting and setting column values,•
returning a tuple or list containing the column values, and•
getting the number of values in the row i.e. the number of columns•

For example to get and set the value in the second column of a row, you could do the following:

 value = treemodelrow[1]
 treemodelrow[1] = value

You can use the Python len() function to get the number of columns in the row and you can retrieve all the
column values as a list (tuple) using the Python list() (tuple()) function.

The gtk.TreeModelRow supports one method: the iterchildren() method that returns a
gtk.TreeModelRowIter for iterating over the children of the row.

Methods

gtk.TreeModelRow.iterchildren

 def iterchildren()

Returns : a gtk.TreeModelRowIter for the row's children or None
The iterchildren() method returns a gtk.TreeModelRowIter for iterating over the children of the
row or None if the row has no children.

Prev Up Next
gtk.TreeModelSort Home gtk.TreeModelRowIter

gtk.TreeModelRowIter
Prev The gtk Class Reference Next

PyGTK 2.0 Reference Manual

Attributes 906

gtk.TreeModelRowIter

gtk.TreeModelRowIter � an object for iterating over a set of gtk.TreeModelRow objects.

Synopsis

class gtk.TreeModelRowIter:
 def next()

Ancestry

+−− gobject.GBoxed
 +−− gtk.TreeModelRowIter

Description

A gtk.TreeModelRowIter is an object that implements the Python Iterator protocol. It provides the
means to iterate over a set of gtk.TreeModelRow objects in a gtk.TreeModel. A
gtk.TreeModelRowIter is created by calling the Python iter() function on a gtk.TreeModel
object:

 treemodelrowiter = iter(treestore)

or, calling the gtk.TreeModelRow.iterchildren() method to iterate over its child rows.

Each time you call the next() method it returns the next sibling gtk.TreeModelRow . When there are no
rows left the StopIteration exception is raised. Note that a gtk.TreeModelRowIter does not iterate over
the child rows of the rows it is iterating over. You'll have to use the
gtk.TreeModelRow.iterchildren() method to retrieve an iterator for the child rows.

Methods

gtk.TreeModelRowIter.next

 def next()

Returns : the next gtk.TreeModelRow
The next() method returns the next gtk.TreeModelRow in the set of rows it is iterating over. When there
are no more rows left the StopIteration exception is raised.

Prev Up Next
gtk.TreeModelRow Home gtk.TreeRowReference

The gtk.gdk Class Reference
Prev Next

The gtk.gdk Class Reference

Table of Contents

PyGTK 2.0 Reference Manual

gtk.TreeModelRowIter 907

gtk.gdk.Atom − an object representing an interned string
gtk.gdk.Color − an object holding color information
gtk.gdk.Colormap − a table of color display component values
gtk.gdk.Cursor − standard and pixmap cursors
gtk.gdk.Device − an object for supporting input devices
gtk.gdk.Display − controls the keyboard/mouse pointer grabs and a set of gtk.gdk.Screen objects
gtk.gdk.DisplayManager − maintains a list of all open gtk.gdk.Display objects
gtk.gdk.DragContext − an object containing the drag and drop context data
gtk.gdk.Drawable − a base class for drawing methods
gtk.gdk.Event − an object representing an event from the windowing system
gtk.gdk.GC − objects to encapsulate drawing properties.
gtk.gdk.Image − an area for bit−mapped graphics stored on the X Windows client.
gtk.gdk.Keymap − an object containing mappings of keys to key values.
gtk.gdk.Pixbuf − an object containing a client side image.
gtk.gdk.PixbufAnimation − an object holding an animation
gtk.gdk.PixbufAnimationIter − an object providing access to the frames of a gtk.gdk.PixbufAnimation
gtk.gdk.PixbufLoader − an object providing application−driven progressive image loading
gtk.gdk.Pixmap − An offscreen gtk.gdk.Drawable
gtk.gdk.Rectangle − an object holding data about a rectangle
gtk.gdk.Screen − an object representing a physical screen
gtk.gdk.Visual − an object containing hardware display information
gtk.gdk.Window − on−screen display areas in the target window system
gtk.gdk Functions − the gtk.gdk module functions
gtk.gdk Constants − the built−in constants of the gtk.gdk module

Prev Up Next
gtk Constants Home gtk.gdk.Atom

gtk.gdk Constants
Prev The gtk.gdk Class Reference Next

gtk.gdk Constants

gtk.gdk Constants � the built−in constants of the gtk.gdk module

Synopsis

GDK Drag Action Constants
GDK Device Axis Use Constants
GDK Byte Order Constants
GDK Cap Style Constants
GDK Crossing Mode Constants
GDK Cursor Type Constants
GDK Drag Protocol Constants
GDK Event Mask Flag Constants
GDK Event Type Constants
GDK Extension Mode Constants
GDK Fill Constants
GDK Fill Rule Constants
GDK Filter Return Constants
GDK Function Constants
GDK GC Values Mask Flag Constants
GDK Gravity Constants
GDK Image Type Constants
GDK Input Condition Flag Constants
GDK Input Mode Constants

PyGTK 2.0 Reference Manual

The gtk.gdk Class Reference 908

GDK Input Source Constants
GDK Join Style Constants
GDK Line Style Constants
GDK Modifier Constants
GDK Notify Type Constants
GDK Overlap Type Constants
GDK Property Mode Constants
GDK Property State Constants
GDK RGB Dither Constants
GDK Scroll Direction Constants
GDK Setting Action Constants
GDK Subwindow Mode Constants
GDK Visibility State Constants
GDK Visual Type Constants
GDK Window Class Constants
GDK Window Edge Constants
GDK Window Hints Constants
GDK Window State Flag Constants
GDK Window Type Constants
GDK Window Type Hint Constants
GDK WM Decoration Constants
GDK WM Function Constants

Description

GDK Drag Action Constants

The Drag Action constants are used by gtk.gdk.DragContext objects to indicate what the destination
should do with the dropped data.

gtk.gdk.ACTION_DEFAULT

gtk.gdk.ACTION_COPY Copy the data.

gtk.gdk.ACTION_MOVE
Move the data, i.e. first copy it, then delete it from the source using
the DELETE target of the X selection protocol.

gtk.gdk.ACTION_LINK
Add a link to the data. Note that this is only useful if source and
destination agree on what it means.

gtk.gdk.ACTION_PRIVATE
Special action which tells the source that the destination will do
something that the source doesn't understand.

gtk.gdk.ACTION_ASK Ask the user what to do with the data.

GDK Device Axis Use Constants

The Device Axis constants describing the way in which a device axis (valuator) maps onto predefined
valuator types.

gtk.gdk.AXIS_IGNORE the axis is ignored.
gtk.gdk.AXIS_X the axis is used as the x axis.
gtk.gdk.AXIS_Y the axis is used as the y axis.
gtk.gdk.AXIS_PRESSURE the axis is used for pressure information.
gtk.gdk.AXIS_XTILT the axis is used for x tilt information.
gtk.gdk.AXIS_YTILT the axis is used for y tilt information.
gtk.gdk.AXIS_WHEEL the axis is used for wheel information.
gtk.gdk.AXIS_LAST a constant equal to the numerically highest axis value.

PyGTK 2.0 Reference Manual

Synopsis 909

GDK Byte Order Constants

The Byte Order constants specify a set of values describing the possible byte−orders for storing pixel values
in memory.

gtk.gdk.LSB_FIRST
The values are stored with the least−significant byte first. For instance, the 32−bit
value 0xffeecc would be stored in memory as 0xcc, 0xee, 0xff, 0x00.

gtk.gdk.MSB_FIRST
The values are stored with the most−significant byte first. For instance, the 32−bit
value 0xffeecc would be stored in memory as 0x00, 0xcc, 0xee, 0xff.

GDK Cap Style Constants

The Cap Style constants specify how the end of lines are drawn.

gtk.gdk.CAP_NOT_LAST
The same as gtk.gdk.CAP_BUTT for lines of non−zero
width but for zero width lines, the final point on the line will
not be drawn.

gtk.gdk.CAP_BUTT
The ends of the lines are drawn squared off and extending to
the coordinates of the end point.

gtk.gdk.CAP_ROUND
The ends of the lines are drawn as semicircles with the diameter
equal to the line width and centered at the end point.

gtk.gdk.CAP_PROJECTING
The ends of the lines are drawn squared off and extending half
the width of the line beyond the end point.

GDK Crossing Mode Constants

The Crossing Mode constants specify the crossing mode for the Crossing gtk.gdk.Event

GDK Cursor Type Constants

The Cursor Type constants specify the set of standard cursors available.

gtk.gdk.X_CURSOR

gtk.gdk.ARROW

gtk.gdk.BASED_ARROW_DOWN

gtk.gdk.BASED_ARROW_UP

gtk.gdk.BOAT

gtk.gdk.BOGOSITY

gtk.gdk.BOTTOM_LEFT_CORNER

gtk.gdk.BOTTOM_RIGHT_CORNER

gtk.gdk.BOTTOM_SIDE

gtk.gdk.BOTTOM_TEE

gtk.gdk.BOX_SPIRAL

gtk.gdk.CENTER_PTR

gtk.gdk.CIRCLE

gtk.gdk.CLOCK

gtk.gdk.COFFEE_MUG

PyGTK 2.0 Reference Manual

GDK Byte Order Constants 910

gtk.gdk.CROSS

gtk.gdk.CROSS_REVERSE

gtk.gdk.CROSSHAIR

gtk.gdk.DIAMOND_CROSS

gtk.gdk.DOT

gtk.gdk.DOTBOX

gtk.gdk.DOUBLE_ARROW

gtk.gdk.DRAFT_LARGE

gtk.gdk.DRAFT_SMALL

gtk.gdk.DRAPED_BOX

gtk.gdk.EXCHANGE

gtk.gdk.FLEUR

gtk.gdk.GOBBLER

gtk.gdk.GUMBY

gtk.gdk.HAND1

gtk.gdk.HAND2

gtk.gdk.HEART

gtk.gdk.ICON

gtk.gdk.IRON_CROSS

gtk.gdk.LEFT_PTR

gtk.gdk.LEFT_SIDE

gtk.gdk.LEFT_TEE

gtk.gdk.LEFTBUTTON

gtk.gdk.LL_ANGLE

gtk.gdk.LR_ANGLE

gtk.gdk.MAN

gtk.gdk.MIDDLEBUTTON

gtk.gdk.MOUSE

gtk.gdk.PENCIL

gtk.gdk.PIRATE

gtk.gdk.PLUS

gtk.gdk.QUESTION_ARROW

gtk.gdk.RIGHT_PTR

gtk.gdk.RIGHT_SIDE

gtk.gdk.RIGHT_TEE

gtk.gdk.RIGHTBUTTON

gtk.gdk.RTL_LOGO

gtk.gdk.SAILBOAT

gtk.gdk.SB_DOWN_ARROW

gtk.gdk.SB_H_DOUBLE_ARROW

gtk.gdk.SB_LEFT_ARROW

gtk.gdk.SB_RIGHT_ARROW

gtk.gdk.SB_UP_ARROW

gtk.gdk.SB_V_DOUBLE_ARROW

gtk.gdk.SHUTTLE

PyGTK 2.0 Reference Manual

GDK Cursor Type Constants 911

gtk.gdk.SIZING

gtk.gdk.SPIDER

gtk.gdk.SPRAYCAN

gtk.gdk.STAR

gtk.gdk.TARGET

gtk.gdk.TCROSS

gtk.gdk.TOP_LEFT_ARROW

gtk.gdk.TOP_LEFT_CORNER

gtk.gdk.TOP_RIGHT_CORNER

gtk.gdk.TOP_SIDE

gtk.gdk.TOP_TEE

gtk.gdk.TREK

gtk.gdk.UL_ANGLE

gtk.gdk.UMBRELLA

gtk.gdk.UR_ANGLE

gtk.gdk.WATCH

gtk.gdk.XTERM

GDK Drag Protocol Constants

The Drag Protocol constants specify the protocol for a gtk.gdk.DragContext according to which DND is
done.

gtk.gdk.DRAG_PROTO_MOTIF The Motif DND protocol.
gtk.gdk.DRAG_PROTO_XDND The Xdnd protocol.

gtk.gdk.DRAG_PROTO_ROOTWIN
An extension to the Xdnd protocol for unclaimed root
window drops.

gtk.gdk.DRAG_PROTO_NONE no protocol.
gtk.gdk.DRAG_PROTO_WIN32_DROPFILES The simple WM_DROPFILES protocol.
gtk.gdk.DRAG_PROTO_OLE2 The complex OLE2 DND protocol (not implemented).
gtk.gdk.DRAG_PROTO_LOCAL Intra−application DND.

GDK Event Mask Flag Constants

The Event Mask flag constants are a set of bit−flags that specify the events a window is to receive. Most of
these masks map onto one or more of the Event Type Constants.

gtk.gdk.EXPOSURE_MASK

gtk.gdk.POINTER_MOTION_MASK

gtk.gdk.POINTER_MOTION_HINT_MASK

gtk.gdk.BUTTON_MOTION_MASK

gtk.gdk.BUTTON1_MOTION_MASK

gtk.gdk.BUTTON2_MOTION_MASK

gtk.gdk.BUTTON3_MOTION_MASK

gtk.gdk.BUTTON_PRESS_MASK

gtk.gdk.BUTTON_RELEASE_MASK

gtk.gdk.KEY_PRESS_MASK

PyGTK 2.0 Reference Manual

GDK Drag Protocol Constants 912

gtk.gdk.KEY_RELEASE_MASK

gtk.gdk.ENTER_NOTIFY_MASK

gtk.gdk.LEAVE_NOTIFY_MASK

gtk.gdk.FOCUS_CHANGE_MASK

gtk.gdk.STRUCTURE_MASK

gtk.gdk.PROPERTY_CHANGE_MASK

gtk.gdk.VISIBILITY_NOTIFY_MASK

gtk.gdk.PROXIMITY_IN_MASK

gtk.gdk.PROXIMITY_OUT_MASK

gtk.gdk.SUBSTRUCTURE_MASK

gtk.gdk.SCROLL_MASK

gtk.gdk.ALL_EVENTS_MASK

GDK Event Type Constants

The Event Type constants specify the type of an event.

gtk.gdk.NOTHING a special code to indicate a null event.

gtk.gdk.DELETE
the window manager has requested that the toplevel window be hidden
or destroyed, usually when the user clicks on a special icon in the title
bar.

gtk.gdk.DESTROY the window has been destroyed.
gtk.gdk.EXPOSE all or part of the window has become visible and needs to be redrawn.
gtk.gdk.MOTION_NOTIFY the pointer (usually a mouse) has moved.
gtk.gdk.BUTTON_PRESS a mouse button has been pressed.

gtk.gdk._2BUTTON_PRESS
a mouse button has been double−clicked (clicked twice within a short
period of time). Note that each click also generates a
gtk.gdk.BUTTON_PRESS event.

gtk.gdk._3BUTTON_PRESS
a mouse button has been clicked 3 times in a short period of time. Note
that each click also generates a gtk.gdk.BUTTON_PRESS event.

gtk.gdk.BUTTON_RELEASE a mouse button has been released.
gtk.gdk.KEY_PRESS a key has been pressed.
gtk.gdk.KEY_RELEASE a key has been released.
gtk.gdk.ENTER_NOTIFY the pointer has entered the window.
gtk.gdk.LEAVE_NOTIFY the pointer has left the window.
gtk.gdk.FOCUS_CHANGE the keyboard focus has entered or left the window.

gtk.gdk.CONFIGURE
the size, position or stacking order of the window has changed. Note
that PyGTK discards these events for gtk.gdk.WINDOW_CHILD
windows.

gtk.gdk.MAP the window has been mapped.
gtk.gdk.UNMAP the window has been unmapped.
gtk.gdk.PROPERTY_NOTIFY a property on the window has been changed or deleted.
gtk.gdk.SELECTION_CLEAR the application has lost ownership of a selection.
gtk.gdk.SELECTION_REQUEST another application has requested a selection.
gtk.gdk.SELECTION_NOTIFY a selection has been received.

gtk.gdk.PROXIMITY_IN
an input device has moved into contact with a sensing surface (e.g. a
touchscreen or graphics tablet).

PyGTK 2.0 Reference Manual

GDK Event Mask Flag Constants 913

gtk.gdk.PROXIMITY_OUT an input device has moved out of contact with a sensing surface.
gtk.gdk.DRAG_ENTER the mouse has entered the window while a drag is in progress.
gtk.gdk.DRAG_LEAVE the mouse has left the window while a drag is in progress
gtk.gdk.DRAG_MOTION the mouse has moved in the window while a drag is in progress.
gtk.gdk.DRAG_STATUS the status of the drag operation initiated by the window has changed.
gtk.gdk.DROP_START a drop operation onto the window has started.
gtk.gdk.DROP_FINISHED the drop operation initiated by the window has completed.
gtk.gdk.CLIENT_EVENT a message has been received from another application.
gtk.gdk.VISIBILITY_NOTIFY the window visibility status has changed.

gtk.gdk.NO_EXPOSE
indicates that the source region was completely available when parts of
a drawable were copied. This is not very useful.

gtk.gdk.SCROLL a scroll had occurred for a window
gtk.gdk.WINDOW_STATE the window state has changed
gtk.gdk.SETTING a setting has changed

GDK Extension Mode Constants

The Extension Mode constants specify which extension events are desired for a particular widget.

gtk.gdk.EXTENSION_EVENTS_NONE No extension events are desired.
gtk.gdk.EXTENSION_EVENTS_ALL All extension events are desired.

gtk.gdk.EXTENSION_EVENTS_CURSOR
Extension events are desired only if a cursor will be
displayed for the device.

GDK Fill Constants

The Fill constants specify how primitives are drawn.

gtk.gdk.SOLID draw with the foreground color.
gtk.gdk.TILED draw with a tiled pixmap.

gtk.gdk.STIPPLED
draw using the stipple bitmap. Pixels corresponding to bits in the
stipple bitmap that are set will be drawn in the foreground color;
pixels corresponding to bits that are not set will be left untouched.

gtk.gdk.OPAQUE_STIPPLED

draw using the stipple bitmap. Pixels corresponding to bits in the
stipple bitmap that are set will be drawn in the foreground color;
pixels corresponding to bits that are not set will be drawn with the
background color.

GDK Fill Rule Constants

The Fill Rule constants specify the method for determining which pixels are included in a region, when
creating a GdkRegion from a polygon. The fill rule is only relevant for polygons which overlap themselves.
Not used in PyGTK.

gtk.gdk.EVEN_ODD_RULE
Areas which are overlapped an odd number of times are included in the
region, while areas overlapped an even number of times are not.

gtk.gdk.WINDING_RULE Overlapping areas are always included.

PyGTK 2.0 Reference Manual

GDK Event Type Constants 914

GDK Filter Return Constants

The Filter Return constants specify the result of filtering a native event. See the
gtk.gdk.Window.add_filter() method for more information.

gtk.gdk.FILTER_CONTINUE Event not handled, continue processing.
gtk.gdk.FILTER_TRANSLATE Native event translated and stored into the gtk.gdk.Event passed in.
gtk.gdk.FILTER_REMOVE Event handled, terminate processing.

GDK Function Constants

The Function constants specify how the bit values for the source pixels are combined with the bit values for
destination pixels to produce the final result. The sixteen values here correspond to the 16 different possible
2x2 truth tables. Only a couple of these values are usually useful; for colored images, only gtk.gdk.COPY,
gtk.gdk.XOR and gtk.gdk.INVERT are generally useful. For bitmaps, gtk.gdk.AND and
gtk.gdk.OR are also useful.

gtk.gdk.COPY

gtk.gdk.INVERT

gtk.gdk.XOR

gtk.gdk.CLEAR

gtk.gdk.AND

gtk.gdk.AND_REVERSE.

gtk.gdk.AND_INVERT

gtk.gdk.NOOP

gtk.gdk.OR

gtk.gdk.EQUIV

gtk.gdk.OR_REVERSE

gtk.gdk.COPY_INVERT

gtk.gdk.OR_INVERT

gtk.gdk.NAND

gtk.gdk.NOR

gtk.gdk.SET

GDK GC Values Mask Flag Constants

The GC Values Mask flag constants are a set of bit flags used to specify which fields GdkGCValues structure
are set. These are only used internally by PyGTK.

gtk.gdk.GC_FOREGROUND the foreground is set.
gtk.gdk.GC_BACKGROUND the background is set.
gtk.gdk.GC_FONT the font is set.
gtk.gdk.GC_FUNCTION the function is set.
gtk.gdk.GC_FILL the fill is set.
gtk.gdk.GC_TILE the tile is set.
gtk.gdk.GC_STIPPLE the stipple is set.
gtk.gdk.GC_CLIP_MASK the clip_mask is set.
gtk.gdk.GC_SUBWINDOW the subwindow_mode is set.

PyGTK 2.0 Reference Manual

GDK Filter Return Constants 915

gtk.gdk.GC_TS_X_ORIGIN the ts_x_origin is set.
gtk.gdk.GC_TS_Y_ORIGIN the ts_y_origin is set.
gtk.gdk.GC_CLIP_X_ORIGIN the clip_x_origin is set.
gtk.gdk.GC_CLIP_Y_ORIGIN the clip_y_origin is set.
gtk.gdk.GC_EXPOSURES the graphics_exposures is set.
gtk.gdk.GC_LINE_WIDTH the line_width is set.
gtk.gdk.GC_LINE_STYLE the line_style is set.
gtk.gdk.GC_CAP_STYLE the cap_style is set.
gtk.gdk.GC_JOIN_STYLE the join_style is set.

GDK Gravity Constants

The Gravity constants specify the reference point of a window and the meaning of coordinates passed to the
gtk.Window.move() method.

gtk.gdk.GRAVITY_NORTH_WEST The reference point is at the top left corner.
gtk.gdk.GRAVITY_NORTH The reference point is in the middle of the top edge.
gtk.gdk.GRAVITY_NORTH_EAST The reference point is at the top right corner.
gtk.gdk.GRAVITY_WEST The reference point is at the middle of the left edge.
gtk.gdk.GRAVITY_CENTER The reference point is at the center of the window.
gtk.gdk.GRAVITY_EAST The reference point is at the middle of the right edge.
gtk.gdk.GRAVITY_SOUTH_WEST The reference point is at the lower left corner.
gtk.gdk.GRAVITY_SOUTH The reference point is at the middle of the lower edge.
gtk.gdk.GRAVITY_SOUTH_EAST The reference point is at the lower right corner.

gtk.gdk.GRAVITY_STATIC
The reference point is at the top left corner of the window itself,
ignoring window manager decorations.

GDK Image Type Constants

The Image Type constants specify the type of a gtk.gdk.Image.

gtk.gdk.IMAGE_NORMAL
The original X image type, which is quite slow since the image has to be
transferred from the client to the server to display it.

gtk.gdk.IMAGE_SHARED

A faster image type, which uses shared memory to transfer the image data
between client and server. However this will only be available if client and
server are on the same machine and the shared memory extension is
supported by the server.

gtk.gdk.IMAGE_FASTEST
Specifies that gtk.gdk.IMAGE_SHARED should be tried first, and if that
fails then gtk.gdk.IMAGE_NORMAL will be used.

GDK Input Condition Flag Constants

The Input Condition constants are a set of bit−flags that specify conditions for which an input callback will be
triggered. The three members of this enumeration correspond to the readfds, writefds, and
exceptfds arguments to the select system call.

gtk.gdk.INPUT_READ
The file descriptor has become available for reading. (Or, as is standard in
Unix, a socket or pipe was closed at the other end; this is the case if a
subsequent read on the file descriptor returns a count of zero.)

PyGTK 2.0 Reference Manual

GDK GC Values Mask Flag Constants 916

gtk.gdk.INPUT_WRITE The file descriptor has become available for writing.
gtk.gdk.INPUT_EXCEPTION An exception was raised on the file descriptor.

GDK Input Mode Constants

The Input Mode constants specify the mode of an input device.

gtk.gdk.MODE_DISABLED the device is disabled and will not report any events.

gtk.gdk.MODE_SCREEN
the device is enabled. The device's coordinate space maps to the entire
screen.

gtk.gdk.MODE_WINDOW

the device is enabled. The device's coordinate space is mapped to a single
window. The manner in which this window is chosen is undefined, but it will
typically be the same way in which the focus window for key events is
determined.

GDK Input Source Constants

The Input Source constants specify the type of an input device in general terms.

gtk.gdk.SOURCE_MOUSE
the device is a mouse. (This will be reported for the core pointer, even
if it is something else, such as a trackball.)

gtk.gdk.SOURCE_PEN the device is a stylus of a graphics tablet or similar device.

gtk.gdk.SOURCE_ERASER
the device is an eraser. Typically, this would be the other end of a
stylus on a graphics tablet.

gtk.gdk.SOURCE_CURSOR the device is a graphics tablet "puck" or similar device.

GDK Join Style Constants

The Join Style constants specify how the joins between segments of a polygon are drawn.

gtk.gdk.JOIN_MITER The sides of each line are extended to meet at an angle.
gtk.gdk.JOIN_ROUND The sides of the two lines are joined by a circular arc.

gtk.gdk.JOIN_BEVEL
The sides of the two lines are joined by a straight line which makes an equal
angle with each line.

GDK Line Style Constants

The Line Style constants specify how lines are drawn.

gtk.gdk.LINE_SOLID Lines are drawn solid.

gtk.gdk.LINE_ON_OFF_DASH
Lines are drawn dashed where even segments are drawn but
odd segments are not drawn.

gtk.gdk.LINE_DOUBLE_DASH

Lines are drawn dashed where even segments are drawn
normally but odd segments are drawn in the background
color if the fill style is gtk.gdk.SOLID, or in the
background color masked by the stipple if the fill style is
gtk.gdk.STIPPLED.

PyGTK 2.0 Reference Manual

GDK Input Condition Flag Constants 917

GDK Modifier Constants

The Modifier constants are a set of bit−flags to indicate the state of modifier keys and mouse buttons in
various event types. Typical modifier keys are Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple,
CapsLock or ShiftLock.

gtk.gdk.SHIFT_MASK The Shift key.

gtk.gdk.LOCK_MASK
A Lock key (depending on the modifier mapping of the X server this may
either be CapsLock or ShiftLock).

gtk.gdk.CONTROL_MASK The Control key.

gtk.gdk.MOD1_MASK
The fourth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier, but normally it is the Alt key).

gtk.gdk.MOD2_MASK
The fifth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD3_MASK
The sixth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.MOD4_MASK
The seventh modifier key (it depends on the modifier mapping of the X
server which key is interpreted as this modifier).

gtk.gdk.MOD5_MASK
The eighth modifier key (it depends on the modifier mapping of the X server
which key is interpreted as this modifier).

gtk.gdk.BUTTON1_MASK The first mouse button.
gtk.gdk.BUTTON2_MASK The second mouse button.
gtk.gdk.BUTTON3_MASK The third mouse button.
gtk.gdk.BUTTON4_MASK The fourth mouse button.
gtk.gdk.BUTTON5_MASK The fifth mouse button.

gtk.gdk.RELEASE_MASK
Differentiates between (keyval, modifiers) pairs from key press and release
events.

gtk.gdk.MODIFIER_MASK all of the above

GDK Notify Type Constants

The Notify Type constants specify the kind of crossing for the Crossing gtk.gdk.Event

gtk.gdk.NOTIFY_ANCESTOR
the window is entered from an ancestor or left toward an
ancestor.

gtk.gdk.NOTIFY_VIRTUAL
the pointer moves between an ancestor and an inferior of the
window.

gtk.gdk.NOTIFY_INFERIOR
the window is entered from an inferior or left toward an
inferior.

gtk.gdk.NOTIFY_NONLINEAR
the window is entered from or left toward a window which is
neither an ancestor nor an inferior.

gtk.gdk.NOTIFY_NONLINEAR_VIRTUAL

the pointer moves between two windows which are not
ancestors of each other and the window is part of the
ancestor chain between one of these windows and their least
common ancestor.

gtk.gdk.NOTIFY_UNKNOWN ???

PyGTK 2.0 Reference Manual

GDK Modifier Constants 918

GDK Overlap Type Constants

The Overlap Type constants are not currently useful by PyGTK.

gtk.gdk.OVERLAP_RECTANGLE_IN The rectangle is inside the GdkRegion.
gtk.gdk.OVERLAP_RECTANGLE_OUT The rectangle is outside the GdkRegion.
gtk.gdk.OVERLAP_RECTANGLE_PART The rectangle is partly inside the GdkRegion.

GDK Property Mode Constants

The Property Mode constants specify how existing data is combined with new data when using the the
gtk.gdk.Window.property_change() method.

gtk.gdk.PROP_MODE_REPLACE The new data replaces the existing data.
gtk.gdk.PROP_MODE_PREPEND The new data is prepended to the existing data.
gtk.gdk.PROP_MODE_APPEND The new data is appended to the existing data.

GDK Property State Constants

The Property State constants specify the type of a property change for a Property gtk.gdk.Event

gtk.gdk.PROPERTY_NEW_VALUE the property value was changed.
gtk.gdk.PROPERTY_DELETE the property was deleted.

GDK RGB Dither Constants

The RGB Dither constants specify the type of dithering to apply to the image on display.

gtk.gdk.RGB_DITHER_NONE Never use dithering.
gtk.gdk.RGB_DITHER_NORMAL Use dithering in 8 bits per pixel (and below) only.
gtk.gdk.RGB_DITHER_MAX Use dithering in 16 bits per pixel and below.

GDK Scroll Direction Constants

The Scroll Direction constants specify the direction for the Scroll.gtk.gdk.Event

gtk.gdk.SCROLL_UP the window is scrolled up.
gtk.gdk.SCROLL_DOWN the window is scrolled down.
gtk.gdk.SCROLL_LEFT the window is scrolled to the left.
gtk.gdk.SCROLL_RIGHT the window is scrolled to the right.

GDK Setting Action Constants

The Setting Action constants specify the kind of modification applied to a setting in a Setting
gtk.gdk.Event

gtk.gdk.SETTING_ACTION_NEW A setting was added.
gtk.gdk.SETTING_ACTION_CHANGED A setting was changed.
gtk.gdk.SETTING_ACTION_DELETED A setting was deleted.

PyGTK 2.0 Reference Manual

GDK Overlap Type Constants 919

GDK Subwindow Mode Constants

The Subwindow Mode constants specify how drawing onto a window will affect child windows of that
window.

gtk.gdk.CLIP_BY_CHILDREN only draw onto the window itself not the subwindows.
gtk.gdk.INCLUDE_INFERIORS draw onto the window and child windows.

GDK Visibility State Constants

The Visibility State constants specify the visibility status of a window for the Visibility gtk.gdk.Event

gtk.gdk.VISIBILITY_UNOBSCURED the window is completely visible.
gtk.gdk.VISIBILITY_PARTIAL the window is partially visible.
gtk.gdk.VISIBILITY_FULLY_OBSCURED the window is not visible at all.

GDK Visual Type Constants

The Visual Type constants specify a set of values that describe the manner in which the pixel values for a
visual are converted into RGB values for display.

gtk.gdk.VISUAL_STATIC_GRAY Each pixel value indexes a grayscale value directly.

gtk.gdk.VISUAL_GRAYSCALE
Each pixel is an index into a color map that maps pixel values into
grayscale values. The color map can be changed by an application.

gtk.gdk.VISUAL_STATIC_COLOR
Each pixel value is an index into a predefined, unmodifiable color
map that maps pixel values into RGB values.

gtk.gdk.VISUAL_PSEUDO_COLOR
Each pixel is an index into a color map that maps pixel values into
rgb values. The color map can be changed by an application.

gtk.gdk.VISUAL_TRUE_COLOR

Each pixel value directly contains red, green, and blue components.
The red_mask, green_mask, and blue_mask fields of the
gtk.gdk.Visual structure describe how the components are
assembled into a pixel value.

gtk.gdk.VISUAL_DIRECT_COLOR

Each pixel value contains red, green, and blue components as for
gtk.gdk.TRUE_COLOR, but the components are mapped via a
color table into the final output table instead of being converted
directly.

GDK Window Class Constants

The Window Class constants specify the class of window. gtk.gdk.INPUT_OUTPUT windows are the
standard kind of window you might expect. gtk.gdk.INPUT_ONLY windows are invisible; they are used
to trap events, but you can't draw on them.

gtk.gdk.INPUT_OUTPUT A window for graphics and events.
gtk.gdk.INPUT_ONLY A window for events only.

GDK Window Edge Constants

The Window Edge constants specify window edge or corner.

PyGTK 2.0 Reference Manual

GDK Subwindow Mode Constants 920

gtk.gdk.WINDOW_EDGE_NORTH_WEST The top left corner.
gtk.gdk.WINDOW_EDGE_NORTH The top edge.
gtk.gdk.WINDOW_EDGE_NORTH_EAST The top right corner.
gtk.gdk.WINDOW_EDGE_WEST The left edge.
gtk.gdk.WINDOW_EDGE_EAST The right edge.
gtk.gdk.WINDOW_EDGE_SOUTH_WEST The lower left corner.
gtk.gdk.WINDOW_EDGE_SOUTH The lower edge.
gtk.gdk.WINDOW_EDGE_SOUTH_EAST The lower right corner.

GDK Window Hints Constants

The Window Hints constants specify the fields of a GdkGeometry struct should be paid attention to. Also, the
presence/absence of gtk.gdk.HINT_POS, gtk.gdk.HINT_USER_POS, and
gtk.gdk.HINT_USER_SIZE is significant, though they don't directly refer to GdkGeometry fields.
gtk.gdk.HINT_USER_POS will be set automatically by gtk.Window if you call the
gtk.Window.move() method. gtk.gdk.HINT_USER_POS and gtk.gdk.HINT_USER_SIZE should
be set if the user specified a size/position using a −−geometry command−line argument; the
gtk.Window.parse_geometry() method automatically sets these flags. These constants aren't useful in
PyGTK.

gtk.gdk.HINT_POS Indicates that the program has positioned the window
gtk.gdk.HINT_MIN_SIZE Min size fields are set
gtk.gdk.HINT_MAX_SIZE Max size fields are set
gtk.gdk.HINT_BASE_SIZE Base size fields are set
gtk.gdk.HINT_ASPECT Aspect ratio fields are set
gtk.gdk.HINT_RESIZE_INC Resize increment fields are set
gtk.gdk.HINT_WIN_GRAVITY Window gravity field is set
gtk.gdk.HINT_USER_POS Indicates that the window's position was explicitly set by the user
gtk.gdk.HINT_USER_SIZE Indicates that the window's size was explicitly set by the user

GDK Window State Flag Constants

The Window State flag constants are a set of bit−flags that specify the state of a toplevel window.

gtk.gdk.WINDOW_STATE_WITHDRAWN The window is not shown.
gtk.gdk.WINDOW_STATE_ICONIFIED The window is minimized.
gtk.gdk.WINDOW_STATE_MAXIMIZED The window is maximized.
gtk.gdk.WINDOW_STATE_STICKY The window is sticky.

gtk.gdk.WINDOW_STATE_FULLSCREEN
The window is maximized without decorations. Available in
PyGTK 2.2 and above.

gtk.gdk.WINDOW_STATE_ABOVE
The window is kept above other windows. Available in
PyGTK 2.4 and above.

gtk.gdk.WINDOW_STATE_BELOW
The window is kept below other windows. Available in
PyGTK 2.4 and above.

GDK Window Type Constants

The Window Type constants specify the type of window.

PyGTK 2.0 Reference Manual

GDK Window Edge Constants 921

gtk.gdk.WINDOW_ROOT
The root window; this window has no parent, covers the entire screen, and
is created by the window system.

gtk.gdk.WINDOW_TOPLEVEL A toplevel window (used to implement gtk.Window).
gtk.gdk.WINDOW_CHILD A child window (used to implement widgets e.g. gtk.Entry).
gtk.gdk.WINDOW_DIALOG A useless/deprecated compatibility type.
gtk.gdk.WINDOW_TEMP An override redirect temporary window (used to implement gtk.Menu).

gtk.gdk.WINDOW_FOREIGN
A foreign window (see the gtk.gdk.window_foreign_new()
function).

GDK Window Type Hint Constants

The Window Type Hint constants specify hints for the window manager that indicate what type of function
the window has. The window manager can use this when determining decoration and behavior of the window.
The hint must be set before mapping the window.

gtk.gdk.WINDOW_TYPE_HINT_NORMAL A normal toplevel window.
gtk.gdk.WINDOW_TYPE_HINT_DIALOG A dialog window.
gtk.gdk.WINDOW_TYPE_HINT_MENU A window used to implement a menu.
gtk.gdk.WINDOW_TYPE_HINT_TOOLBAR A window used to implement a toolbar.
gtk.gdk.WINDOW_TYPE_HINT_SPLASHSCREEN A window used to implement a splash screen
gtk.gdk.WINDOW_TYPE_HINT_UTILITY

gtk.gdk.WINDOW_TYPE_HINT_DOCK A window used to implement a docking bar.
gtk.gdk.WINDOW_TYPE_HINT_DESKTOP A window used to implement a desktop.

GDK WM Decoration Constants

The WM Decoration constants are bit−flags that specify the hints that the window manager can use when
determining how to decorate the window. The hints must be set before mapping the window.

gtk.gdk.DECOR_ALL All decorations should be applied.
gtk.gdk.DECOR_BORDER A frame should be drawn around the window.
gtk.gdk.DECOR_RESIZEH The frame should have resize handles.
gtk.gdk.DECOR_TITLE A titlebar should be placed above the window.
gtk.gdk.DECOR_MENU A button for opening a menu should be included.
gtk.gdk.DECOR_MINIMIZE A minimize button should be included.
gtk.gdk.DECOR_MAXIMIZE A maximize button should be included.

GDK WM Function Constants

The WM Function constants specify hints originally defined by the Motif toolkit. The window manager can
use them when determining the functions to offer for the window. The hint must be set before mapping the
window.

gtk.gdk.FUNC_ALL All functions should be offered.
gtk.gdk.FUNC_RESIZE The window should be resizable.
gtk.gdk.FUNC_MOVE The window should be movable.
gtk.gdk.FUNC_MINIMIZE The window should be minimizable.
gtk.gdk.FUNC_MAXIMIZE The window should be maximizable.

PyGTK 2.0 Reference Manual

GDK Window Type Constants 922

gtk.gdk.FUNC_CLOSE The window should be closeable.

Prev Up Next
gtk.gdk Functions Home The gtk.glade Class Reference

gtk.gdk Functions
Prev The gtk.gdk Class Reference Next

gtk.gdk Functions

gtk.gdk Functions � the gtk.gdk module functions

Synopsis

gtk.gdk.Atom Functions

 def gtk.gdk.atom_intern(name, only_if_exists=FALSE)

gtk.gdk.Color Functions

 def gtk.gdk.color_parse(spec)

gtk.gdk.Colormap Functions

 def gtk.gdk.colormap_get_system()

gtk.gdk.Device Functions

 def gtk.gdk.devices_list()
 def gtk.gdk.device_get_core_pointer()

gtk.gdk.Display Functions

 def gtk.gdk.display_get_default()

gtk.gdk.DisplayManager Functions

 def gtk.gdk.display_manager_get()

gtk.gdk.Event Functions

 def gtk.gdk.events_pending()
 def gtk.gdk.event_peek()
 def gtk.gdk.event_get()
 def gtk.gdk.event_get_graphics_expose()
 def gtk.gdk.set_show_events()
 def gtk.gdk.get_show_events()

PyGTK 2.0 Reference Manual

GDK WM Function Constants 923

gtk.gdk.Keymap Functions

 def gtk.gdk.keymap_get_default()
 def gtk.gdk.keymap_get_for_display(display)
 def gtk.gdk.keyval_name(keyval)
 def gtk.gdk.keyval_from_name(keyval_name)
 def gtk.gdk.keyval_convert_case(symbol)
 def gtk.gdk.keyval_to_upper(keyval)
 def gtk.gdk.keyval_to_lower(keyval)
 def gtk.gdk.keyval_is_upper(keyval)
 def gtk.gdk.keyval_is_lower(keyval)
 def gtk.gdk.keyval_to_unicode(keyval)
 def gtk.gdk.unicode_to_keyval(wc)

gtk.gdk.Pixbuf Functions

 def gtk.gdk.pixbuf_new_from_file(filename)
 def gtk.gdk.pixbuf_new_from_file_at_size(filename, width, height)
 def gtk.gdk.pixbuf_new_from_data(data, colorspace, has_alpha, bits_per_sample, width, height, rowstride)
 def gtk.gdk.pixbuf_new_from_array(array, colorspace, bits_per_sample)
 def gtk.gdk.pixbuf_new_from_xpm_data(data)
 def gtk.gdk.pixbuf_new_from_inline(data_length, data, copy_pixels)
 def gtk.gdk.pixbuf_get_formats()
 def gtk.gdk.pixbuf_get_file_info(filename)

gtk.gdk.PixbufLoader Functions

 def gtk.gdk.pixbuf_loader_new_with_mime_type(mime_type)

gtk.gdk.Pixmap Functions

 def gtk.gdk.bitmap_create_from_data(drawable, data, width, height)
 def gtk.gdk.pixmap_create_from_data(drawable, data, width, height, depth, fg, bg)
 def gtk.gdk.pixmap_create_from_xpm(window, transparent_color, filename)
 def gtk.gdk.pixmap_colormap_create_from_xpm(window, colormap, transparent_color, filename)
 def gtk.gdk.pixmap_create_from_xpm_d(window, transparent_color, data)
 def gtk.gdk.pixmap_colormap_create_from_xpm_d(window, colormap, transparent_color, data)
 def gtk.gdk.pixmap_foreign_new(anid)
 def gtk.gdk.pixmap_lookup(anid)
 def gtk.gdk.pixmap_foreign_new_for_display(display, anid)
 def gtk.gdk.pixmap_lookup_for_display(display, anid)

gtk.gdk.Screen Functions

 def gtk.gdk.screen_width()
 def gtk.gdk.screen_height()
 def gtk.gdk.screen_width_mm()
 def gtk.gdk.screen_height_mm()
 def gtk.gdk.screen_get_default()

gtk.gdk.Visual Functions

 def gtk.gdk.list_visuals()
 def gtk.gdk.visual_get_best()
 def gtk.gdk.visual_get_best_depth()
 def gtk.gdk.visual_get_best_type()
 def gtk.gdk.visual_get_best_with_depth(depth)
 def gtk.gdk.visual_get_best_with_type(type)
 def gtk.gdk.visual_get_system()

PyGTK 2.0 Reference Manual

gtk.gdk.Keymap Functions 924

 def gtk.gdk.query_depths()
 def gtk.gdk.query_visual_types()

gtk.gdk.Window Functions

 def gtk.gdk.window_foreign_new(anid)
 def gtk.gdk.window_foreign_new_for_display(display, anid)
 def gtk.gdk.get_default_root_window()
 def gtk.gdk.window_get_toplevels()
 def gtk.gdk.window_lookup(anid)
 def gtk.gdkwindow_lookup_for_display.(display, anid)
 def gtk.gdk.window_process_all_updates()
 def gtk.gdk.gdk_window_set_debug_updates()
 def gtk.gdk.window_at_pointer()

Miscellaneous Functions

 def gtk.gdk.pointer_grab(window, owner_events=FALSE, event_mask=0, confine_to=None, cursor=None, time=0L)
 def gtk.gdk.pointer_ungrab(time=0L)
 def gtk.gdk.keyboard_grab(window, owner_events=FALSE, time=0L)
 def gtk.gdk.keyboard_ungrab(time=0L)
 def gtk.gdk.pointer_is_grabbed()
 def gtk.gdk.flush()
 def gtk.gdk.beep()
 def gtk.gdk.set_double_click_time(msec)
 def gtk.gdk.threads_enter()
 def gtk.gdk.threads_leave()
 def gtk.gdk.threads_init()
 def gtk.gdk.rgb_ditherable()
 def gtk.gdk.rgb_get_colormap()
 def gtk.gdk.rgb_set_verbose(verbose)
 def gtk.gdk.rgb_set_install(install)
 def gtk.gdk.rgb_set_min_colors(min_colors)
 def gtk.gdk.rgb_get_visual()
 def gtk.gdk.selection_owner_get(selection)
 def gtk.gdk.selection_send_notify(requestor, selection, target, property, time)
 def gtk.gdk.set_sm_client_id(sm_client_id)

Description

These functions are part of the PyGTK gtk.gdk module. All the functions are listed above with links to the
function description. Most functions are associated with a specific object class and their descriptions are part
of the class reference. Those functions that are not directly associated with a specific class have their
descriptions below.

Functions

gtk.gdk.pointer_grab

 def gtk.gdk.pointer_grab(window, owner_events=FALSE, event_mask=0, confine_to=None, cursor=None, time=0L)

window : the gtk.gdk.Window that will own the grab (the grab window).
owner_events : if FALSE then all pointer events are reported with respect to window and are

only reported if selected by event_mask. If TRUE then pointer events for this
application are reported as normal, but pointer events outside this application
are reported with respect to window and only if selected by event_mask. In

PyGTK 2.0 Reference Manual

gtk.gdk.Visual Functions 925

either mode, unreported events are discarded.
event_mask : specifies the event mask, that is used in accordance with owner_events.

confine_to :

If not None, the pointer will be confined to this gtk.gdk.Window during the
grab. If the pointer is outside confine_to, it will automatically be moved to
the closest edge of confine_to and enter and leave events will be generated
as necessary.

cursor :
the gtk.gdk.Cursor to display while the grab is active. If this is None then
the normal cursors are used for window and its descendants, and the cursor for
window is used for all other windows.

time :
the timestamp of the event that led to this pointer grab. This usually comes from
a gtk.gdk.Event, though)l can be used to use the current time if the time
isn't known.

Returns : a grab status value
The gtk.gdk.pointer_grab() function grabs the pointer (usually a mouse) so that all events are passed
to this application until the pointer is ungrabbed with the gtk.gdk.pointer_ungrab(), or the grab
window becomes unviewable. This overrides any previous pointer grab by this client. This function returns a
grab status value:

gtk.gdk.GRAB_SUCCESS The resource was successfully grabbed.
gtk.gdk.GRAB_ALREADY_GRABBED The resource is actively grabbed by another client.

gtk.gdk.GRAB_INVALID_TIME
The resource was grabbed more recently than the specified
time.

gtk.gdk.GRAB_NOT_VIEWABLE
The grab window or the confine_to window are not
viewable.

gtk.gdk.GRAB_FROZEN The resource is frozen by an active grab of another client.
Pointer grabs are used for operations that need complete control over mouse events, even if the mouse leaves
the application. For example it is used for drag and drop, for dragging the handle in the gtk.HPaned and
gtk.VPaned widgets. Note that if the event mask of an X window has selected both button press and button
release events, then a button press event will cause an automatic pointer grab until the button is released. X
does this automatically since most applications expect to receive button press and release events in pairs. It is
equivalent to a pointer grab on the window with owner_events set to TRUE.

gtk.gdk.pointer_ungrab

 def gtk.gdk.pointer_ungrab(time=0L)

time : a timestamp from a gtk.gdk.Event or 0L to use the current time
The gtk.gdk.pointer_ungrab() function ungrabs the pointer if it is grabbed by this application.

gtk.gdk.keyboard_grab

 def gtk.gdk.keyboard_grab(window, owner_events=FALSE, time=0L)

window : the gtk.gdk.Window that will own the grab (the grab window).

owner_events :

if FALSE then all keyboard events are reported with respect to window. If TRUE then
keyboard events for this application are reported as normal, but keyboard events outside
this application are reported with respect to window. Both key press and key release
events are always reported, independent of the event mask set by the application.

time : a timestamp from a gtk.gdk.Event or 0L to use the current time
Returns : a grab status value

PyGTK 2.0 Reference Manual

gtk.gdk.pointer_grab 926

The gtk.gdk.keyboard_grab() function grabs the keyboard so that all events are passed to this
application until the keyboard is ungrabbed with the gtk.gdk.keyboard_ungrab()) function. This
overrides any previous keyboard grab by this client.

gtk.gdk.keyboard_ungrab

 def gtk.gdk.keyboard_ungrab(time=0L)

time : a timestamp from a gtk.gdk.Event or 0L to use the current time
The gtk.gdk.keyboard_ungrab() function ungrabs the keyboard if it is grabbed by this application.

gtk.gdk.pointer_is_grabbed

 def gtk.gdk.pointer_is_grabbed()

Returns : TRUE if the pointer is currently grabbed by this application.
The gtk.gdk.pointer_is_grabbed() function returns TRUE if the pointer is currently grabbed by this
application. Note that this does not take the implicit pointer grab on button presses into account.

gtk.gdk.flush

 def gtk.gdk.flush()

The gtk.gdk.flush() function flushes the X output buffer and waits until all requests have been processed
by the server. This is rarely needed by applications.

gtk.gdk.beep

 def gtk.gdk.beep()

The gtk.gdk.beep() function emits a short beep.

gtk.gdk.set_double_click_time

 def gtk.gdk.set_double_click_time(msec)

msec : the double click time in milliseconds
The gtk.gdk.set_double_click_time() function set the double click time for the default display.
Applications should NOT set this, it is a global user−configured setting.

gtk.gdk.threads_enter

 def gtk.gdk.threads_enter()

The gtk.gdk.threads_enter() function marks the beginning of a critical section that only one thread
can operate within at a time. The critical section is guarded by a GDK mutual exclusion lock. Python threads
are enabled while waiting for the GDK lock. See the gtk.gtk.threads_init() function for more
information about threading.

PyGTK 2.0 Reference Manual

gtk.gdk.keyboard_grab 927

gtk.gdk.threads_leave

 def gtk.gdk.threads_leave()

The gtk.gdk.threads_leave() function marks the end of a critical section started by the
gtk.gdk.threads_enter() function. See the gtk.gtk.threads_init() function for more
information about threading.

gtk.gdk.threads_init

 def gtk.gdk.threads_init()

The gtk.gdk.threads_init() function initializes PyGTK to use the Python macros that allow multiple
threads to serialize access to the Python interpreter (using the Python Global Interpreter Lock (GIL)). In
addition, the gtk.gdk.threads_init() function initializes the GDK global lock (mutex) that serializes
thread access to the GTK and GDK libraries. Thus there are two different global locking mechanisms at work
that are initialized by the gtk.gdk.threads_init() function: Python and GDK.

The gtk.gdk.threads_init() function must be called before the gtk.main() function. At this point in
the application the Python GIL is held by the main application thread. (Usually the main thread calls the
gtk.gdk.threads_init() function though any thread could call it instead.) When the gtk.main()
function is called the GIL is released and other threads may use the Python interpreter. When PyGTK signal
handlers are invoked in the main thread the GIL is reacquired so that the Python interpreter can run the
handler code.

The assumptions behind PyGTK thread support were originally:

A GIL count is initialized for each thread to indicate that it holds the GIL − the assumption being that
the thread will be a Python thread and will hold the GIL when it starts because it is running in the
Python interpreter. PyGTK adds the GIL count for each thread to provide a recursive lock mechanism.
That is, a Python thread may attempt to gain exclusive access to the Python interpreter multiple times
without fear of deadlock.

•

The Python thread that calls the gtk.main() function releases the GIL allowing other Python
threads to run.

•

PyGTK does not release the GIL when calling a GTK or GDK function. Also it does not acquire the
GDK global lock (GGL). This means that, in effect, Python threads can use the GIL alone to serialize
access to the GTK and GDK libraries. Of course, if there are non−Python threads calling GTK or GDK
functions the GGL must be used.

•

Signal, timeout and idle handlers written in Python that are invoked from the GTK mainloop acquire
the GIL automatically.

•

The gtk.gdk.threads_enter() and gtk.gdk.threads_leave() functions use the GDK global lock
(GGL) to manage access to the GTK and GDK libraries. The intention is to allow only one thread to execute
within the GTK and GDK code at a time. Theoretically any time a thread calls a PyGTK method or function it
should bracket the call with the gtk.gdk.threads_enter() and gtk.gdk.threads_leave()
functions. If your application only uses Python threads then this is not necessary since only the main thread
can safely call PyGTK methods or functions. However if your application has foreign threads that call GTK or
GDK functions you should use the gtk.gdk.threads_enter() and gtk.gdk.threads_leave()
functions to serialize access.

Note

Signal handlers are automatically invoked within a gdk_threads_enter() and gdk_threads_leave()
function pair by GTK so the gtk.gdk.threads_enter() and gtk.gdk.threads_leave() functions
should not be called within a Python signal handler or the application will deadlock. However, idle, timeout

PyGTK 2.0 Reference Manual

gtk.gdk.threads_leave 928

and input handlers are executed outside the GGL so these should use the gtk.gdk.threads_enter() and
gtk.gdk.threads_leave() functions if PyGTK methods or functions are called.

In general the safest strategy is to only call PyGTK methods and functions from the main Python thread and
use idle or timeout handlers (which run in the main thread) to invoke PyGTK calls from other threads.

gtk.gdk.rgb_ditherable

 def gtk.gdk.rgb_ditherable()

Returns : TRUE if the gtk.gdk.Visual is ditherable
The gtk.gdk.rgb_ditherable() function returns TRUE if the gtk.gdk.Visual is ditherable. This
function may be useful for presenting a user interface choice to the user about which dither mode is desired; if
the display is not ditherable, it may make sense to gray out or hide the corresponding UI widget.

gtk.gdk.rgb_get_colormap

 def gtk.gdk.rgb_get_colormap()

Returns : the preferred gtk.gdk.Colormap for rendering image data.
The gtk.gdk.rgb_get_colormap() function returns the preferred gtk.gdk.Colormap.

gtk.gdk.rgb_set_verbose

 def gtk.gdk.rgb_set_verbose(verbose)

verbose : If TRUE messages should be verbose
The gtk.gdk.rgb_set_verbose() function sets the "verbose" flag to the value specified by verbose.
If verbose is TRUE messages will be verbose. This is generally only useful for debugging.

gtk.gdk.rgb_set_install

 def gtk.gdk.rgb_set_install(install)

install : if TRUE set install mode
The gtk.gdk.rgb_set_install() function sets the "install" mode to the value of install. If
install is TRUE, a new "private" colormap is always installed rather than trying to find a best fit with the
colors already allocated. Ordinarily, a colormap only be installed if a sufficient cube cannot be allocated. A
private colormap has more colors, leading to better quality display, but also leads to the dreaded "colormap
flashing" effect.

gtk.gdk.rgb_set_min_colors

 def gtk.gdk.rgb_set_min_colors(min_colors)

min_colors : the minimum number of colors.
The gtk.gdk.rgb_set_min_colors() function sets the minimum number of colors for the color cube
to the value specified by min_colors. Generally, the largest color cube is allocated. If a color cube at least
as large as min_colors can't be allocated, a private colormap is installed.

PyGTK 2.0 Reference Manual

Note 929

gtk.gdk.rgb_get_visual

 def gtk.gdk.rgb_get_visual()

Returns : the gtk.gdk.Visual being used
The gtk.gdk.rgb_get_visual() function returns the gtk.gdk.Visual being used to render image
data on the default screen.

gtk.gdk.selection_owner_get

 def gtk.gdk.selection_owner_get(selection)

selection : an atom indentifying a selection.
Returns : the gtk.gdk.Window that owns the selection or None.
The gtk.gdk.selection_owner_get() function returns the gtk.gdk.Window that owns the
selection specified by selection if there is a selection owner for this window, and if it is a window known
to the current application. Note that the return value may be owned by a different process if a foreign window
was previously created for that window, but a new foreign window will never be created by this call.

gtk.gdk.selection_send_notify

 def gtk.gdk.selection_send_notify(requestor, selection, target, property, time)

requestor : the integer ID of the window to deliver the response to.
selection : an atom representing the selection that was requested.
target : an atom representing the target that was selected.
property : an atom representing the property in which the selection owner stored the data.
time : a timestamp
The gtk.gdk.selection_send_notify() function sends a response to a SelectionRequest event.

gtk.gdk.set_sm_client_id

 def gtk.gdk.set_sm_client_id(sm_client_id)

sm_client_id : the client id string assigned by the session manager when the connection was opened
The gtk.gdk.set_sm_client_id() function sets the SM_CLIENT_ID property on the application's
leader window so that the window manager can save the application's state using the X11R6 ICCCM session
management protocol. See the X Session Management Library documentation for more information on
session management and the Inter−Client Communication Conventions Manual (ICCCM) for information on
the WM_CLIENT_LEADER property. (Both documents are part of the X Window System distribution.)

Prev Up Next
gtk.gdk.Window Home gtk.gdk Constants

The gtk.glade Class Reference
Prev Next

The gtk.glade Class Reference

Table of Contents

gtk.glade.XML − Allows dynamic loading of user interfaces from XML descriptions

PyGTK 2.0 Reference Manual

gtk.gdk.rgb_get_visual 930

Prev Up Next
gtk.gdk Constants Home gtk.glade.XML

The gobject Class Reference
Prev Next

The gobject Class Reference

Table of Contents

gobject.GObject − the base class
gobject.GBoxed − an object containing an opaque chunk of data
gobject.GPointer − an object containing a completely opaque chunk of data
gobject.GInterface − an object representing a GInterface
gobject.MainContext − an object representing a set of event sources to be handled in a gobject.MainLoop.
gobject.MainLoop − an object representing the main event loop of a PyGTK application.
gobject Functions − miscellaneous functions
gobject Constants − the built−in constants of the gobject module

Prev Up Next
PyGTK Class Hierarchy Home gobject.GObject

gobject Constants
Prev The gobject Class Reference Next

gobject Constants

gobject Constants � the built−in constants of the gobject module

Synopsis

GObject IO Condition Constants
GObject Param Flag Constants
GObject Priority Constants
GObject Signal Flag Constants
GObject Built−in Type Constants
GObject Version Constants

Description

GObject IO Condition Constants

The IO Condition constants are a set of bit−flags that specify a condition to watch for on an event source.

gobject.IO_IN There is data to read
gobject.IO_OUT Data can be written (without blocking).
gobject.IO_PRI There is urgent data to read.
gobject.IO_ERR Error condition.
gobject.IO_HUP Hung up (the connection has been broken, usually for pipes and sockets).

PyGTK 2.0 Reference Manual

The gtk.glade Class Reference 931

gobject.IO_NVAL Invalid request. The file descriptor is not open.

GObject Param Flag Constants

The Param Flag constants are a set of bit−flags that specify certain aspects of parameters that can be
configured.

gobject.PARAM_READABLE The parameter is readable
gobject.PARAM_WRITABLE The parameter is writable
gobject.PARAM_CONSTRUCT The parameter will be set upon object construction
gobject.PARAM_CONSTRUCT_ONLY The parameter will only be set upon object construction
gobject.PARAM_LAX_VALIDATION Upon parameter conversion strict validation is not required

GObject Priority Constants

The Priority constants specify

gobject.PRIORITY_HIGH Use this for high priority event sources.

gobject.PRIORITY_DEFAULT

Use this for default priority event sources. This priority is used
when adding timeout functions with the
gobject.timeout_add() function. This priority is also used
for events from the X server.

gobject.PRIORITY_HIGH_IDLE

Use this for high priority idle functions. For example,
gobject.PRIORITY_HIGH_IDLE + 10 is used for resizing
operations; and, gobject.PRIORITY_HIGH_IDLE + 20, for
redrawing operations. (This is done to ensure that any pending
resizes are processed before any pending redraws, so that widgets
are not redrawn twice unnecessarily.)

gobject.PRIORITY_DEFAULT_IDLE
Use this for default priority idle functions. This priority is used
when adding idle functions with the gobject.idle_add()
function.

gobject.PRIORITY_LOW Use this for very low priority background tasks.

GObject Signal Flag Constants

The Signal Flag constants are a set of bit−flags that specify a signal's behavior. The overall signal description
outlines how especially the RUN flags control the stages of a signal emission.

gobject.SIGNAL_RUN_FIRST Invoke the object method handler in the first emission stage.
gobject.SIGNAL_RUN_LAST Invoke the object method handler in the third emission stage.
gobject.SIGNAL_RUN_CLEANUP Invoke the object method handler in the last emission stage.

gobject.SIGNAL_NO_RECURSE
Signals being emitted for an object while currently being in
emission for this very object will not be emitted recursively,
but instead cause the first emission to be restarted.

gobject.SIGNAL_DETAILED
This signal supports "::detail" appendices to the signal name
upon handler connections and emissions.

gobject.SIGNAL_ACTION Action signals are signals that may freely be emitted on alive
objects from user code via the gobject.emit() method
and friends, without the need of being embedded into extra
code that performs pre or post emission adjustments on the

PyGTK 2.0 Reference Manual

GObject IO Condition Constants 932

object. They can also be thought of as object methods which
can be called generically by third−party code.

gobject.SIGNAL_NO_HOOKS No emissions hooks are supported for this signal.

GObject Built−in Type Constants

The Built−in Type constants specify the pre−defined types used by gobject.

gobject.TYPE_INVALID An invalid type, used as error return value in some functions.
gobject.TYPE_NONE A fundamental type indicating no type.
gobject.TYPE_INTERFACE The fundamental type from which all interfaces are derived.

gobject.TYPE_CHAR
The fundamental type corresponding to a character. This maps to a string in
Python.

gobject.TYPE_UCHAR
The fundamental type corresponding to an unsigned character. This maps to
a string in Python.

gobject.TYPE_BOOLEAN
The fundamental type corresponding to a True or False value. This maps to
an integer in Python.

gobject.TYPE_INT
The fundamental type corresponding to an integer. This maps to an integer
in Python.

gobject.TYPE_UINT
he fundamental type corresponding to an unsigned integer. This maps to an
integer in Python.

gobject.TYPE_LONG
The fundamental type corresponding to a long integer. This maps to an
integer in Python.

gobject.TYPE_ULONG
The fundamental type corresponding to an unsigned integer. This maps to
an integer in Python.

gobject.TYPE_INT64
The fundamental type corresponding to an long long integer. This maps to a
long integer in Python.

gobject.TYPE_UINT64
The fundamental type corresponding to an unsigned long long integer. This
maps to a long integer in Python.

gobject.TYPE_ENUM
The fundamental type corresponding to an enumeration type. This maps to
an integer in Python.

gobject.TYPE_FLAGS
The fundamental type corresponding to a flag type. This maps to an integer
in Python.

gobject.TYPE_FLOAT
The fundamental type corresponding to a floating point number. This maps
to a float in Python.

gobject.TYPE_DOUBLE
The fundamental type corresponding to a double floating point number.
This maps to a float in Python.

gobject.TYPE_STRING The fundamental type corresponding to a string.

gobject.TYPE_POINTER
The fundamental type corresponding to a pointer to an anonymous type.
This has no corresponding Python type.

gobject.TYPE_BOXED The fundamental type corresponding to a boxed object type.
gobject.TYPE_PARAM The fundamental type corresponding to a GParamSpec type.
gobject.TYPE_OBJECT The fundamental type corresponding to a GObject type.

GObject Version Constants

The Version constants specify the version of GLIB used by PyGTK as a 3−tuple containing the major, minor
and patch release numbers.

PyGTK 2.0 Reference Manual

GObject Signal Flag Constants 933

gobject.glib_version A 3−tuple containing (major, minor, patch) release numbers.

Prev Up Next
gobject Functions Home The gtk Class Reference

gobject Functions
Prev The gobject Class Reference Next

gobject Functions

gobject Functions � miscellaneous functions

Synopsis

 def gobject.type_name(type)
 def gobject.type_from_name(type_name)
 def gobject.type_parent(type)
 def gobject.type_is_a(type, parent_type)
 def gobject.type_children(type)
 def gobject.type_interfaces(type)
 def gobject.type_register(class)
 def gobject.signal_new(signal_name, type, flags, return_type, param_types)
 def gobject.signal_list_names(type)
 def gobject.signal_list_ids(type)
 def gobject.signal_lookup(name, type)
 def gobject.signal_name(signal_id)
 def gobject.signal_query(name, type)
 def gobject.signal_query(signal_id)
 def gobject.list_properties(type)
 def gobject.new(type, ...)
 def gobject.idle_add(callback, ...)
 def gobject.timeout_add(interval, callback, ...)
 def gobject.io_add_watch(fd, condition, callback, ...)
 def gobject.source_remove(tag)
 def gobject.main_context_default()

Description

These functions are part of the PyGTK gobject module but are not directly associated with a specific class.

Functions

gobject.type_name

 def gobject.type_name(type)

type : a GObject type, type ID or instance
Returns :
The gobject.type_name() function returns the unique name that is assigned to the specified type.
type can be a GObject type, type ID or instance. This function raises a TypeError exception if type isn't a
PyGTK type.

PyGTK 2.0 Reference Manual

GObject Version Constants 934

gobject.type_from_name

 def gobject.type_from_name(type_name)

type_name : a string containing the name of a type
Returns : the type ID named type_name
The gobject.type_from_name() function returns the type ID of the PyGTK type with the name
specified by type_name. This function raises a RuntimeError exception if no type matches type_name.

gobject.type_parent

 def gobject.type_parent(type)

type : a GObject type, type ID or instance
Returns : the parent type ID
The gobject.type_parent() function returns the direct parent type ID of the specified type. type can
be a GObject type, type ID or instance. If type has no parent, i.e. is a fundamental type, the RuntimeError
exception is raised.

gobject.type_is_a

 def gobject.type_is_a(type, parent_type)

type : a GObject type, type ID or instance
parent_type : a GObject type, type ID or instance
Returns : TRUE if parent_type is an ancestor of type
The gobject.type_is_a() function returns TRUE if the specified type is a descendant of the type
specified by parent_type. This function also returns TRUE if parent_type is an interface and type
conforms to it.

gobject.type_children

 def gobject.type_children(type)

type : a GObject type, type ID or instance
Returns : a list of the child types of type
The gobject.type_children() function returns a list containing the child types of the specified type.

gobject.type_interfaces

 def gobject.type_interfaces(type)

type : a GObject type, type ID or instance
Returns : a list of the interface types supported by type
The gobject.type_interfaces() function returns a list of the interface types supported by type.
type can be a GObject type, type ID or instance. This function returns a RuntimeError exception if type is
not a valid type or has no interfaces.

PyGTK 2.0 Reference Manual

gobject.type_from_name 935

gobject.type_register

 def gobject.type_register(class)

class : a Python class that is a descendant of gobject.GObject
The gobject.type_register() function registers the specified Python class as a PyGTK type. class
must be a descendant of gobject.GObject. The function generates a name for the new type.

gobject.signal_new

 def gobject.signal_new(signal_name, type, flags, return_type, param_types)

signal_name : a string containing the name of the signal
type : the object type that the signal is associated with
flags : the signal flags
return_type : the return type of the signal handler
param_types : the parameter types passed to the signal handler
Returns : a unique integer signal ID
The gobject.signal_new() function registers a signal with the specified signal_name for the
specified object type. The value of flags is a combination of:

gobject.SIGNAL_RUN_FIRST Invoke the object method handler in the first emission stage.
gobject.SIGNAL_RUN_LAST Invoke the object method handler in the third emission stage.
gobject.SIGNAL_RUN_CLEANUP Invoke the object method handler in the last emission stage.

gobject.SIGNAL_NO_RECURSE
Signals being emitted for an object while currently being in emission
for this very object will not be emitted recursively, but instead cause
the first emission to be restarted.

gobject.SIGNAL_DETAILED
This signal supports "::detail" appendixes to the signal name upon
handler connections and emissions.

gobject.SIGNAL_ACTION

Action signals are signals that may freely be emitted on alive objects
from user code via gobject.emit()() and friends, without the
need of being embedded into extra code that performs pre or post
emission adjustments on the object. They can also be thought of as
generically callable object methods.

gobject.SIGNAL_NO_HOOKS No emissions hooks are supported for this signal.
return_type is the type of the return value from a signal handler and may be a gobject type, type ID or
instance. The param_types parameter is a list of additional types that are passed to the signal handler. Each
parameter type may be specified as a gobject type, type ID or instance. For example, to add a signal to the
gtk.Window type called "my−signal" that calls a handler with a gtk.Button widget and an integer value and a
return value that is a boolean, use:

 gobject.signal_new("my_signal", gtk.Window, gobject.SIGNAL_RUN_LAST, gobject.TYPE_BOOLEAN, (gtk.Button, gobject.TYPE_INT))

gobject.signal_list_names

 def gobject.signal_list_names(type)

type : a GObject type, type ID or instance
Returns : a list of the signal names supported by type
The gobject.signal_list_names() function returns a list of the names of the signals that are
supported by the specified GObject type

PyGTK 2.0 Reference Manual

gobject.type_register 936

Note

The type keyword is available in PyGTK 2.6 and above.

gobject.signal_list_ids

 def gobject.signal_list_ids(type)

type : a GObject type, type ID or instance
Returns : a list of the signal ids supported by type

Note

This method is available in PyGTK 2.6 and above.

The gobject.signal_list_ids() function returns a list of the integer ids of the signals that are
supported by the GObject specified by type

gobject.signal_lookup

 def gobject.signal_lookup(name, type)

name : the name of a signal for type
type : a GObject type, type ID or instance
Returns : the integer id of a signal supported by type or 0.

Note

This method is available in PyGTK 2.6 and above.

The gobject.signal_lookup() function returns the id of the signal with the name specified by name
that is supported by the GObject specified specified bytype. 0 is returned if the signal is not found.

gobject.signal_name

 def gobject.signal_name(signal_id)

signal_id : an integer signal id
Returns : the name of the signal or None.

Note

This method is available in PyGTK 2.6 and above.

The gobject.signal_name() function returns the name of the signal that has the signal id specified by
id.

gobject.signal_query

 def gobject.signal_query(name, type)

name : the name of a signal for type
type : a GObject type, type ID or instance
Returns : a 6−tuple containing signal information or None

PyGTK 2.0 Reference Manual

Note 937

Note

This method is available in PyGTK 2.6 and above.

The gobject.signal_query() function returns a 6−tuple containing information about the signal with
the name specified by name that is supported by the GObject specified by type. If the signal is not found
None is returned.

The signal information 6−tuple contains:

the integer signal id•
the signal name•
the GType that the signal is registered for•
the signal flags (see the GObject Signal Flag Constants)•
the GType of the return from the signal callback function•
a tuple containing the GTypes of the parameters that are passed to the signal callback function. Note
that these may not correspond exactly to the PyGTK signal callback parameters.

•

gobject.signal_query

 def gobject.signal_query(signal_id)

signal_id : the integer id of a signal
Returns : a 6−tuple containing signal information or None

Note

This method is available in PyGTK 2.6 and above.

The gobject.signal_query() function returns a 6−tuple containing information about the signal with
the id specified by signal_id. If the signal is not found None is returned.

The signal information 6−tuple contains:

the integer signal id•
the signal name•
the GType that the signal is registered for•
the signal flags (see the GObject Signal Flag Constants)•
the GType of the return from the signal callback function•
a tuple containing the GTypes of the parameters that are passed to the signal callback function. Note
that these may not correspond exactly to the PyGTK signal callback parameters.

•

gobject.list_properties

 def gobject.list_properties(type)

type : a GObject type, type ID or instance
Returns : a list of the properties (as GParam objects) supported by type
The gobject.list_properties() function returns a list of the properties (as GParam objects)
supported by type.

PyGTK 2.0 Reference Manual

Note 938

gobject.new

 def gobject.new(type, ...)

type : a GObject type, type ID or instance
... : zero or more property−value pairs
Returns : a new object if the specified type
The gobject.new() function returns a new object of the specified type. type must specify a type that is a
descendant of gobject.GObject. A TypeError exception is raised if type specifies an abstract class or a
type that is not a descendant of gobject.GObject. A set of property−value pairs may be specified to set
the value of the object's properties.

gobject.idle_add

 def gobject.idle_add(callback, ...)

callback : a function to call when PyGTK is idle
... : optionals arguments to be passed to callback
Returns : an integer ID
The gobject.idle_add() function adds a function (specified by callback) to be called whenever there
are no higher priority events pending to the default main loop. The function is given the default idle priority,
gobject.PRIORITY_DEFAULT_IDLE. Additional arguments to pass to callback can be specified
after callback. The idle priority can be specified as a keyword−value pair with the keyword "priority". If
callback returns FALSE it is automatically removed from the list of event sources and will not be called
again.

gobject.timeout_add

 def gobject.timeout_add(interval, callback, ...)

interval : the time between calls to the function, in milliseconds
callback : the function to call
... : zero or more arguments that will be passed to callback
Returns : an integer ID of the event source
The gobject.timeout_add() function sets a function (specified by callback) to be called at regular
intervals (specified by interval, with the default priority, gobject.PRIORITY_DEFAULT. Additional
arguments to pass to callback can be specified after callback. The idle priority may be specified as a
keyword−value pair with the keyword "priority".

The function is called repeatedly until it returns FALSE, at which point the timeout is automatically destroyed
and the function will not be called again. The first call to the function will be at the end of the first interval.
Note that timeout functions may be delayed, due to the processing of other event sources. Thus they should
not be relied on for precise timing. After each call to the timeout function, the time of the next timeout is
recalculated based on the current time and the given interval (it does not try to 'catch up' time lost in delays).

gobject.io_add_watch

 def gobject.io_add_watch(fd, condition, callback, ...)

fd : a Python file object or an integer file descriptor ID
condition : a condition mask
callback : a function to call

PyGTK 2.0 Reference Manual

gobject.new 939

... : additional arguments to pass to callback
Returns : an integer ID of the event source
The gobject.io_add_watch() function arranges for the file (specified by fd) to be monitored by the
main loop for the specified condition. fd may be a Python file object or an integer file descriptor. The
value of condition is a combination of:

gobject.IO_IN There is data to read.
gobject.IO_OUT Data can be written (without blocking).
gobject.IO_PRI There is urgent data to read.
gobject.IO_ERR Error condition.
gobject.IO_HUP Hung up (the connection has been broken, usually for pipes and sockets).
Additional arguments to pass to callback can be specified after callback. The idle priority may be
specified as a keyword−value pair with the keyword "priority". The signature of the callback function is:

 def callback(source, cb_condition, ...)

where source is fd, the file descriptor; cb_condition is the condition that triggered the signal; and,
... are the zero or more arguments that were passed to the gobject.io_add_watch() function.

If the callback function returns FALSE it will be automatically removed from the list of event sources and will
not be called again. If it returns TRUE it will be called again when the condition is matched.

gobject.source_remove

 def gobject.source_remove(tag)

tag : an integer ID
Returns : TRUE if the event source was removed
The gobject.source_remove() function removes the event source specified by tag (as returned by the
gobject.idle_add(), gobject.timeout_add() and gobject.io_add_watch() functions)

gobject.main_context_default

 def gobject.main_context_default()

Returns : the default gobject.MainContext object
The gobject.main_context_default() function returns the default gobject.MainContext object.

Prev Up Next
gobject.MainLoop Home gobject Constants

The gtk Class Reference
Prev Next

The gtk Class Reference

Table of Contents

gtk.AboutDialog − popup window displaying information about an application (new in PyGTK 2.6)
gtk.AccelGroup − a group of accelerators for a Window hierarchy
gtk.AccelLabel − a label which displays accelerator info to the right of the text
gtk.Accessible − accessibility support for widgets.

PyGTK 2.0 Reference Manual

gobject.io_add_watch 940

gtk.Action − an action which can be triggered by a menu or toolbar item (new in PyGTK 2.4)
gtk.ActionGroup − a group of actions (new in PyGTK 2.4)
gtk.Adjustment − an object representing an adjustable bounded value
gtk.Alignment − a widget that controls the alignment and size of its child
gtk.Arrow − produces an arrow pointing in one of the four cardinal directions.
gtk.AspectFrame − A frame that constrains its child to a particular aspect ratio.
gtk.Bin − an abstract base class defining a container with just one child.
gtk.Border − an object containing data for a border (new in PyGTK 2.4)
gtk.Box − an abstract base class for box containers
gtk.Button − A pushbutton widget that issues a signal when clicked.
gtk.ButtonBox − the base class for widgets that contain multiple buttons
gtk.Calendar − a widget that displays a calendar and allows the user to select a date.
gtk.CellEditable − an interface for editing a TreeView cell
gtk.CellLayout − an interface for packing cells
gtk.CellRenderer − a base class for objects that render into Treeview cells
gtk.CellRendererCombo − an object that renders a gtk.ComboBoxEntry into a gtk.TreeView cell (new in
PyGTK 2.6)
gtk.CellRendererPixbuf − an object that renders a pixbuf into a gtk.TreeView cell
gtk.CellRendererProgress − an object that renders numbers as progress bars in a gtk.TreeView (new in
PyGTK 2.6)
gtk.CellRendererText − an object that renders text into a gtk.TreeView cell
gtk.CellRendererToggle − an object that renders a toggle button into a TreeView cell
gtk.CellView − a widget displaying a single row of a gtk.TreeModel (new in PyGTK 2.6).
gtk.CheckButton − a toggle button widget styled as a checkbox and label
gtk.CheckMenuItem − a menu item with a check box.
gtk.Clipboard − an object to store data to and retrieve data from (new in PyGTK 2.2)
gtk.ColorButton − a button to launch a color selection dialog (new in PyGTK 2.4)
gtk.ColorSelection − a widget used to select a color.
gtk.ColorSelectionDialog − a standard dialog for selecting a color.
gtk.Combo − a text entry field with a dropdown list.
gtk.ComboBox − a widget used to choose from a list of items (new in PyGTK 2.4)
gtk.ComboBoxEntry − a text entry field with a dropdown list (new in PyGTK 2.4)
gtk.Container − a base class for widgets that contain other widgets
gtk.Curve − allows direct editing of a curve.
gtk.Dialog − popup windows for user information and action
gtk.DrawingArea − a widget for custom user interface elements.
gtk.Editable − an interface for text−editing widgets.
gtk.Entry − a single line text entry field.
gtk.EntryCompletion − completion functionality for gtk.Entry (new in PyGTK 2.4)
gtk.EventBox − a widget used to catch events for widgets which do not have their own window.
gtk.Expander − a container that can hide its child (new in PyGTK 2.4)
gtk.FileChooser − an interface for choosing files (new in PyGTK 2.4)
gtk.FileChooserButton − a button to launch a gtk.FileChooserDialog (new in PyGTK 2.6)
gtk.FileChooserDialog − a file chooser dialog, suitable for "File/Open" or "File/Save" commands(new in
PyGTK 2.4)
gtk.FileChooserWidget − a file chooser widget that can be embedded in other widgets(new in PyGTK 2.4)
gtk.FileFilter − a filter for selecting a file subset (new in PyGTK 2.4)
gtk.FileSelection − a dialog used to prompt the user for a file or directory name
gtk.Fixed − a container which allows you to position widgets at fixed coordinates
gtk.FontButton − a button to launch a font selection dialog (new in PyGTK 2.4)
gtk.FontSelection − a widget for selecting fonts.
gtk.FontSelectionDialog − a dialog for selecting fonts.
gtk.Frame − a bin with a decorative frame and optional label.
gtk.GammaCurve − subclass of gtk.Curve for editing gamma curves.

PyGTK 2.0 Reference Manual

The gtk Class Reference 941

gtk.GenericCellRenderer − a TreeView cell renderer that helps create cell renderers in Python
gtk.GenericTreeModel − a TreeView model that helps create tree models in Python
gtk.HandleBox − a widget for detachable window portions.
gtk.HBox − a horizontal container box
gtk.HButtonBox − a container for arranging buttons horizontally.
gtk.HPaned − a container with two panes arranged horizontally.
gtk.HRuler − a horizontal ruler.
gtk.HScale − a horizontal slider widget for selecting a value from a range.
gtk.HScrollbar − a horizontal scrollbar widget
gtk.HSeparator − a horizontal separator.
gtk.IconFactory − an object that manages a group of icon sets.
gtk.IconInfo − object containing information about and icon in an icon theme (new in PyGTK 2.4)
gtk.IconSet − contains a set of variants for an icon
gtk.IconSource − a source for icon variants
gtk.IconTheme − look up icons by name and size (new in PyGTK 2.4)
gtk.IconView − a widget which displays a list of icons in a grid (new in PyGTK 2.6)
gtk.Image − A widget displaying an image
gtk.ImageMenuItem − a menuitem that displays an image with an accel label
gtk.IMContext − an abstract base class defining a generic input method interface
gtk.IMContextSimple − an input method context object that supports "simple" input methods
gtk.IMMulticontext − an input method context object that manages the use of multiple input method contexts
for a widget
gtk.InputDialog − a dialog for configuring devices for the XInput extension.
gtk.Invisible − internally−used widget which is not displayed.
gtk.Item − abstract base class for gtk.MenuItem
gtk.ItemFactory − creates menus, menubars and option menus from a data description.
gtk.Label − a widget that displays a limited amount of read−only text
gtk.Layout − infinite scrollable area containing child widgets and custom drawing
gtk.ListStore − a list model to use with a gtk.TreeView
gtk.Menu − a drop down menu widget.
gtk.MenuBar − a widget that displays gtk.MenuItem widgets horizontally
gtk.MenuItem − the widget used for an item in menus
gtk.MenuShell − a base class for menu objects.
gtk.MenuToolButton − A gtk.ToolItem containing a button with an additional dropdown menu (new in PyGTK
2.6)
gtk.MessageDialog − a convenient message window
gtk.Misc − a base class for widgets with alignments and padding.
gtk.Notebook − a tabbed notebook container.
gtk.Object − the base class of the PyGTK type hierarchy.
gtk.OptionMenu − a widget used to provide a list of valid choices.
gtk.Paned − a base class for widgets with two adjustable panes
gtk.Plug − A toplevel window for embedding into other processes.
gtk.ProgressBar − a widget which indicates progress visually.
gtk.RadioAction − an action that can be grouped so that only one can be active (new in PyGTK 2.4)
gtk.RadioButton − a choice of one of multiple check buttons.
gtk.RadioMenuItem − a choice from multiple check menu items.
gtk.RadioToolButton − a toolbar item that contains a radio button (new in PyGTK 2.4)
gtk.Range − a base class for widgets that allow a user to set a value in a range.
gtk.RcStyle − an object holding resource styles
gtk.Requisition − an object containing information about the desired space requirements of a widget.
gtk.Ruler − a base class for horizontal or vertical rulers
gtk.Scale − a base class for the scale widgets.
gtk.Scrollbar − a base class for scrollbar widgets.
gtk.ScrolledWindow − adds scrollbars to its child widget.

PyGTK 2.0 Reference Manual

The gtk Class Reference 942

gtk.SelectionData − an object that stores information about a selection
gtk.Separator − a base class for visual separator widgets.
gtk.SeparatorMenuItem − a separator used in menus.
gtk.SeparatorToolItem − a toolbar item that separates groups of other toolbar items (new in PyGTK 2.4)
gtk.Settings − an object that contains the global settings for the widgets on a gtk.gdk.Screen
gtk.SizeGroup − an object that groups widgets so they request the same size
gtk.Socket − a container for widgets from other processes.
gtk.SpinButton − retrieve an integer or floating−point number from the user.
gtk.Statusbar − report messages of minor importance to the user.
gtk.Style − an object that hold style information for widgets
gtk.Table − layout widgets in a two−dimensional array
gtk.TearoffMenuItem − a menu item used to tear off and reattach its menu.
gtk.TextAttributes − an object containing the attributes set on some text
gtk.TextBuffer − stores attributed text for display in a gtk.TextView
gtk.TextChildAnchor − a location in a textbuffer for placing widgets
gtk.TextIter − an object pointing at a location in a gtk.TextBuffer
gtk.TextMark − a position in a textbuffer that is preserved across textbuffer modifications
gtk.TextTag − an object used to apply attributes to text in a gtk.TextBuffer
gtk.TextTagTable − A collection of gtk.TextTag objects that can be used together
gtk.TextView − a widget that displays the contents of a gtk.TextBuffer
gtk.ToggleAction − an action which can be toggled between two states (new in PyGTK 2.4)
gtk.ToggleButton − a button that retains its state
gtk.ToggleToolButton − A gtk.ToolItem containing a toggle button (new in PyGTK 2.4)
gtk.Toolbar − a bar holding buttons and other widgets.
gtk.ToolButton − a gtk.ToolItem subclass that displays buttons (new in PyGTK 2.4)
gtk.ToolItem − the base class of widgets that can be added to gtk.Toolbar (new in PyGTK 2.4)
gtk.Tooltips − add tips to your widgets.
gtk.TreeDragDest − an interface that manages the data transfer for a destination of a gtk.TreeView drag and
drop operation
gtk.TreeDragSource − an interface that manages the source data transfer for a gtk.TreeView drag and drop
operation
gtk.TreeIter − An object that points at a path in a gtk.TreeModel.
gtk.TreeModel − the tree interface used by gtk.TreeView
gtk.TreeModelFilter − a gtk.TreeModel which hides parts of an underlying tree (new in PyGTK 2.4)
gtk.TreeModelSort − a tree model that is a sorted version of a child gtk.TreeModel
gtk.TreeModelRow − an object representing a row in a gtk.TreeModel
gtk.TreeModelRowIter − an object for iterating over a set of gtk.TreeModelRow objects.
gtk.TreeRowReference − an object maintaining a persistent reference to a gtk.TreeModel row (new in PyGTK
2.4)
gtk.TreeSelection − the selection object for gtk.TreeView
gtk.TreeSortable − an interface for sorting a gtk.TreeModel
gtk.TreeStore − a model for tree widgets with columns
gtk.TreeView − a widget for displaying both trees and lists.
gtk.TreeViewColumn − a visible column in a gtk.TreeView widget
gtk.UIManager − construct menus and toolbars from an XML description (new in PyGTK 2.4)
gtk.VBox − a vertical container box
gtk.VButtonBox − a container for arranging buttons vertically.
gtk.VPaned − A container with two panes arranged vertically.
gtk.VRuler − a vertical ruler.
gtk.VScale − a vertical slider widget used to select a value from a range.
gtk.VScrollbar − a vertical scrollbar
gtk.VSeparator − a vertical separator.
gtk.Viewport − a widget displaying a portion of a larger widget.
gtk.Widget − the base class for all PyGTK widgets

PyGTK 2.0 Reference Manual

The gtk Class Reference 943

gtk.Window − a top−level window that holds one child widget.
gtk.WindowGroup − a group of gtk.Window widgets
gtk Functions − miscellaneous functions
Stock Items − prebuilt common menu/toolbar items and corresponding icons
gtk Constants − the built−in constants of the gtk module

Prev Up Next
gobject Constants Home gtk.AboutDialog

gtk Constants
Prev The gtk Class Reference Next

gtk Constants

gtk Constants � the built−in constants of the gtk module

Synopsis

GTK Accel Flags Constants
GTK Anchor Type Constants
GTK Arrow Type Constants
GTK Attach Flag Options Constants
GTK ButtonBox Style Constants
GTK Buttons Type Constants
GTK Calendar Display Options Constants
GTK CellRenderer Mode Constants
GTK CellRenderer State Constants
GTK Corner Type Constants
GTK Curve Type Constants
GTK Debug Flag Constants
GTK Delete Type Constants
GTK Dest Defaults Constants
GTK Dialog Flag Constants
GTK Direction Type Constants
GTK Expander Style Constants
GTK FileChooser Action Constants
GTK FileChooser Error Constants
GTK FileFilter Flags Constants
GTK Icon Lookup Flags Constants
GTK Icon Size Constants
GTK IconTheme Error Constants
GTK IM Pre−edit Style Constants
GTK IM Status Style Constants
GTK Image Type Constants
GTK Justification Constants
GTK Menu Direction Type Constants
GTK Message Type Constants
GTK Metric Type Constants
GTK Movement Step Constants
GTK Notebook Tab Constants
GTK Object Flags Constants
GTK Orientation Constants
GTK Pack Type Constants
GTK Path Priority Type Constants
GTK Path Type Constants
GTK Policy Type Constants
GTK Position Type Constants
GTK ProgressBar Orientation Constants
GTK ProgressBar Style Constants

PyGTK 2.0 Reference Manual

gtk Constants 944

GTK RC Flags Constants
GTK RC Token Type Constants
GTK Relief Style Constants
GTK Resize Mode Constants
GTK Response Type Constants
GTK Scroll Step Constants
GTK Scroll Type Constants
GTK Selection Mode Constants
GTK Shadow Type Constants
GTK SizeGroup Mode Constants
GTK Sort Type Constants
GTK SpinButton Update Policy Constants
GTK Spin Type Constants
GTK State Type Constants
GTK Target Flags Constants
GTK Text Direction Constants
GTK Text Search Flags Constants Constants
GTK Text Window Type Constants
GTK Toolbar Space Style Constants
GTK Toolbar Style Constants
GTK TreeModel Flags Constants
GTK TreeView Drop Position Constants
GTK TreeViewColumn Sizing Constants
GTK UIManager Item Type Constants
GTK Update Type Constants
GTK Version Constants
GTK Widget Flags Constants
GTK Widget Help Type Constants
GTK Window Position Constants
GTK Window Type Constants
GTK Wrap Mode Constants

Description

GTK Accel Flags Constants

The Accel Flags constants are a set of bit−flags that specify characteristics of the accelerator.

gtk.ACCEL_VISIBLE if set, the accelerator is visible in a label
gtk.ACCEL_LOCKED If set the accelerator cannot be changed by the user.
gtk.ACCEL_MASK A mask for the Accel Flags

GTK Anchor Type Constants

The Anchor Type constants specify the anchor point of a widget.

gtk.ANCHOR_CENTER

gtk.ANCHOR_NORTH

gtk.ANCHOR_NORTH_WEST

gtk.ANCHOR_NORTH_EAST

gtk.ANCHOR_SOUTH

gtk.ANCHOR_SOUTH_WEST

gtk.ANCHOR_SOUTH_EAST

gtk.ANCHOR_WEST

gtk.ANCHOR_EAST,

PyGTK 2.0 Reference Manual

Synopsis 945

gtk.ANCHOR_N Same as gtk.ANCHOR_NORTH
gtk.ANCHOR_NW Same as gtk.ANCHOR_NORTH_WEST
gtk.ANCHOR_NE Same as gtk.ANCHOR_NORTH_EAST
gtk.ANCHOR_S Same as gtk.ANCHOR_SOUTH
gtk.ANCHOR_SW Same as gtk.ANCHOR_SOUTH_WEST
gtk.ANCHOR_SE Same as gtk.ANCHOR_SOUTH_EAST
gtk.ANCHOR_W Same as gtk.ANCHOR_WEST
gtk.ANCHOR_E Same as gtk.ANCHOR_EAST

GTK Arrow Type Constants

The Arrow Type constants specify the direction a gtk.Arrow should point.

gtk.ARROW_UP Represents an upward pointing arrow.
gtk.ARROW_DOWN Represents a downward pointing arrow.
gtk.ARROW_LEFT Represents a left pointing arrow.
gtk.ARROW_RIGHT Represents a right pointing arrow.

GTK Attach Flag Options Constants

The Attach Flag Options constants are a set of bit−flags that specify the expansion properties that a widget
will have when it (or its parent) is resized.

gtk.EXPAND The widget should expand to take up any extra space in its container that has been allocated.
gtk.SHRINK The widget should shrink as and when possible.
gtk.FILL The widget should fill the space allocated to it.

GTK ButtonBox Style Constants

The ButtonBox Style constants specify the style that a gtk.ButtonBox uses to layout the buttons it
contains. (See also: gtk.VButtonBox and gtk.HButtonBox).

gtk.BUTTONBOX_DEFAULT_STYLE Default packing.
gtk.BUTTONBOX_SPREAD Buttons are evenly spread across the ButtonBox.
gtk.BUTTONBOX_EDGE Buttons are placed at the edges of the ButtonBox.

gtk.BUTTONBOX_START
Buttons are grouped toward the start of box, (on the left for a HBox,
or the top for a VBox).

gtk.BUTTONBOX_END
Buttons are grouped toward the end of a box, (on the right for a
HBox, or the bottom for a VBox).

GTK Buttons Type Constants

The Buttons Type constants specify the pre−defined sets of buttons for the dialog. If none of these choices are
appropriate, simply use gtk.BUTTONS_NONE then call the add_buttons() method.

gtk.BUTTONS_NONE no buttons at all
gtk.BUTTONS_OK an OK button
gtk.BUTTONS_CLOSE a Close button

PyGTK 2.0 Reference Manual

GTK Anchor Type Constants 946

gtk.BUTTONS_CANCEL a Cancel button
gtk.BUTTONS_YES_NO Yes and No buttons
gtk.BUTTONS_OK_CANCEL OK and Cancel buttons

GTK Calendar Display Options Constants

The Calendar Display Options constants are a set of bit−flags that specify the display and behavior of a
gtk.Calendar.

gtk.CALENDAR_SHOW_HEADING Specifies that the month and year should be displayed.
gtk.CALENDAR_SHOW_DAY_NAMES Specifies that three letter day descriptions should be present.
gtk.CALENDAR_NO_MONTH_CHANGE Prevents the user from switching months with the calendar.

gtk.CALENDAR_SHOW_WEEK_NUMBERS
Displays each week numbers of the current year, down the left
side of the calendar.

gtk.CALENDAR_WEEK_START_MONDAY
Since GTK+ 2.4, this option is deprecated and ignored by
GTK+. The information on which day the calendar week starts
is derived from the locale.

GTK CellRenderer Mode Constants

The CellRenderer Mode constants specify how the user can interact with a particular cell.

gtk.CELL_RENDERER_MODE_INERT

The cell is just for display and cannot be interacted with.
Note that this doesn't mean that e.g. the row being drawn
can't be selected −− just that a particular element of it
cannot be individually modified.

gtk.CELL_RENDERER_MODE_ACTIVATABLE The cell can be clicked.
gtk.CELL_RENDERER_MODE_EDITABLE The cell can be edited or otherwise modified.

GTK CellRenderer State Constants

The CellRenderer State constants specify how a cell is to be rendered.

gtk.CELL_RENDERER_SELECTED
The cell is currently selected, and probably has a selection
colored background to render to.

gtk.CELL_RENDERER_PRELIT The mouse is hovering over the cell.
gtk.CELL_RENDERER_INSENSITIVE The cell is drawn in an insensitive manner
gtk.CELL_RENDERER_SORTED The cell is in a sorted row
gtk.CELL_RENDERER_FOCUSED The cell has the focus.

GTK Corner Type Constants

The Corner Type constants specify the corner a child widget should be placed in when packed into a
gtk.ScrolledWindow. This is effectively the opposite of where the scroll bars are placed.

gtk.CORNER_TOP_LEFT
Place the scrollbars on the right and bottom of the widget (default
behavior).

gtk.CORNER_BOTTOM_LEFT Place the scrollbars on the top and right of the widget.
gtk.CORNER_TOP_RIGHT Place the scrollbars on the left and bottom of the widget.

PyGTK 2.0 Reference Manual

GTK Buttons Type Constants 947

gtk.CORNER_BOTTOM_RIGHT Place the scrollbars on the top and left of the widget.

GTK Curve Type Constants

The Curve Type constants specify the type of curve to use for a gtk.Curve.

gtk.CURVE_TYPE_LINEAR Linear interpolation
gtk.CURVE_TYPE_SPLINE Spline interpolation
gtk.CURVE_TYPE_FREE Free form curve

GTK Debug Flag Constants

The Debug Flag constants are a set of bit−flags that specify the debug options.

gtk.DEBUG_MISC

gtk.DEBUG_PLUGSOCKET

gtk.DEBUG_TEXT

gtk.DEBUG_TREE

gtk.DEBUG_UPDATES

gtk.DEBUG_KEYBINDINGS

gtk.DEBUG_MULTIHEAD

GTK Delete Type Constants

The Delete Type constants specify the deletion type.

gtk.DELETE_CHARS Delete a character at the cursor
gtk.DELETE_WORD_ENDS Delete from the cursor to the end of a word
gtk.DELETE_WORDS Delete a number of words
gtk.DELETE_DISPLAY_LINES Delete a single line at the cursor
gtk.DELETE_DISPLAY_LINE_ENDS, Delete from the cursor to the end of the line.
gtk.DELETE_PARAGRAPH_ENDS Delete from the cursor to a paragraph end (usually to the period)
gtk.DELETE_PARAGRAPHS Delete several complete paragraphs at the cursor
gtk.DELETE_WHITESPACE Delete the whitespace at the cursor.

GTK Dest Defaults Constants

The Dest Defaults constants are a set of bit−flags that specify the various types of action that will be taken on
behalf of the user for a drag destination site.

gtk.DEST_DEFAULT_MOTION

If set for a widget, during a drag over this widget will check if the
drag matches this widget's list of possible targets and actions. The
gtk.gdk.DragContext.drag_status() method will be
called as appropriate.

gtk.DEST_DEFAULT_HIGHLIGHT
If set for a widget, draw a highlight on this widget as long as a drag is
over this widget and the widget drag format and action are acceptable.

gtk.DEST_DEFAULT_DROP If set for a widget, when a drop occurs, check if the drag matches this
widget's list of possible targets and actions. If so, call the
gtk.Widget.drag_get_data() method on behalf of the widget.

PyGTK 2.0 Reference Manual

GTK Corner Type Constants 948

Whether or not the drop is successful, call the
gtk.gdk.DragContext.finish() method. If the action was a
move, then if the drag was successful, then TRUE will be passed for
the delete parameter to the gtk.gdk.DragContext.finish()
method.

gtk.DEST_DEFAULT_ALL If set, specifies that all default actions should be taken.

GTK Dialog Flag Constants

The Dialog Flag constants are a set of bit−flags that specify characteristics of a dialog.

gtk.DIALOG_MODAL If set, the dialog grabs all keyboard events
gtk.DIALOG_DESTROY_WITH_PARENT If set, the dialog is destroyed when its parent is.
gtk.DIALOG_NO_SEPARATOR If set, there is no separator bar above the buttons.

GTK Direction Type Constants

The Direction Type constants specify a direction for moving a cursor or focus.

gtk.DIR_TAB_FORWARD Tab forward.
gtk.DIR_TAB_BACKWARD Tab backward.
gtk.DIR_UP Up.
gtk.DIR_DOWN Down.
gtk.DIR_LEFT Left.
gtk.DIR_RIGHT Right.

GTK Expander Style Constants

The Expander Style constants specify the style of the expanders drawn by a gtk.TreeView

gtk.EXPANDER_COLLAPSED The style used for a collapsed subtree.
gtk.EXPANDER_SEMI_COLLAPSED Intermediate style used during animation.
gtk.EXPANDER_SEMI_EXPANDED Intermediate style used during animation.
gtk.EXPANDER_EXPANDED The style used for an expanded subtree.

GTK FileChooser Action Constants

The FileChooser Action constants specify the mode of a gtk.FileChooser i.e. whether it is being used to
open existing files or to save to a possibly new file.

gtk.FILE_CHOOSER_ACTION_OPEN
Indicates open mode. The file chooser will only
let the user pick an existing file.

gtk.FILE_CHOOSER_ACTION_SAVE
Indicates save mode. The file chooser will let
the user pick an existing file, or type in a new
filename.

gtk.FILE_CHOOSER_ACTION_SELECT_FOLDER
Indicates an Open mode for selecting folders.
The file chooser will let the user pick an
existing folder.

gtk.FILE_CHOOSER_ACTION_CREATE_FOLDER Indicates a mode for creating a new folder. The
file chooser will let the user name an existing or

PyGTK 2.0 Reference Manual

GTK Dest Defaults Constants 949

new folder.

GTK FileChooser Error Constants

The FileChooser Error constants specify the various errors that can occur while calling gtk.FileChooser
functions.

gtk.FILE_CHOOSER_ERROR_NONEXISTENT Indicates that a file does not exist.
gtk.FILE_CHOOSER_ERROR_BAD_FILENAME Indicates a malformed filename.

GTK FileFilter Flags Constants

The FileFilter Flags constants are a set of bit−flags that specify the file types to filter the files against.

gtk.FILE_FILTER_FILENAME The full pathname of the file e.g. /tmp/junk.
gtk.FILE_FILTER_URI The full URI of the file e.g. file:///tmp/junk.
gtk.FILE_FILTER_DISPLAY_NAME The simple name of the file e.g. junk.
gtk.FILE_FILTER_MIME_TYPE The MIME type of the file e.g. text/html.

GTK Icon Lookup Flags Constants

The Icon Lookup Flags constants are a set of bit−flags that specify options for the
gtk.IconTheme.lookup_icon() method

gtk.ICON_LOOKUP_NO_SVG
Never return SVG (Scalable Vector Graphics) icons,
even if gdk−pixbuf supports them. Cannot be used
together with gtk.ICON_LOOKUP_FORCE_SVG.

gtk.ICON_LOOKUP_FORCE_SVG
Return SVG icons, even if gdk−pixbuf doesn't support
them. Cannot be used together with
gtk.ICON_LOOKUP_NO_SVG.

gtk.ICON_LOOKUP_USE_BUILTIN

When passed to the
gtk.IconTheme.lookup_icon() method includes
builtin icons as well as files. For a builtin icon, the
gtk.IconInfo.get_filename() method returns
None and you need to call the
gtk.IconInfo.get_builtin_pixbuf() method.

GTK Icon Size Constants

The Icon Size constants specify the pre−defined sizes of icons for various application uses.

gtk.ICON_SIZE_INVALID

gtk.ICON_SIZE_MENU

gtk.ICON_SIZE_SMALL_TOOLBAR

gtk.ICON_SIZE_LARGE_TOOLBAR

gtk.ICON_SIZE_BUTTON

gtk.ICON_SIZE_DND

gtk.ICON_SIZE_DIALOG

PyGTK 2.0 Reference Manual

GTK FileChooser Action Constants 950

GTK IconTheme Error Constants

The IconTheme Error constants specify error codes for gtk.IconTheme operations.

gtk.ICON_THEME_NOT_FOUND The icon specified does not exist in the theme
gtk.ICON_THEME_FAILED An unspecified error occurred.

GTK IM Pre−edit Style Constants

The IM Pre−edit Style constants specify the style of input method pre−edit display.

gtk.IM_PREEDIT_NOTHING

gtk.IM_PREEDIT_CALLBACK

gtk.IM_PREEDIT_NONE

GTK IM Status Style Constants

The IM Status Style constants specify the style of input method display.

gtk.IM_STATUS_NOTHING

gtk.IM_STATUS_CALLBACK

gtk.IM_STATUS_NONE

GTK Image Type Constants

The Image Type constants specify the type of image in a gtk.Image.

gtk.IMAGE_EMPTY There is no image displayed by the widget
gtk.IMAGE_PIXMAP The widget contains a gtk.gdk.Pixmap
gtk.IMAGE_IMAGE The widget contains a gtk.gdk.Image
gtk.IMAGE_PIXBUF The widget contains a gtk.gdk.Pixbuf
gtk.IMAGE_STOCK The widget contains a stock icon name (see the Stock Items reference)
gtk.IMAGE_ICON_SET The widget contains a gtk.IconSet
gtk.IMAGE_ANIMATION The widget contains a gtk.gdk.PixbufAnimation

GTK Justification Constants

The Justification constants specify the justification of the text inside a gtk.Label widget. (See also
gtk.Alignment).

gtk.JUSTIFY_LEFT The text is placed at the left edge of the label.
gtk.JUSTIFY_RIGHT The text is placed at the right edge of the label.
gtk.JUSTIFY_CENTER The text is placed in the center of the label.
gtk.JUSTIFY_FILL The text is placed is distributed across the label.

GTK Menu Direction Type Constants

The Menu Direction Type constants specify directional movements within a menu.

PyGTK 2.0 Reference Manual

GTK IconTheme Error Constants 951

gtk.MENU_DIR_PARENT To the parent menu shell.
gtk.MENU_DIR_CHILD To the submenu, if any, associated with the item.
gtk.MENU_DIR_NEXT To the next menu item.
gtk.MENU_DIR_PREV To the previous menu item.

GTK Message Type Constants

The Message Type constants specify the type of message being displayed in the message dialog.

gtk.MESSAGE_INFO Informational message
gtk.MESSAGE_WARNING Nonfatal warning message
gtk.MESSAGE_QUESTION Question requiring a choice
gtk.MESSAGE_ERROR Fatal error message

GTK Metric Type Constants

The Metric Type constants specify the metric used by a gtk.Ruler.

gtk.PIXELS Pixels.
gtk.INCHES Inches.
gtk.CENTIMETERS Centimeters.

GTK Movement Step Constants

The Movement Step constants specify the steps used in movement through text.

gtk.MOVEMENT_LOGICAL_POSITIONS move by graphemes
gtk.MOVEMENT_VISUAL_POSITIONS move by graphemes
gtk.MOVEMENT_WORDS move by words
gtk.MOVEMENT_DISPLAY_LINES move by lines(wrapped lines)
gtk.MOVEMENT_DISPLAY_LINE_ENDS move to line ends(wrapped lines)
gtk.MOVEMENT_PARAGRAPHS move by paragraphs(newline−ended lines)
gtk.MOVEMENT_PARAGRAPH_ENDS move to ends of a paragraph
gtk.MOVEMENT_PAGES move by pages
gtk.MOVEMENT_BUFFER_ENDS move to ends of the buffer

GTK Notebook Tab Constants

The Notebook Tab constants specify the tab position to receive focus.

gtk.NOTEBOOK_TAB_FIRST The first gtk.Notebook tab
gtk.NOTEBOOK_TAB_LAST The last gtk.Notebook tab

GTK Object Flags Constants

The Object Flags constants are a set of bit−flags that specify the state of the gtk.Object.

gtk.IN_DESTRUCTION
The object is currently being destroyed. This is used internally to prevent
reinvocations during destruction.

PyGTK 2.0 Reference Manual

GTK Menu Direction Type Constants 952

gtk.FLOATING The object is orphaned.

GTK Orientation Constants

The Orientation constants specify the orientation of widgets which can be switched between horizontal and
vertical orientation on the fly, like gtk.Toolbar.

gtk.ORIENTATION_HORIZONTAL The widget is in horizontal orientation.
gtk.ORIENTATION_VERTICAL The widget is in vertical orientation.

GTK Pack Type Constants

The Pack Type constants specify the packing location gtk.Box children. (See: gtk.VBox, gtk.HBox,
and gtk.ButtonBox).

gtk.PACK_START The child is packed into the start of the box
gtk.PACK_END The child is packed into the end of the box

GTK Path Priority Type Constants

The Path Priority Type constants are a set of bit−flags that specify the priority of path lookup.

gtk.PATH_PRIO_LOWEST

gtk.PATH_PRIO_GTK

gtk.PATH_PRIO_APPLICATION

gtk.PATH_PRIO_THEME

gtk.PATH_PRIO_RC

gtk.PATH_PRIO_HIGHEST

GTK Path Type Constants

The Path Type constants specify

gtk.PATH_WIDGET

gtk.PATH_WIDGET_CLASS

gtk.PATH_CLASS

GTK Policy Type Constants

The Policy Type constants specify when a scroll bar will be visible.

gtk.POLICY_ALWAYS the scrollbar is always present

gtk.POLICY_AUTOMATIC the scrollbar is present only if needed i.e. the contents are larger than the
window

gtk.POLICY_NEVER the scrollbar is never present

GTK Position Type Constants

The Position Type constants specify

PyGTK 2.0 Reference Manual

GTK Object Flags Constants 953

gtk.POS_LEFT The feature is at the left edge.
gtk.POS_RIGHT The feature is at the right edge.
gtk.POS_TOP The feature is at the top edge.
gtk.POS_BOTTOM The feature is at the bottom edge

GTK ProgressBar Orientation Constants

The ProgressBar Orientation constants specify the orientation and growth direction for a visible progress bar.

gtk.PROGRESS_LEFT_TO_RIGHT A horizontal progress bar growing from left to right.
gtk.PROGRESS_RIGHT_TO_LEFT A horizontal progress bar growing from right to left.
gtk.PROGRESS_BOTTOM_TO_TOP A vertical progress bar growing from bottom to top.
gtk.PROGRESS_TOP_TO_BOTTOM A vertical progress bar growing from top to bottom.

GTK ProgressBar Style Constants

The ProgressBar Style constants specify the style of the gtk.ProgressBar display.

gtk.PROGRESS_CONTINUOUS The progress bar grows in a smooth, continuous manner.
gtk.PROGRESS_DISCRETE The progress bar grows in discrete, visible blocks.

GTK RC Flags Constants

The>RC Flags constants are a set of bit−flags that specify which fields of a gtk.RcStyle have been set for
each state.

gtk.RC_FG If present, the foreground color has been set for this state.
gtk.RC_BG If present, the background color has been set for this state.
gtk.RC_TEXT If present, the text color has been set for this state.
gtk.RC_BASE If present, the base color has been set for this state.

GTK RC Token Type Constants

The RC Token Type constants specify the tokens in the RC file. It is exposed so that theme engines can reuse
these tokens when parsing the theme−engine specific portions of a RC file.

gtk.RC_TOKEN_INVALID

gtk.RC_TOKEN_INCLUDE

gtk.RC_TOKEN_NORMAL

gtk.RC_TOKEN_ACTIVE

gtk.RC_TOKEN_PRELIGHT

gtk.RC_TOKEN_SELECTED

gtk.RC_TOKEN_INSENSITIVE

gtk.RC_TOKEN_FG

gtk.RC_TOKEN_BG

gtk.RC_TOKEN_TEXT

gtk.RC_TOKEN_BASE

gtk.RC_TOKEN_XTHICKNESS

PyGTK 2.0 Reference Manual

GTK Position Type Constants 954

gtk.RC_TOKEN_YTHICKNESS

gtk.RC_TOKEN_FONT

gtk.RC_TOKEN_FONTSET

gtk.RC_TOKEN_FONT_NAME

gtk.RC_TOKEN_BG_PIXMAP

gtk.RC_TOKEN_PIXMAP_PATH

gtk.RC_TOKEN_STYLE

gtk.RC_TOKEN_BINDING

gtk.RC_TOKEN_BIND

gtk.RC_TOKEN_WIDGET

gtk.RC_TOKEN_WIDGET_CLASS

gtk.RC_TOKEN_CLASS

gtk.RC_TOKEN_LOWEST

gtk.RC_TOKEN_GTK

gtk.RC_TOKEN_APPLICATION

gtk.RC_TOKEN_THEME

gtk.RC_TOKEN_RC

gtk.RC_TOKEN_HIGHEST

gtk.RC_TOKEN_ENGINE

gtk.RC_TOKEN_MODULE_PATH

gtk.RC_TOKEN_IM_MODULE_PATH

gtk.RC_TOKEN_IM_MODULE_FILE

gtk.RC_TOKEN_STOCK

gtk.RC_TOKEN_LTR

gtk.RC_TOKEN_RTL

gtk.RC_TOKEN_LAST

GTK Relief Style Constants

The Relief Style constants specify

gtk.RELIEF_NORMAL Draw a normal relief.
gtk.RELIEF_HALF Draw a half relief.
gtk.RELIEF_NONE Draw no relief.

GTK Resize Mode Constants

The Resize Mode constants specify how resize requests are handled by a widget.

gtk.RESIZE_PARENT Pass resize request to the parent
gtk.RESIZE_QUEUE Queue resizes on this widget
gtk.RESIZE_IMMEDIATE Perform the resizes now

GTK Response Type Constants

The Response Type constants specify pre−defined response values.

PyGTK 2.0 Reference Manual

GTK RC Token Type Constants 955

gtk.RESPONSE_NONE

gtk.RESPONSE_REJECT

gtk.RESPONSE_ACCEPT

gtk.RESPONSE_DELETE_EVENT

gtk.RESPONSE_OK

gtk.RESPONSE_CANCEL

gtk.RESPONSE_CLOSE

gtk.RESPONSE_YES

gtk.RESPONSE_NO

gtk.RESPONSE_APPLY

gtk.RESPONSE_HELP

GTK Scroll Step Constants

The Scroll Step constants specify the size of the scroll movements.

gtk.SCROLL_STEPS Scroll up or down in step increments
gtk.SCROLL_PAGES, Scroll up or down in page increments
gtk.SCROLL_ENDS Scroll to the beginning or end
gtk.SCROLL_HORIZONTAL_STEPS Scroll left or right in step increments
gtk.SCROLL_HORIZONTAL_PAGES Scroll left or right in step increments
gtk.SCROLL_HORIZONTAL_ENDS Scroll to the far left end or far right end.

GTK Scroll Type Constants

The Scroll Type constants specify the type of scroll \movement.

gtk.SCROLL_NONE

gtk.SCROLL_JUMP

gtk.SCROLL_STEP_BACKWARD

gtk.SCROLL_STEP_FORWARD

gtk.SCROLL_PAGE_BACKWARD

gtk.SCROLL_PAGE_FORWARD

gtk.SCROLL_STEP_UP

gtk.SCROLL_STEP_DOWN

gtk.SCROLL_PAGE_UP

gtk.SCROLL_PAGE_DOWN

gtk.SCROLL_STEP_LEFT,

gtk.SCROLL_STEP_RIGHT

gtk.SCROLL_PAGE_LEFT

gtk.SCROLL_PAGE_RIGHT

gtk.SCROLL_START

gtk.SCROLL_END

PyGTK 2.0 Reference Manual

GTK Response Type Constants 956

GTK Selection Mode Constants

The Selection Mode constants specify the mode of selection in a gtk.Treeview

gtk.SELECTION_NONE No selection allowed.
gtk.SELECTION_SINGLE A single selection allowed by clicking.
gtk.SELECTION_BROWSE A single selection allowed by browsing with the pointer.
gtk.SELECTION_MULTIPLE Multiple items can be selected at once.
gtk.SELECTION_EXTENDED Deprecated.

GTK Shadow Type Constants

The Shadow Type constants specify the appearance of an outline typically provided by a gtk.Frame.

gtk.SHADOW_NONE No outline.
gtk.SHADOW_IN The outline is beveled inward.
gtk.SHADOW_OUT The outline is beveled outward like a button.
gtk.SHADOW_ETCHED_IN The outline itself is an inward bevel, but the frame bevels outward
gtk.SHADOW_ETCHED_OUT The outline itself is an outward bevel, but the frame bevels inward

GTK SizeGroup Mode Constants

The SizeGroup Mode constants specify the directions in which the size group affects the requested sizes of its
component widgets.

gtk.SIZE_GROUP_NONE The group has no affect
gtk.SIZE_GROUP_HORIZONTAL The group affects horizontal requisition
gtk.SIZE_GROUP_VERTICAL The group affects vertical requisition
gtk.SIZE_GROUP_BOTH The group affects both horizontal and vertical requisition

GTK Sort Type Constants

The Sort Type constants specify he direction of a sort.

gtk.SORT_ASCENDING Sorting is in ascending order.
gtk.SORT_DESCENDING Sorting is in descending order.

GTK SpinButton Update Policy Constants

The SpinButton Update Policy constants specify the update policy for a gtk.SpinButton.

gtk.UPDATE_ALWAYS
When refreshing a gtk.SpinButton, the value is always
displayed.

gtk.UPDATE_IF_VALID
When refreshing a gtk.SpinButton, the value is only displayed if
it is valid within the bounds of the spin button's gtk.Adjustment.

GTK Spin Type Constants

The Spin Type constants specify the step movement of a gtk.SpinButton.

PyGTK 2.0 Reference Manual

GTK Selection Mode Constants 957

gtk.SPIN_STEP_FORWARD
Spin a gtk.SpinButton forward by the step value of the spin
button's gtk.Adjustment.

gtk.SPIN_STEP_BACKWARD
Spin a gtk.SpinButton backward by the step value of the
spin button's gtk.Adjustment.

gtk.SPIN_PAGE_FORWARD
Spin a gtk.SpinButton forward by the page value of the
spin button's gtk.Adjustment.

gtk.SPIN_PAGE_BACKWARD
Spin a gtk.SpinButton backward by the page value of the
spin button's gtk.Adjustment.

gtk.SPIN_HOME
Set the spin button's value to the minimum possible value
specified by its gtk.Adjustment

gtk.SPIN_END
Set the spin button's value to the maximum possible value
specified by its gtk.Adjustment

gtk.SPIN_USER_DEFINED
The programmer must specify the exact amount to spin the
gtk.SpinButton.

GTK State Type Constants

The State Type constants specify the current state of a widget; the state determines how the widget is drawn.
The State Type constants are also used to identify different colors in a gtk.Style for drawing, so states can
be used for subparts of a widget as well as entire widgets.

gtk.STATE_NORMAL State during normal operation.
gtk.STATE_ACTIVE State of a currently active widget, such as a depressed button.

gtk.STATE_PRELIGHT
State indicating that the mouse pointer is over the widget and the
widget will respond to mouse clicks.

gtk.STATE_SELECTED State of a selected item, such the selected row in a list.
gtk.STATE_INSENSITIVE State indicating that the widget is unresponsive to user actions.

GTK Target Flags Constants

The Target Flags constants are a set of bit−flags that specify constraints on the target of a drag operation.

gtk.TARGET_SAME_APP
If this is set, the target will only be selected for drags within a single
application.

gtk.TARGET_SAME_WIDGET f this is set, the target will only be selected for drags within a single widget.

GTK Text Direction Constants

The Text Direction constants specify the direction of the text.

gtk.TEXT_DIR_NONE Text direction not specified.
gtk.TEXT_DIR_LTR, Left to right direction.
gtk.TEXT_DIR_RTL Right to left direction

GTK Text Search Flags Constants Constants

The Text Search Flags constants are a set of bit−flags that specify what types of text are suitable for search
matches in a gtk.TextView.

gtk.TEXT_SEARCH_VISIBLE_ONLY Only visible text can match the search criteria.

PyGTK 2.0 Reference Manual

GTK Spin Type Constants 958

gtk.TEXT_SEARCH_TEXT_ONLY Both visible and invisible text can match the search criteria.

GTK Text Window Type Constants

The Text Window Type constants specify the gtk.gdk.Window objects that make up a gtk.TextView.
See the gtk.TextView.get_window() method for more detail.

gtk.TEXT_WINDOW_WIDGET The gtk.gdk.Window of the gtk.TextView widget.
gtk.TEXT_WINDOW_TEXT The gtk.gdk.Window that contains the text in the gtk.TextView.
gtk.TEXT_WINDOW_LEFT The left child gtk.gdk.Window of the gtk.TextView.
gtk.TEXT_WINDOW_RIGHT The right child gtk.gdk.Window of the gtk.TextView.
gtk.TEXT_WINDOW_TOP The top child gtk.gdk.Window of the gtk.TextView.
gtk.TEXT_WINDOW_BOTTOM The bottom child gtk.gdk.Window of the gtk.TextView.

GTK Toolbar Space Style Constants

The Toolbar Space Style constants specify whether a spacer is displayed as a vertical line or space.

gtk.TOOLBAR_SPACE_EMPTY, Show as an empty space
gtk.TOOLBAR_SPACE_LINE Show as a vertical line.

GTK Toolbar Style Constants

The Toolbar Style constants specify the appearance of a gtk.Toolbar. Note that setting the toolbar style
overrides the user's preferences for the default toolbar style.

gtk.TOOLBAR_ICONS Buttons display only icons in the toolbar.
gtk.TOOLBAR_TEXT Buttons display only text labels in the toolbar.
gtk.TOOLBAR_BOTH Buttons display text and icons in the toolbar.

gtk.TOOLBAR_BOTH_HORIZ
Buttons display icons and text alongside each other, rather than vertically
stacked

GTK TreeModel Flags Constants

The TreeModel Flags constants are a set of bit−flags that specify various properties of a gtk.TreeModel.
They are returned by the gtk.TreeModel.get_flags() method, and must be static for the lifetime of
the object. A more complete description of gtk.TREE_MODEL_ITERS_PERSIST can be found in the
gtk.TreeView reference description.

gtk.TREE_MODEL_ITERS_PERSIST Iterators survive all signals emitted by the tree.
gtk.TREE_MODEL_LIST_ONLY The model is a list only, and never has children

GTK TreeView Drop Position Constants

The TreeView Drop Position constants specify where a dropped row goes.

gtk.TREE_VIEW_DROP_BEFORE The dropped item goes before the row it's dropped on.
gtk.TREE_VIEW_DROP_AFTER The dropped item goes after the row it's dropped on.

gtk.TREE_VIEW_DROP_INTO_OR_BEFORE
The dropped item becomes a child of the row it's
dropped on. Fallback to goes before.

PyGTK 2.0 Reference Manual

GTK Text Search Flags Constants Constants 959

gtk.TREE_VIEW_DROP_INTO_OR_AFTER
The dropped item becomes a child of the row it's
dropped on. Fallback to goes after.

GTK TreeViewColumn Sizing Constants

The TreeViewColumn Sizing constants specify the sizing method the column uses to determine its width.
Please note that gtk.TREE_VIEW_COLUMN_AUTOSIZE are inefficient for large views, and can make
columns appear choppy.

gtk.TREE_VIEW_COLUMN_GROW_ONLY Columns only get bigger in reaction to changes in the model

gtk.TREE_VIEW_COLUMN_AUTOSIZE
Columns resize to be the optimal size every time the model
changes.

gtk.TREE_VIEW_COLUMN_FIXED Columns are a fixed numbers of pixels wide.

GTK UIManager Item Type Constants

The UIManager Item Type constants specify what UI element to create.

gtk.UI_MANAGER_AUTO Pick the type of the UI element according to context.
gtk.UI_MANAGER_MENUBAR Create a menubar.
gtk.UI_MANAGER_MENU Create a menu.
gtk.UI_MANAGER_TOOLBAR Create a toolbar.
gtk.UI_MANAGER_PLACEHOLDER Insert a placeholder.
gtk.UI_MANAGER_POPUP Create a popup menu.
gtk.UI_MANAGER_MENUITEM Create a menuitem.
gtk.UI_MANAGER_TOOLITEM Create a toolitem.
gtk.UI_MANAGER_SEPARATOR Create a separator.
gtk.UI_MANAGER_ACCELERATOR Install an accelerator.

GTK Update Type Constants

The Update Type constants specify the update policy of a gtk.Range and gtk.SpinButton.

gtk.UPDATE_CONTINUOUS Update the display continuously as the pointer is moved.
gtk.UPDATE_DISCONTINUOUS Update the display at intervals while the pointer is being moved.
gtk.UPDATE_DELAYED Update the display after the pointer has finished moving.

GTK Version Constants

The Version constants specify the versions of GTK+ and PyGTK as a 3−tuple containing the major, minor and
patch release numbers.

gtk.gtk_version A 3−tuple containing the GTK+ (major, minor, patch) release numbers.
gtk.pygtk_version A 3−tuple containing the PyGTK (major, minor, patch) release numbers.

GTK Widget Flags Constants

The Widget Flags constants are a set of bit−flags that specify certain properties of the widget.

PyGTK 2.0 Reference Manual

GTK TreeView Drop Position Constants 960

gtk.TOPLEVEL
Widgets without a real parent, as there are gtk.Window and gtk.Menu
objects that have this flag set throughout their lifetime. Toplevel widgets
always contain their own gtk.gdk.Window.

gtk.NO_WINDOW
Indicative for a widget that does not provide its own gtk.gdk.Window.
Visible action (e.g. drawing) is performed on the parent's
gtk.gdk.Window.

gtk.REALIZED
Set by the gtk.Widget.realize() method , unset by the
gtk.Widget.unrealize() method. A realized widget has an associated
gtk.gdk.Window.

gtk.MAPPED

Set by the gtk.Widget.map() method, unset by the
gtk.Widget.unmap() method. Only realized widgets can be mapped. It
means that the gtk.Window.show() method has been called on the widgets
window(s).

gtk.VISIBLE
Set by the gtk.Widget.show() method, unset by the
gtk.Widget.hide() method. Implies that a widget will be mapped as soon
as its parent is mapped.

gtk.SENSITIVE

Set and unset by the gtk.Widget.set_sensitive() method. The
sensitivity of a widget determines whether it will receive certain events (e.g.
button or key presses). One premise for the widgets sensitivity is to have this
flag set.

gtk.PARENT_SENSITIVE

Set and unset by the gtk.Widget.set_sensitive() method operations
on the parents of the widget. This is the second premise for the widgets
sensitivity. Once it has gtk.SENSITIVE and gtk.PARENT_SENSITIVE
set, its state is effectively sensitive.

gtk.CAN_FOCUS Determines if a widget is able to handle focus grabs.

gtk.HAS_FOCUS
Set by the gtk.Widget.grab_focus() method for widgets that also have
gtk.CAN_FOCUS set. The flag will be unset once another widget grabs the
focus.

gtk.CAN_DEFAULT
The widget is allowed to receive the default action via the
gtk.Widget.grab_default() method.

gtk.HAS_DEFAULT The widget currently is receiving the default action.

gtk.HAS_GRAB

Set by the gtk.Widget.grab_add() method, unset by the
gtk.Widget.grab_remove() method. It means that the widget is in the
grab_widgets stack, and will be the preferred one for receiving events other
than ones of cosmetic value.

gtk.RC_STYLE
Indicates that the widgets style has been looked up through the rc mechanism.
It does not imply that the widget actually had a style defined through the rc
mechanism.

gtk.COMPOSITE_CHILD
Indicates that the widget is a composite child of its parent; see the
gtk.widget_push_composite_child() and
gtk.widget_pop_composite_child() functions.

gtk.NO_REPARENT Unused.

gtk.APP_PAINTABLE
Set and unset by the gtk.Widget.set_app_paintable() method. Must
be set on widgets whose window the application directly draws on, in order to
keep PyGTK and GTK+ from overwriting the drawn stuff.

gtk.RECEIVES_DEFAULT
The widget when focused will receive the default action and have
gtk.HAS_DEFAULT set even if there is a different widget set as default.

gtk.DOUBLE_BUFFERED
Set and unset by the gtk.Widget.set_double_buffered() method.
Indicates that exposes done on the widget should be double−buffered.

gtk.NO_SHOW_ALL If TRUE, the show_all() and hide_all() methods do not affect the

PyGTK 2.0 Reference Manual

GTK Widget Flags Constants 961

widget.

GTK Widget Help Type Constants

The Widget Help Type constants specify the help type of the widget.

gtk.WIDGET_HELP_TOOLTIP Tooltip help.
gtk.WIDGET_HELP_WHATS_THIS What's this help.

GTK Window Position Constants

The Window Position constants specify hints for initial window placement.

gtk.WIN_POS_NONE No influence is made on placement.
gtk.WIN_POS_CENTER Windows should be placed in the center of the screen.

gtk.WIN_POS_MOUSE
Windows should be placed at the current mouse
position.

gtk.WIN_POS_CENTER_ALWAYS Keep window centered as it changes size, etc.

gtk.WIN_POS_CENTER_ON_PARENT
Center the window on its transient parent (see the
gtk.Window.set_transient_for()) method.

GTK Window Type Constants

The Window Type constants specify the type of a gtk.Window. Most things you'd consider a "window"
should have type gtk.WINDOW_TOPLEVEL; windows with this type are managed by the window manager
and have a frame by default (call the set_decorated() method to toggle the frame). Windows with type
gtk.WINDOW_POPUP are ignored by the window manager; window manager keybindings won't work on
them, the window manager won't decorate the window with a frame, many GTK+ features that rely on the
window manager will not work (e.g. resize grips and maximization/minimization). gtk.WINDOW_POPUP is
used to implement widgets such as gtk.Menu or tooltips that you normally don't think of as windows per se.
Nearly all windows should be gtk.WINDOW_TOPLEVEL. In particular, do not use gtk.WINDOW_POPUP
just to turn off the window borders; use the gtk.Window.set_decorated() method for that.

gtk.WINDOW_TOPLEVEL A regular window, such as a dialog.
gtk.WINDOW_POPUP A special window such as a tooltip.

GTK Wrap Mode Constants

The Wrap Mode constants specify the type of line wrapping in a gtk.TextView.

gtk.WRAP_NONE Do not wrap lines − just make the text area wider

gtk.WRAP_CHAR
Wrap text, breaking lines anywhere the cursor can appear (usually between
characters)

gtk.WRAP_WORD Wrap text, breaking lines in between words

gtk.WRAP_WORD_CHAR
Wrap text, breaking lines in between words, or if that is not enough, also between
graphemes.

Prev Up Next
Stock Items Home The gtk.gdk Class Reference

gtk Functions

PyGTK 2.0 Reference Manual

GTK Widget Help Type Constants 962

Prev The gtk Class Reference Next

gtk Functions

gtk Functions � miscellaneous functions

Synopsis

gtk.AboutDialog Functions

 def gtk.about_dialog_set_email_hook(func, data)
 def gtk.about_dialog_set_url_hook(func, data)

gtk.AccelGroup Functions

 def gtk.accelerator_valid(keyval, modifiers)
 def gtk.accelerator_parse(accelerator)
 def gtk.accelerator_name(accelerator_key, accelerator_mods)
 def gtk.accelerator_set_default_mod_mask(default_mod_mask)
 def gtk.accelerator_get_default_mod_mask()
 def gtk.accelerator_get_label(accelerator_key, accelerator_mods)
 def gtk.accel_map_add_entry(accel_path, accel_key, accel_mods)
 def gtk.accel_map_lookup_entry(accel_path)
 def gtk.accel_map_change_entry(accel_path, accel_key, accel_mods, replace)
 def gtk.accel_map_load(file_name)
 def gtk.accel_map_save(file_name)
 def gtk.accel_map_load_fd(fd)
 def gtk.accel_map_save_fd(fd)
 def gtk.accel_map_lock_path(accel_path)
 def gtk.accel_map_unlock_path(accel_path)
 def gtk.accel_map_add_filter(filter_pattern)
 def gtk.accel_groups_from_object(object)

gtk.CellView Functions

 def gtk.cell_view_new_with_text(text)
 def gtk.cell_view_new_with_markup(markup)
 def gtk.cell_view_new_with_pixbuf(pixbuf)

gtk.Clipboard Functions

 def gtk.clipboard_get()

gtk.ColorSelection Functions

 def gtk.color_selection_palette_from_string(str)
 def gtk.color_selection_palette_to_string(colors)

gtk.ComboBox Functions

 def gtk.combo_box_new_text()

PyGTK 2.0 Reference Manual

GTK Wrap Mode Constants 963

gtk.ComboBoxEntry Functions

 def gtk.combo_box_entry_new_text()

gtk.Container Functions

 def gtk.container_class_install_child_property(klass, property_id, pspec)
 def gtk.container_class_list_child_properties(klass)

gtk.Expander Functions

 def gtk.expander_new_with_mnemonic(label)

gtk.IconFactory Functions

 def gtk.icon_factory_lookup_default(stock_id)

gtk.IconSource Functions

 def gtk.icon_size_lookup(icon_size)
 def gtk.icon_size_lookup_for_settings(settings, icon_size)
 def gtk.icon_size_register(name, width, height)
 def gtk.icon_size_register_alias(alias, target)
 def gtk.icon_size_from_name(name)
 def gtk.icon_size_get_name(size)

gtk.IconTheme Functions

 def gtk.icon_theme_get_default()
 def gtk.icon_theme_get_for_screen(screen)
 def gtk.icon_theme_add_builtin_icon(icon_name, size, pixbuf)

gtk.Image Functions

 def gtk.image_new_from_stock(stock_id, size)
 def gtk.image_new_from_icon_set(icon_set, size)
 def gtk.image_new_from_animation(animation)
 def gtk.image_new_from_icon_name(icon_name, size)

gtk.ItemFactory Functions

 def gtk.item_factory_from_widget(widget)
 def gtk.item_factory_path_from_widget(widget)

gtk.Object Functions

 def gtk.bindings_activate(object, keyval, modifiers)
 def gtk.bindings_activate_event(object, event)

gtk.Plug Functions

 def gtk.plug_new_for_display(display, socket_id)

PyGTK 2.0 Reference Manual

gtk.ComboBoxEntry Functions 964

gtk.RcStyle Functions

 def gtk.rc_add_default_file(filename)
 def gtk.rc_set_default_files(filenames)
 def gtk.rc_get_default_files()
 def gtk.rc_get_style_by_paths(settings, widget_path, class_path, type)
 def gtk.rc_reparse_all_for_settings(settings, force_load)
 def gtk.rc_reset_styles(settings)
 def gtk.rc_parse(filename)
 def gtk.rc_parse_string(rc_string)
 def gtk.rc_reparse_all()
 def gtk.rc_find_module_in_path(module_file)
 def gtk.rc_get_theme_dir()
 def gtk.rc_get_module_dir()
 def gtk.rc_get_im_module_path()
 def gtk.rc_get_im_module_file()

gtk.SelectionData Functions

 def gtk.selection_owner_set_for_display(display, widget, selection, time=0)
 def gtk.target_list_add_image_targets(list=None, info=0, writable=FALSE)
 def gtk.target_list_add_text_targets(list=None, info=0)
 def gtk.target_list_add_uri_targets(list=None, info=0)

gtk.Settings Functions

 def gtk.settings_get_default()
 def gtk.settings_get_for_screen(screen)

gtk.Tooltips Functions

 def gtk.tooltips_data_get(widget)

gtk.TreeModel Functions

 def gtk.tree_row_reference_inserted(proxy, path)
 def gtk.tree_row_reference_deleted(proxy, path)

gtk.Widget Functions

 def gtk.widget_push_colormap(cmap)
 def gtk.widget_push_composite_child()
 def gtk.widget_pop_composite_child()
 def gtk.widget_pop_colormap()
 def gtk.widget_get_default_style()
 def gtk.widget_set_default_colormap(colormap)
 def gtk.widget_get_default_colormap()
 def gtk.widget_get_default_visual()
 def gtk.widget_set_default_direction(dir)
 def gtk.widget_get_default_direction()
 def gtk.widget_list_style_properties(cmap)
 def gtk.widget_class_install_style_property(widget, pspec)

gtk.Window Functions

 def gtk.window_set_default_icon(icon)
 def gtk.window_set_default_icon_from_file(filename)
 def gtk.window_set_default_icon_list(...)

PyGTK 2.0 Reference Manual

gtk.RcStyle Functions 965

 def gtk.window_get_default_icon_list()
 def gtk.window_set_auto_startup_notification(setting)
 def gtk.window_list_toplevels()
 def gtk.window_set_default_icon_name(name)

Stock Item Functions

 def gtk.stock_add(items)
 def gtk.stock_lookup(stock_id)
 def gtk.stock_list_ids()

Miscellaneous Functions

 def gtk.binding_entry_add_signal(object, keyval, modifiers, signal_name, ...)
 def gtk.check_version(required_major, required_minor, required_micro)
 def gtk.draw_insertion_cursor(widget, drawable, area, location, is_primary, direction, draw_arrow)
 def gtk.get_default_language()
 def gtk.events_pending()
 def gtk.main_do_event(event)
 def gtk.main()
 def gtk.main_level()
 def gtk.main_quit()
 def gtk.main_iteration(block)
 def gtk.main_iteration_do(block)
 def gtk.grab_get_current()
 def gtk.quit_add(level, func, ...)
 def gtk.quit_remove(quit_handler_id)
 def gtk.get_current_event()
 def gtk.get_current_event_state()
 def gtk.get_current_event_time()

Description

All PyGTK functions for the gtk module are listed above categorized by class. Those functions associated
with a class have their descriptions included with the class reference. Those functions that are not associated
with a specific class are described below.

Functions

gtk.binding_entry_add_signal

 def gtk.binding_entry_add_signal(class, keyval, modifiers, signal_name, ...)

object : the gtk.Object class the binding entry will be associated with
keyval : the key value
modifiers : the modifier mask
signal_name : the signal name
... : zero or more pairs of value type−value pairs
The gtk.binding_entry_add_signal() function adds a binding (specified by keyval and
modifiers) to the binding set of the specified object class. The signal specified by signal_name will
be emitted with the optional arguments specified by the argument pairs denoted by ... that are value type and
value. This function is used when creating a new widget class to set up key bindings.

PyGTK 2.0 Reference Manual

gtk.Window Functions 966

gtk.check_version

 def gtk.check_version(required_major, required_minor, required_micro)

required_major : the required major version number
required_minor : the required minor version number
required_micro : the required micro version number

Returns : None if the underlying GTK+ library is compatible or a string describing the
mismatch

The gtk.check_version() function checks the underlying GTK+ library version against the version
specified by required_major, required_minor and required_micro. If the library is compatible
this function returns None; otherwise it returns a string describing the mismatch.

gtk.draw_insertion_cursor

 def gtk.draw_insertion_cursor(widget, drawable, area, location, is_primary, direction, draw_arrow)

widget : a gtk.Widget
drawable : a gtk.gdk.Drawable

area : the rectangle to which the output is clipped, or None if the output should not be
clipped

location : the location to draw the cursor (location.width is ignored)
is_primary : if TRUE the cursor should be the primary cursor color.

direction : the direction of the cursor; either gtk.TEXT_DIR_LTR or
gtk.TEXT_DIR_RTL

draw_arrow : if TRUE draw a directional arrow on the cursor. Should be FALSE unless the
cursor is split.

Note

This function is available in PyGTK 2.4 and above.

The gtk.draw_insertion_cursor() function draws a text caret on the gtk.gdk.Drawable
specified by drawable at the position specified by location. area specifies a clipping rectangle or is
None if the output should not be clipped. If is_primary is TRUE the cursor should be the primary cursor
color. direction specifies whether the cursor is right−to−left or left−to−right. This is a convenience
function for drawing the standard cursor shape.

gtk.get_default_language

 def gtk.get_default_language()

Returns : a pango.Language object for the default language
The gtk.get_default_language() function returns a pango.Language describing the default
language.

gtk.events_pending

 def gtk.events_pending()

Returns : TRUE if any events are pending
The gtk.events_pending() function returns TRUE if any events are pending. This can be used to update

PyGTK 2.0 Reference Manual

gtk.check_version 967

the user interface and invoke timeouts etc. while doing some time intensive computation.

gtk.main_do_event

 def gtk.main_do_event()

event : a gtk.gdk.Event to process
The gtk.main_do_event() function processes a single gtk.gdk.Event. This function is public only
to allow filtering of events between GDK and GTK+. You will not usually need to call this function directly.
While you should not call this function directly, you might want to know how exactly events are handled. So
here is what this function does with the event:

Compress enter/leave notify events. If the event passed builds an enter−leave pair together with the
next event (peeked from GDK) both events are thrown away. This is to avoid a backlog of
(de−)highlighting widgets crossed by the pointer.

1.

Find the widget which got the event. If the widget can't be determined the event is thrown away
unless it belongs to a INCR transaction. In that case it is passed to
gtk_selection_incr_event().

2.

Then the event is passed on a stack so you can query the currently handled event with
gtk.get_current_event().

3.

The event is sent to a widget. If a grab is active all events for widgets that are not in the contained in
the grab widget are sent to the latter with a few exceptions:

Deletion and destruction events are still sent to the event widget for obvious reasons.•
Events which directly relate to the visual representation of the event widget.•
Leave events are delivered to the event widget if there was an enter event delivered to it
before without the paired leave event.

•

Drag events are not redirected because it is unclear what the semantics of that would be.•
Another point of interest might be that all key events are first passed through the key snooper
functions if there are any. Read the description of gtk_key_snooper_install() if you need this
feature.

4.

After finishing the delivery the event is popped from the event stack.5.

gtk.main

 def gtk.main()

The gtk.main() function runs the main loop until the gtk.main_quit() function is called. You can nest
calls to gtk.main(). In that case the call to the gtk.main_quit() function will make the innermost
invocation of the main loop return.

gtk.main_level

 def gtk.main_level()

Returns : the nesting level of the current invocation of the main loop
The gtk.main_level() function returns the current nesting level of the main loop. The nesting level is
increased by calling the gtk.main() function and reduced by calling the gtk.main_quit() function.

PyGTK 2.0 Reference Manual

gtk.events_pending 968

gtk.main_quit

 def gtk.main_quit()

The gtk.main_quit() function terminates the current main loop level started by the most recent call to the
gtk.main() function. The nesting level of the main loop is reduced by calling this function.

gtk.main_iteration

 def gtk.main_iteration(block=TRUE)

block : if TRUE block if no events are pending
Returns : TRUE if the gtk.main_quit() function has been called for the innermost main loop.
The gtk.main_iteration() function runs a single iteration of the mainloop. If no events are waiting to
be processed PyGTK will block until the next event is noticed if block is TRUE. This function is identical to
the gtk.main_iteration_do() function.

gtk.main_iteration_do

 def gtk.main_iteration_do(block=TRUE)

block : if TRUE block if no events are pending
Returns : TRUE if the gtk.main_quit() function has been called for the innermost main loop.
The gtk.main_iteration_do() function runs a single iteration of the main loop. If block is TRUE
block until an event occurs. This function is identical to the gtk.main_iteration() function.

gtk.grab_get_current

 def gtk.grab_get_current()

Returns : the gtk.Widget that has the grab currently or None if no grab is active
The gtk.grab_get_current() function returns the gtk.Widget that has the grab or None if no grab
is active.

gtk.quit_add

 def gtk.quit_add(level, func, ...)

level : the level at which termination func shall be called. You can pass 0 here to have func
run at the termination of the current main loop.

func : the function to call − it should return 0 to be removed from the list of quit handlers
... : optional parameter(s) to be passed to func
Returns : a handle for this quit handler (you need this for the gtk.quit_remove() function).
The gtk.quit_add() function registers a function specified by func to be called when the specified main
loop level is exited. func should return 0 to be removed from the list of quit handlers. This function
returns a handler ID that is used when removing the handler with the gtk.quit_remove() function.

gtk.quit_remove

 def gtk.quit_remove(quit_handler_id)

quit_handler_id : the ID of a quit handler

PyGTK 2.0 Reference Manual

gtk.main_quit 969

The gtk.quit_remove() function removes the quit handler specified by quit_handler_id from the
list of quit handlers.

gtk.get_current_event

 def gtk.get_current_event()

Returns : a copy of the current event or None

Note

This function is available in PyGTK 2.6 and above.

The gtk.get_current_event() function returns a copy of the event currently being processed by
GTK+. For example, if you get a "clicked" signal from gtk.Button, the current event will be the
GdkEventButton that triggered the "clicked" signal. If there is no current event, the function returns None.

gtk.get_current_event_state

 def gtk.get_current_event_state()

Returns : the state of the current event if any or None if there is no current event or state

Note

This function is available in PyGTK 2.6 and above.

The gtk.get_current_event_state() function returns the state of the current event or None if there
is no current event or state.

gtk.get_current_event_time

 def gtk.get_current_event_time()

Returns : the timestamp of the current event or 0L
The gtk.get_current_event_time() function returns the timestamp from the current event or 0L if
there is no current event.

Prev Up Next
gtk.WindowGroup Home Stock Items

Stock Items
Prev The gtk Class Reference Next

Stock Items

Stock Items � prebuilt common menu/toolbar items and corresponding icons

Synopsis

Functions

 def gtk.stock_add(items)

PyGTK 2.0 Reference Manual

gtk.quit_remove 970

 def gtk.stock_lookup(stock_id)
 def gtk.stock_list_ids()

Description

Stock items represent commonly−used menu or toolbar items such as "Open" or "Exit". Each stock item is
identified by a stock ID; stock IDs are just strings, but macros such as gtk.STOCK_OPEN are provided to
avoid typing mistakes in the strings. Applications can register their own stock items in addition to those
built−in to PyGTK.

The stock items are:

gtk.STOCK_ABOUT Available in GTK+ 2.6 and above.
gtk.STOCK_ADD

gtk.STOCK_APPLY

gtk.STOCK_BOLD

gtk.STOCK_CANCEL

gtk.STOCK_CDROM

gtk.STOCK_CLEAR

gtk.STOCK_CLOSE

gtk.STOCK_COLOR_PICKER Available in GTK+ 2.2 and above.
gtk.STOCK_CONVERT

gtk.STOCK_CONNECT Available in GTK+ 2.6 and above.
gtk.STOCK_COPY

gtk.STOCK_CUT

gtk.STOCK_DELETE

gtk.STOCK_DIALOG_AUTHENTICATION
 Available in GTK+ 2.4 and above.

gtk.STOCK_DIALOG_ERROR

gtk.STOCK_DIALOG_INFO

gtk.STOCK_DIALOG_QUESTION

gtk.STOCK_DIALOG_WARNING

gtk.STOCK_DIRECTORY Available in GTK+ 2.6 and above.

gtk.STOCK_DND

gtk.STOCK_DND_MULTIPLE

gtk.STOCK_EDIT Available in GTK+ 2.6 and above.

PyGTK 2.0 Reference Manual

Synopsis 971

gtk.STOCK_EXECUTE

gtk.STOCK_FILE Available in GTK+ 2.6 and above.
gtk.STOCK_FIND

gtk.STOCK_FIND_AND_REPLACE

gtk.STOCK_FLOPPY

gtk.STOCK_GOTO_BOTTOM

gtk.STOCK_GOTO_FIRST

gtk.STOCK_GOTO_LAST

gtk.STOCK_GOTO_TOP

gtk.STOCK_GO_BACK

gtk.STOCK_GO_DOWN

gtk.STOCK_GO_FORWARD

gtk.STOCK_GO_UP

gtk.STOCK_HARDDISK Available in GTK+ 2.4 and above
gtk.STOCK_HELP

gtk.STOCK_HOME

gtk.STOCK_INDENT Available in GTK+ 2.4 and above.
gtk.STOCK_INDEX

gtk.STOCK_ITALIC

gtk.STOCK_JUMP_TO

gtk.STOCK_JUSTIFY_CENTER

gtk.STOCK_JUSTIFY_FILL

gtk.STOCK_JUSTIFY_LEFT

gtk.STOCK_JUSTIFY_RIGHT

gtk.STOCK_MEDIA_FORWARD Available in GTK+ 2.6 and above.
gtk.STOCK_MEDIA_NEXT Available in GTK+ 2.6 and above.
gtk.STOCK_MEDIA_PAUSE Available in GTK+ 2.6 and above.
gtk.STOCK_MEDIA_PLAY RTL version is Available in GTK+ 2.6 and above.
gtk.STOCK_MEDIA_PREVIOUS Available in GTK+ 2.6 and above.
gtk.STOCK_MEDIA_RECORD Available in GTK+ 2.6 and above.
gtk.STOCK_MEDIA_REWIND Available in GTK+ 2.6 and above.
gtk.STOCK_MEDIA_STOP Available in GTK+ 2.6 and above.
gtk.STOCK_MISSING_IMAGE

gtk.STOCK_NETWORK Available in GTK+ 2.4 and above.
gtk.STOCK_NEW

gtk.STOCK_NO

PyGTK 2.0 Reference Manual

Description 972

gtk.STOCK_OK

gtk.STOCK_OPEN

gtk.STOCK_PASTE

gtk.STOCK_PREFERENCES

gtk.STOCK_PRINT

gtk.STOCK_PRINT_PREVIEW

gtk.STOCK_PROPERTIES

gtk.STOCK_QUIT

gtk.STOCK_REDO

gtk.STOCK_REFRESH

gtk.STOCK_REMOVE

gtk.STOCK_REVERT_TO_SAVED RTL version is
gtk.STOCK_SAVE

gtk.STOCK_SAVE_AS

gtk.STOCK_SELECT_COLOR

gtk.STOCK_SELECT_FONT

gtk.STOCK_SORT_ASCENDING

gtk.STOCK_SORT_DESCENDING

gtk.STOCK_SPELL_CHECK

gtk.STOCK_STOP

gtk.STOCK_STRIKETHROUGH

gtk.STOCK_UNDELETE RTL version is
gtk.STOCK_UNDERLINE

gtk.STOCK_UNDO

gtk.STOCK_UNINDENT Available in GTK+ 2.4 and above.
gtk.STOCK_YES

gtk.STOCK_ZOOM_100

gtk.STOCK_ZOOM_FIT

gtk.STOCK_ZOOM_IN

gtk.STOCK_ZOOM_OUT

Functions

gtk.stock_add

 def gtk.stock_add(items)

PyGTK 2.0 Reference Manual

Functions 973

items : a list or tuple containing 5−tuples of stock items
The gtk.stock_add() function registers each of the stock items in the list or tuple specified by items.
The stock items are specified by a 5−tuple containing:

stock_id − a string identifier•
label − a string to use for a label•
modifier − a modifier mask (see the GDK Modifier Constants section for more detail on modifiers)•
keyval − an integer key value (see gtk.gdk.Keymap) Together with the modifiers specifies an
accelerator.

•

translation_domain − a string identifier of a translation domain•

If an item already exists with the same stock ID as one of the items, the old item gets replaced.

gtk.stock_lookup

 def gtk.stock_lookup(stock_id)

stock_id : a stock item name
Returns : a 5−tuple containing the stock item info or None if stock_id is unknown
The gtk.stock_lookup() function looks up the stock item identified by stock_id and returns a
5−tuple containing its information. If stock_id is not known this function returns None. See the
gtk.stock_add() function for more detail.

gtk.stock_list_ids

 def gtk.stock_list_ids()

Returns : a list of known stock IDs
The gtk.stock_list_ids() function returns a list containing all of the known stock IDs added to a
gtk.IconFactory or registered with the gtk.stock_add() function.

Prev Up Next
gtk Functions Home gtk Constants

The pango Class Reference
Prev Next

The pango Class Reference

Table of Contents

pango.Attribute − an attribute that applies to a section of text
pango.AttrIterator − an object pointing to a location in a pango.AttrList.
pango.AttrList − an object holding attributes that apply to a section of text
pango.Color − an object representing a RGB color
pango.Context − stores global information used to control rendering.
pango.Font − a rendering−system independent font representation.
pango.FontDescription − an object representing a description of a font.
pango.FontFace − an object representing a group of fonts varying only in size.
pango.FontFamily − an object representing a family of related font faces.
pango.FontMap − an object that represents the set of fonts available for a particular rendering system.
pango.FontMetrics − an object containing overall metric information for a font.
pango.Fontset − an object containing a set of pango.Font objects.

PyGTK 2.0 Reference Manual

gtk.stock_add 974

pango.FontsetSimple − a simple container for a set of fonts
pango.GlyphString − an object holding strings of glyphs and glyph information.
pango.Language − an object that represents a language tag.
pango.Layout − an object representing a paragraph of text with attributes.
pango.LayoutIter − an object used to iterate over the visual extents of a pango.Layout (new in PyGTK 2.6)
pango.TabArray − an object containing an array of tab stops.
The Pango Markup Language − a simple markup language for encoding attributes with text.
pango Functions − a list of all the pango functions
pango Constants − the built−in constants of the pango module

Prev Up Next
gtk.glade.XML Home pango.Attribute

pango Constants
Prev The pango Class Reference Next

pango Constants

pango Constants � the built−in constants of the pango module

Synopsis

Pango Alignment Constants
Pango Attribute Type Constants
Pango Coverage Level Constants
Pango Direction Constants
Pango Ellipsize Mode Constants
Pango Font Mask Flag Constants
Pango Scale Constants
Pango Stretch Constants
Pango Style Constants
Pango Tab Constants
Pango Underline Constants
Pango Variant Constants
Pango Weight Constants
Pango Wrap Mode Constants

Description

Pango Alignment Constants

The Alignment constants specify how to align the lines of a pango.Layout within the available space. If
the pango.Layout is set to justify using the pango.Layout.set_justify() method, then this only
has an effect for partial lines.

pango.ALIGN_LEFT Put all available space on the right
pango.ALIGN_CENTER Center the line within the available space
pango.ALIGN_RIGHT Put all available space on the left

PyGTK 2.0 Reference Manual

The pango Class Reference 975

Pango Attribute Type Constants

The Attribute Type constants specify the type of a pango.Attribute.Along with the predefined values, it
is possible to allocate additional values for custom attributes using the pango.attr_type_register()
function. The predefined values are given below. The type of structure used to store the attribute is listed in
parentheses after the description.

pango.ATTR_LANGUAGE Specifies a pango.Language.
pango.ATTR_FAMILY Specifies a font family name list as a string.

pango.ATTR_STYLE
Specifies a font slant style. See the pango.AttrStyle() function for
more details.

pango.ATTR_WEIGHT
Specifies a font weight. See the pango.AttrWeight() function for
more detail.

pango.ATTR_VARIANT
Specifies a font variant (normal or small caps). See the
pango.AttrVariant() function for more detail.

pango.ATTR_STRETCH
Specifies a font stretch. See the pango.AttrStretch() function for
more details.

pango.ATTR_SIZE Specifies a font size in thousandths of a point.
pango.ATTR_FONT_DESC Specifies a pango.FontDescription.
pango.ATTR_FOREGROUND Specifies a foreground pango.Color.
pango.ATTR_BACKGROUND Specifies a background pango.Color.

pango.ATTR_UNDERLINE
Specifies an underline style. See the pango.AttrUnderline()
function for more details.

pango.ATTR_STRIKETHROUGH If TRUE the text is struck through.
pango.ATTR_RISE Specifies the displacement of the text from the baseline.

pango.ATTR_SHAPE
Specifies a shape. See the pango.AttrShape() function for more
details.

pango.ATTR_SCALE Specifies a font size scale factor.
pango.ATTR_FALLBACK if TRUE, fallback to other fonts is enabled (

Pango Coverage Level Constants

pango.COVERAGE_NONE The character is not representable with the font.

pango.COVERAGE_FALLBACK

The character is represented in a way that may be comprehensible but
is not the correct graphical form. For instance, a Hangul character
represented as a a sequence of Jamos, or a Latin transliteration of a
Cyrillic word.

pango.COVERAGE_APPROXIMATE
The character is represented as basically the correct graphical form,
but with a stylistic variant inappropriate for the current script.

pango.COVERAGE_EXACT The character is represented as the correct graphical form.

Pango Direction Constants

The pango Direction constants specify a direction in the Unicode bidirectional algorithm. Not every value in
this enumeration makes sense for every usage of pango Direction.

The pango.DIRECTION_TTB_LTR, pango.DIRECTION_TTB_RTL values come from an earlier
interpretation of this enumeration as the writing direction of a block of text and are no longer used; See the
Text module of the CSS3 spec for how vertical text is planned to be handled in a future version of Pango. The
explanation of why pango.DIRECTION_TTB_LTR is treated as pango.DIRECTION_RTL can be found

PyGTK 2.0 Reference Manual

Pango Attribute Type Constants 976

there as well.

pango.DIRECTION_LTR A strong left−to−right direction
pango.DIRECTION_RTL A strong right−to−left direction
pango.DIRECTION_TTB_LTR Deprecated value; treated the same as pango.DIRECTION_RTL.
pango.DIRECTION_TTB_RTL Deprecated value; treated the same as pango.DIRECTION_LTR
pango.DIRECTION_WEAK_LTR A weak left−to−right direction
pango.DIRECTION_WEAK_RTL A weak right−to−left direction
pango.DIRECTION_NEUTRAL No direction specified

Pango Ellipsize Mode Constants

The Ellipsize Mode constants specify what sort of (if any) ellipsization should be applied to a line of text. In
the ellipsization process characters are removed from the text in order to make it fit to a given width and
replaced with an ellipsis (...).

pango.ELLIPSIZE_NONE No ellipsization.
pango.ELLIPSIZE_START Omit characters at the start of the text.
pango.ELLIPSIZE_MIDDLE Omit characters in the middle of the text.
pango.ELLIPSIZE_END Omit characters at the end of the text.

Pango Font Mask Flag Constants

The Font Mask flag constants are bit−flags that correspond to fields in a pango.FontDescription that
have been set.

pango.FONT_MASK_FAMILY the font family is specified.
pango.FONT_MASK_STYLE the font style is specified.
pango.FONT_MASK_VARIANT the font variant is specified.
pango.FONT_MASK_WEIGHT the font weight is specified.
pango.FONT_MASK_STRETCH the font stretch is specified.
pango.FONT_MASK_SIZE the font size is specified.

Pango Scale Constants

pango.SCALE

The pango.SCALE constant represents the scale between dimensions used
for Pango distances and device units. (The definition of device units is
dependent on the output device; it will typically be pixels for a screen, and
points for a printer.) pango.SCALE is currently 1024, but this may be
changed in the future. When setting font sizes, device units are always
considered to be points (as in "12 point font"), rather than pixels.

pango.SCALE_XX_SMALL The scale factor for three shrinking steps (1 / (1.2 * 1.2 * 1.2)).
pango.SCALE_X_SMALL he scale factor for two shrinking steps (1 / (1.2 * 1.2)).
pango.SCALE_SMALL The scale factor for one shrinking step (1 / 1.2).
pango.SCALE_MEDIUM The scale factor for normal size (1.0).
pango.SCALE_LARGE The scale factor for one magnification step (1.2).
pango.SCALE_X_LARGE he scale factor for two magnification steps (1.2 * 1.2).
pango.SCALE_XX_LARGE The scale factor for three magnification steps (1.2 * 1.2 * 1.2).

PyGTK 2.0 Reference Manual

Pango Direction Constants 977

Pango Stretch Constants

The Stretch constants specify the width of the font relative to other designs within a family.

pango.STRETCH_ULTRA_CONDENSED The most narrow width
pango.STRETCH_EXTRA_CONDENSED

pango.STRETCH_CONDENSED

pango.STRETCH_SEMI_CONDENSED

pango.STRETCH_NORMAL The normal width.
pango.STRETCH_SEMI_EXPANDED

pango.STRETCH_EXPANDED

pango.STRETCH_EXTRA_EXPANDED

pango.STRETCH_ULTRA_EXPANDED The most expanded width

Pango Style Constants

The Style constants specify the various slant styles possible for a font.

pango.STYLE_NORMAL The font is upright.
pango.STYLE_OBLIQUE The font is slanted in a roman style.
pango.STYLE_ITALIC The font is slanted in an italic style.

Pango Tab Constants

The Tab constants specify where a tab stop appears relative to the text.

pango.TAB_LEFT the tab stop appears to the left of the text.

Pango Underline Constants

The Underline constants specify he type of underlining (if any) to be used.

pango.UNDERLINE_NONE No underline should be drawn.
pango.UNDERLINE_SINGLE A single underline should be drawn.
pango.UNDERLINE_DOUBLE A double underline should be drawn.

pango.UNDERLINE_LOW

A single underline should be drawn at a position beneath
the ink extents of the text being underlined. This should be
used only for underlining single characters, such as for
keyboard accelerators. pango.UNDERLINE_SINGLE
should be used for extended portions of text.

Pango Variant Constants

The Variant constants specify the capitalization variant of the font.

pango.VARIANT_NORMAL A normal font.

pango.VARIANT_SMALL_CAPS
A font with the lower case characters replaced by smaller variants of the
capital characters.

PyGTK 2.0 Reference Manual

Pango Stretch Constants 978

Pango Weight Constants

The Weight constants specify the weight (boldness) of a font. This is a numerical value ranging from 100 to
900, but there are some predefined values:

pango.WEIGHT_ULTRALIGHT The ultralight weight (= 200).
pango.WEIGHT_LIGHT The light weight (=300).
pango.WEIGHT_NORMAL The default weight (= 400).
pango.WEIGHT_BOLD The bold weight (= 700).
pango.WEIGHT_ULTRABOLD The ultrabold weight (= 800).
pango.WEIGHT_HEAVY The heavy weight (= 900).

Pango Wrap Mode Constants

The Wrap Mode constants specify how to wrap the lines of a pango.Layout to the desired width.

pango.WRAP_WORD wrap lines at word boundaries.
pango.WRAP_CHAR wrap lines at character boundaries.

pango.WRAP_WORD_CHAR
wrap lines at word boundaries, but fall back to character boundaries if there is
not enough space for a full word.

Prev Up Next
pango Functions Home Appendix A. ChangeLog

pango Functions
Prev The pango Class Reference Next

pango Functions

pango Functions � a list of all the pango functions

Synopsis

pango.Attribute Functions

 def pango.attr_type_register(name)
 def pango.AttrLanguage(language, start_index=0, end_index=1)
 def pango.AttrFamily(family, start_index=0, end_index=1)
 def pango.AttrForeground(red, green, blue, start_index=0, end_index=1)
 def pango.AttrBackground(red, green, blue, start_index=0, end_index=1)
 def pango.AttrSize(size, start_index=0, end_index=1)
 def pango.AttrStyle(style, start_index=0, end_index=1)
 def pango.AttrWeight(weight, start_index=0, end_index=1)
 def pango.AttrVariant(variant, start_index=0, end_index=1)
 def pango.AttrStretch(stretch, start_index=0, end_index=1)
 def pango.AttrFontDesc(desc, start_index=0, end_index=1)
 def pango.AttrUnderline(underline, start_index=0, end_index=1)
 def pango.AttrStrikethrough(strikethrough, start_index=0, end_index=1)
 def pango.AttrRise(rise, start_index=0, end_index=1)
 def pango.AttrShape(ink_rect, logical_rect, start_index=0, end_index=1)
 def pango.AttrScale(scale, start_index=0, end_index=1)
 def pango.AttrFallback(fallback, start_index=0, end_index=1)

PyGTK 2.0 Reference Manual

Pango Weight Constants 979

pango.AttrList Functions

 def pango.parse_markup(markup_text, accel_marker)

pango.Font Functions

 def pango.PIXELS(size)
 def pango.ASCENT(rect)
 def pango.DESCENT(rect)
 def pango.RBEARING(rect)
 def pango.LBEARING(rect)

Prev Up Next
The Pango Markup Language Home pango Constants

The Pango Markup Language
Prev The pango Class Reference Next

The Pango Markup Language

The Pango Markup Language � a simple markup language for encoding attributes with text.

Description

The pango markup language is a very simple SGML−like language that allows you specify attributes with the
text they are applied to by using a small set of markup tags. A simple example of a string using markup is:

Blue text is <i>cool</i>!

Using the pango markup language to markup text and parsing the result with the pango.parse_markup()
function is a convenient way to generate the pango.AttrList and plain text that can be used in a
pango.Layout.

The root tag of a marked−up document is <markup>, but the pango.parse_markup() function allows
you to omit this tag, so you will most likely never need to use it. The most general markup tag is .
The tag has the following attributes:

font_desc
A font description string, such as "Sans Italic 12"; note that any other span attributes will
override this description. So if you have "Sans Italic" and also a style="normal" attribute,
you will get Sans normal, not italic.

font_family A font family name such as "normal", "sans", "serif" or "monospace".
face A synonym for font_family

size
The font size in thousandths of a point, or one of the absolute sizes 'xx−small', 'x−small',
'small', 'medium', 'large', 'x−large', 'xx−large', or one of the relative sizes 'smaller' or
'larger'.

style The slant style − one of 'normal', 'oblique', or 'italic'

weight
The font weight − one of 'ultralight', 'light', 'normal', 'bold', 'ultrabold', 'heavy', or a
numeric weight.

variant The font variant − either 'normal' or 'smallcaps'.

stretch
The font width − one of 'ultracondensed', 'extracondensed', 'condensed', 'semicondensed',
'normal', 'semiexpanded', 'expanded', 'extraexpanded', 'ultraexpanded'.

PyGTK 2.0 Reference Manual

pango.AttrList Functions 980

foreground An RGB color specification such as '#00FF00' or a color name such as 'red'.
background An RGB color specification such as '#00FF00' or a color name such as 'red'.
underline The underline style − one of 'single', 'double', 'low', or 'none'.

rise
The vertical displacement from the baseline, in ten thousandths of an em. Can be
negative for subscript, positive for superscript.

strikethrough 'true' or 'false' whether to strike through the text.

fallback

If TRUE enable fallback to other fonts of characters are missing from the current font. If
disabled, then characters will only be used from the closest matching font on the system.
No fallback will be done to other fonts on the system that might contain the characters in
the text. Fallback is enabled by default. Most applications should not disable fallback.

lang A language code, indicating the text language.
There are a number of convenience tags that encapsulate specific span options:

b Make the text bold.
big Makes font relatively larger, equivalent to .
i Make the text italic.
s Strikethrough the text.
sub Subscript the text.
sup Superscript the text.
small Makes font relatively smaller, equivalent to .
tt Use a monospace font.
u Underline the text.

Prev Up Next
pango.TabArray Home pango Functions

Introduction
Prev Next

Introduction

Table of Contents

Major Changes since Version 1.9
Reference Page Format
Copyright and License Notice

This document describes most of the PyGTK version 2.0 through 2.6 classes and their methods and associated
functions. Deprecated classes, functions and methods have been specifically left out of this reference though
classes that have become deprecated since PyGTK 2.0 have been left in but annotated with a deprecation
warning. I have attempted to document as much of the PyGTK API as I can but there are undoubtedly errors
and omissions. If you discover any of these please send me email at <finlay@moeraki.com> or file a
bug report at bugzilla.gnome.org for the pygtk project. Specific areas that have not been documented
include:

The ATK classes•

This reference describes the API for PyGTK as of version 2.5.0+ and assumes that the additional API changes
for version 2.6 may be significant. There will undoubtedly be changes that are not reflected in this reference.
The differences in the API between version 2.0 and previous versions are denoted in this reference with a

PyGTK 2.0 Reference Manual

Description 981

mailto:finlay@moeraki.com
http://bugzilla.gnome.org

Note that describes the availability of the object, constructor, method or function. Any of these that do not
have a notation can be assumed to be available in all versions of PyGTK from 2.0 and up. In the case of
properties and signals the availability is dependent on the version of the underlying GTK+, GDK or Pango
libraries. These will be annotated appropriately in a similar fashion. The source code must be consulted if this
reference and your version of PyGTK seem to differ. You are encouraged to use the latest version of PyGTK
that is available. See the PyGTK homepage for more information and more resources on how to use PyGTK
as well as help in its development.

The Reference contains a chapter for each PyGTK module (that corresponds to the underlying GTK+ library)
containing the class descriptions. The second chapter illustrates the PyGTK class hierarchy covering the
gobject, gtk, gtk.gdk and pango modules.

The class descriptions are arranged alphabetically within the chapters. Currently there are five module
chapters:

The gobject module
The classes that are included in the gobject module of PyGTK and are accessed similar to:
gobject.GObject. These classes are the base object classes that the gtk and gtk.gdk
module classes are built on.

The gtk module
The classes that are included in the gtk module of PyGTK and are accessed similar to:
gtk.Widget. These classes are the "higher" level widget classes that provide most of the user
interface widgets used for application development.

The gtk.gdk module

The classes that are included in the gtk.gdk module of PyGTK. These classes are "lower"
level classes that provide more fundamental capabilities that the gtk module widgets are
built upon. These classes provide an abstract interface to the underlying window system
(either X Window System or Microsoft Windows).

The gtk.glade module
The classes that are included in the gtk.glade module of PyGTK. These classes provide
access to the libglade functions that allow the dynamic loading of user interfaces from XML
descriptions.

The pango module

The classes that are included in the pango module of PyGTK. These classes provide access
to the Pango text layout and rendering engines. PyGTK supports a subset of the full Pango
capability: mainly the high level layout capabilities exposed by the pango.Layout objects.
The low level rendering capabilities have not been exposed mostly because there isn't a full
GObject interface to the underlying Pango data structures. It's also likely that the rendering
capabilities require more performance that Python can provide.

The atk module classes will be added in a later version of this Reference.

Major Changes since Version 1.9

The major changes in this document since version 1.9 include:

descriptions of new GTK+ 2.2 and 2.4 classes:

gobject.GBoxed•
gobject.GPointer•
gobject.GInterface•
gobject.MainContext•
gobject.MainLoop•
gtk.Action•
gtk.ActionGroup•
gtk.Border•
gtk.Clipboard•
gtk.ColorButton•
gtk.ComboBox•

•

PyGTK 2.0 Reference Manual

Introduction 982

http://www.pygtk.org

gtk.ComboBoxEntry•
gtk.EntryCompletion•
gtk.Expander•
gtk.FileChooser•
gtk.FileChooserDialog•
gtk.FileChooserWidget•
gtk.FileFilter•
gtk.FontButton•
gtk.IconInfo•
gtk.IconTheme•
gtk.RadioAction•
gtk.RadioToolButton•
gtk.SeparatorToolItem•
gtk.ToggleAction•
gtk.ToggleToolButton•
gtk.ToolButton•
gtk.ToolItem•
gtk.TreeModelFilter•
gtk.TreeRowReference•
gtk.UIManager•
gtk.gdk.Atom•
gtk.gdk.Display•
gtk.gdk.DisplayManager•
gtk.gdk.Screen•
pango.FontsetSimple•

Descriptions of new GTK+ 2.6 classes:

gtk.AboutDialog•
gtk.CellRendererCombo•
gtk.CellRendererProgress•
gtk.CellView•
gtk.FileChooserButton•
gtk.IconView•
gtk.MenuToolButton•

•

a reference page in each module chapter containing descriptions of or links to all of the functions
defined in a module.

•

a reference page in each module chapter containing descriptions of all of the constants defined in a
module.

•

additional methods, functions, properties and signals added for GTK+ 2.2, GTK+ 2.4, GTK+ 2.6,
PyGTK 2.2, PyGTK 2.4 and PyGTK 2.6.

•

Prev Up Next
PyGTK 2.0 Reference Manual Home Reference Page Format

Appendix A. ChangeLog
Prev

Appendix A. ChangeLog

 ======== 2.5.2 ============
2005−03−05 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Bump version number and change date.

PyGTK 2.0 Reference Manual

Major Changes since Version 1.9 983

 * pygtk−introduction (Major Changes) Update description with new
 GTK+ 2.6 classes and add gtk.glade module.

2005−02−28 John Finlay <finlay@moeraki.com>

 * pygtk−gdkcursor.xml (gtk.gdk.Cursor): Rephrase constructor
 descriptions to clarify how to make an invisible cursor. Fixes #168755
 (get_display) Fix mangled description.

2005−02−15 John Finlay <finlay@moeraki.com>

 * pygtk−gtkcellrenderertext.xml (Properties): Add GTK+ 2.6
 properties ellipsize, ellipsize−set, width−chars. Alphabetize entries.
 Fixes #167504 (Rafael Villar Burke)

2005−02−03 John Finlay <finlay@moeraki.com>

 * pygtk−gtkcellrenderer.xml (stop_editing, "editing−started"):
 Add descriptions of these PyGTK 2.6 additions.

2005−01−18 John Finlay <finlay@moeraki.com>

 * pygtk2−ref−xml: Add pygtk−glade−classes.xml. Change date.

 * pygtk−glade−classes.xml
 * pygtk−gladexml.xml: Add these files created by Johan Dahlin.

 * pygtk−gladexml−classes.xml: Remove.

2005−01−15 John Finlay <finlay@moeraki.com>

 * pygtk−gtkentrycompletion.xml (get_text_column): Remove unimplemented
 method.
 (insert−prefix): Add description of PyGTK2.6 method.

2005−01−13 John Finlay <finlay@moeraki.com>

 * pygtk−gtklabel.xml (get_angle, set_angle, set_max_width_chars)
 (get_max_width_chars): Add descriptions of these PyGTK 2.6 methods.
 ("angle", "max−width−chars"): Add descriptions.

 * pygtk−gtk−functions.xml (gtk.get_current_event)
 (gtk.get_current_event_state): Add descriptions of these PyGTK2.6
 functions.

 * pygtk−gdkpixmap.xml
 * pygtk−gdk−functions.xml (gtk.pixmap_colormap_create_from_xpm)
 (gtk.pixmap_colormap_create_from_xpm_d)
 (gtk.pixmap_colormap_from_xpm_d):
 First arg can be a GdkDrawable.

 * pygtk−gtkcontainer.xml (gtk.container_class_install_child_property):
 Add description of this PyGTK2.4 function. Update Description.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 984

 * pygtk−gtk−functions.xml (gtk.container_class_install_child_property):
 Add link to.

 * pygtk−gtkwidget.xml ("child−notify", "client−event")
 ("proximity−in−event", "proximity−out−event") Add descriptions.
 Patch by Gian Mario Tagliaretti.

2004−12−27 John Finlay <finlay@moeraki.com>

 * pygtk−gdk−constants.xml (event type constants): Fix Typo (Gian Mario
 Tagliaretti)

2004−12−26 John Finlay <finlay@moeraki.com>

 * pygtk−gdkevent.xml (Attributes): CLIENT_EVENT message_type is
 writeable.

2004−12−24 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml: Bump version number and pubdate.

 * pygtk−gtkuimanager.xml ("post−activate", "pre−activate"): Add
 action param description.

 ======== 2.5.1 ============
2004−12−23 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Update pubdate and revhistory.

 * pygtk−gdkpixbuf.xml (render_to_drawable, render_to_drawable_alpha):
 Add deprecation warning.

 * pygtk−gtkcellview.xml (set_value, set_values, set_cell_data_func):
 Remove descriptions of removed methods.

2004−12−21 John Finlay <finlay@moeraki.com>

 * Various Use xref tags instead of link tags where possible.

 * pygtk2−ref.xml Add revhistory, releaseinfo and edition tags.
 Remove version number from title tag and add to releaseinfo tag.

 * pygtk−gtktoolbar.xml (set_style) Add a note about ToolItem label
 display when style is TOOLBAR_BOTH_HORIZ. (Gian Mario Tagliaretti)

2004−12−10 John Finlay <finlay@moeraki.com>

 * pygtk−gtksettings.xml (Description): Change description to indicate
 that there is one Settings object per GdkScreen (Rafael Villar Burke)

2004−12−09 John Finlay <finlay@moeraki.com>

 * pygtk−gtk−stock−items.xml (gtk.stock_add): Add reference to

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 985

 Modifier Constants docs.

2004−12−07 John Finlay <finlay@moeraki.com>

 * pygtk−gtkwindow.xml (move): Fix example code.
 Fixes #160678. (Gian Mario Tagliaretti)

 * pygtk−gtkwindow.xml (set_type_hint): Add reference to window type
 hint constants. Fixes #160669 (Gian Mario Tagliaretti)
 (set_gravity, begin_resize_drag): Add reference to constants.

2004−12−06 John Finlay <finlay@moeraki.com>

 * pygtk−gtk−stock−items.xml Remove duplicate STOCK_WARNING.
 Fixes #160584 (Erik Grinaker).
 Add GTK+ 2.6 stock icons.

2004−12−04 John Finlay <finlay@moeraki.com>

 * pygtk−gtkdialog.xml (set_alternative_button_order): Add.

 * pygtk−pangolayoutiter.xml Add.

 * pygtk−pangolayout.xml (get_iter) Add description of this PyGTK 2.6
 method.

 * pygtk−gtkcellview.xml (set_cell_data) Remove.

 * pygtk−gtkfilechooserbutton.xml (set_active, get_active, "active"):
 Remove.

2004−11−20 John Finlay <finlay@moeraki.com>

 * pygtk_gtkdialog.xml (gtk.Dialog) Fix param list bug.

2004−11−18 John Finlay <finlay@moeraki.com>

 * pygtk−gtkliststore.xml (remove): Document return value differences.
 (Doug Quale)

2004−11−16 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Set pubdate. Bump version number to 2.5.1

 * pygtk−gtkselectiondata.xml (gtk.target_list_add_image_targets)
 (gtk.target_list_add_text_targets)
 (gtk.target_list_add_uri_targets): Add descriptions.

 * pygtk−gtkaboutdialog.xml (gtk.about_dialog_set_email_hook)
 (gtk.about_dialog_set_url_hook): Add descriptions.

 * pygtk−gtk−functions.xml: Add new AboutDialog, CellView, Image
 and Window functions. Fix SelectionData and Settings functions.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 986

 ======== 2.5.0 ============
2004−11−15 John Finlay <finlay@moeraki.com>

 * pygtk−introduction.xml Update.

 * pygtk2−ref.xml Set pubdate. Bump version number to 2.5.0

 * pygtk−gdkwindow.xml (set_focus_on_map)
 (enable_synchronized_configure, configure_finished): Add descriptions

 * pygtk−gdkdragcontext.xml (drag_drop_succeeded): Add description.

 * pygtk−gdkdisplay.xml (store_clipboard)
 (request_selection_notification, supports_clipboard_persistence
 (supports_selection_notification): Add descriptions.

 * pygtk−gtktreeselection.xml (get_selected_rows): Remove model
 arg − not needed. Fixes #158397 (Ken Harris)

 * pygtk−gtkwindow.xml (gtk.window_set_default_icon_name)
 (get_icon_name, set_icon_name, get_focus_on_map, set_focus_on_map):
 Add descriptions.

 * pygtk−gtktreeview.xml (set_row_separator_func)
 (set_hover_expand, get_hover_expand, set_hover_selection)
 (get_hover_selection, set_fixed_height_mode, get_fixed_height_mode)
 ("hover−selection", "hover−expand", "fixed−height−mode"):
 Add descriptions.

 * pygtk−gtktoolitem.xml (rebuild_menu): Add description
 ("create−menu−proxy"): Update description.

 * pygtk−gtktextbuffer.xml (backspace, "tag−table"): Add descriptions.

2004−11−14 John Finlay <finlay@moeraki.com>

 * pygtk−gtkselectiondata.xml (data_targets_include_image)
 (get_uris, set_uris, get_pixbuf, set_pixbuf): Add descriptions.

 * pygtk−gtkmessagedialog.xml (format_secondary_text)
 (format_secondary_markup): Add descriptions.

 * pygtk−gtkmenutoolbutton.xml Add.

 * pygtk−gtkwidget.xml (menu_get_for_attach_widget): Add description.

 * pygtk−gtkmenu.xml ("tearoff−state") Add description.

 * pygtk−gtklabel.xml (Description): Update.
 (set_ellipsize, get_ellipsize, set_width_chars, get_width_chars)
 (get_single_line_mode, set_single_line_mode): Add descriptions.
 ("ellipsize, "width−chars", "single−line−mode"): Add descriptions.

 * pygtk−pango−constant.xml Add Ellipsize Mode Constants.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 987

 * pygtk−gtkimage.xml (gtk.image_new_from_icon_name)
 (get_icon_name, set_from_icon_name, set_pixel_size, get_pixel_size):
 Add descriptions of these PyGTK 2.6 methods and function.
 (Description): Update.

2004−11−13 John Finlay <finlay@moeraki.com>

 * pygtk−gtkiconview.xml Add.
 * pygtk−gtk−classes.xml Add pygtk−pygtk−gtkiconview.xml

 * pygtk−gtkicontheme.xml (get_icon_sizes): Add description.

 * pygtk−gtkfilechooser.xml (set_show_hidden, get_show_hidden):
 Add description os these PyGTK 2.6 methods.
 (Description) Update.

 * pygtk−gtkfilechooserbutton.xml Add.

 * pygtk−gtk−classes.xml Add pygtk−gtkfilechooserbutton.xml

2004−11−12 John Finlay <finlay@moeraki.com>

 * pygtk−gobject−functions.xml (signal_list_ids, signal_lookup)
 (signal_name, signal_query): Add descriptions of these PyGTK 2.6
 methods.

 * pygtk−gtkwidget.xml (set_accelerator): Change wording to clarify
 argument value usage. (stan@saticed.me.uk)

2004−11−10 John Finlay <finlay@moeraki.com>

 * pygtk−gtkentrycompletion.xml (get_text_column)
 (set_inline_completion, get_inline_completion)
 (set_popup_completion, get_popup_completion): Add descriptions of
 these PyGTK 2.6 methods.

 * pygtk−gtkwidget.xml (drag_dest_add_image_targets)
 (drag_dest_add_text_targets, drag_dest_add_uri_targets)
 (drag_source_add_text_targets, drag_source_get_target_list)
 (drag_source_set_target_list): Add descriptions of these PyGTK 2.6
 methods.

 * pygtk−gtkcombobox.xml (get_wrap_width, get_row_span_column)
 (get_column_span_column, get_active_text, get_popup_accessible)
 (get_row_separator_func, set_row_separator_func, get_add_tearoffs)
 (set_add_tearoffs, get_focus_on_click, set_focus_on_click):
 Add descriptions of these PyGTK 2.6 methods.

 * pygtk−gtkclipboard.xml (wait_is_target_available)
 (set_can_store, store): Add documentation on these PyGTK 2.6 methods

 * pygtk−gtkcellrenderercombo.xml Add.
 * pygtk−gtkcellrendererprogress.xml Add.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 988

 * pygtk−gtkcellview.xml Add.
 * pygtk−gtk−classes.xml Add above files.

2004−11−09 John Finlay <finlay@moeraki.com>

 * pygtk−gtkaboutdialog.xml Add.

 * pygtk−gtk−classes.xml Add pygtk−gtkaboutdialog.xml

2004−11−08 John Finlay <finlay@moeraki.com>

 * pygtk−gtkwindow.xml (Description, gtk.Window, set_position):
 Add link to appropriate Constants description.

2004−11−01 John Finlay <finlay@moeraki.com>

 * pygtk−gtksettings.xml Add gtk−alternative−button−order and
 gtk−modules properties. Fix typo.

2004−10−28 John Finlay <finlay@moeraki.com>

 * pygtk−gtkcombobox.xml (set_model) model can be and default to None
 in PyGTK 2.4.1.

 * pygtk−gtkentrycompletion.xml (set_model) model can be and default
 to None in PyGTK 2.4.1.

2004−10−21 John Finlay <finlay@moeraki.com>

 * pygtk−gtkalignment.xml (gtk.Alignment) Undo changes since new
 default values are wrong.

2004−10−19 John Finlay <finlay@moeraki.com>

 * pygtk−gtkalignment.xml (gtk.Alignment) Note change of default values
 in 2.4. (Gustavo Niemeyer)

2004−10−12 John Finlay <finlay@moeraki.com>

 * pygtk−gtkwidget.xml ("destroy−event") Add description per
 Christian Reis.

 * pygtk−gtkstatusbar.xml (push) Note that the message id can be used
 with the remove() method. (Rafael Villar Burke)

 * pygtk−gtkwidget.xml (modify_bg) Note that bg can only be
 modified on widgets with a gdkWindow. (Rafael Villar Burke)

 * pygtk−gtkadjustment.xml (Description) Fix broken links reported by
 Antoon Pardon.

2004−10−05 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Bump version number and set pubdate

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 989

 * pygtk−gdkgc.xml (set_clip_rectangle) Note that the clip origin
 is also set to (0, 0) per Rafael Villar Burke.

 ================ 2.4.11 ==============
2004−10−03 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Set pubdate.

 * pygtk−gtkuimanager.xml (insert_action_group) Add details on pos
 param.
 (add_ui) Additional info on path param. Add info on type values.
 (new_merge_id) Add info on merge ids.

2004−09−28 John Finlay <finlay@moeraki.com>

 * pygtk−gtkalignment.xml (Description) Fix example description.

2004−09−18 John Finlay <finlay@moeraki.com>

 * pygtk−gtkactiongroup.xml (add_actions) (add_toggle_actions)
 (add_radio_actions) Clarify entry tuple field usage.

2004−09−15 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeview.xml (set_search_equal_func) Note that the
 comparison function should return FALSE to indicate a match. (Thomas
 Mills Hinkle)

2004−09−06 John Finlay <finlay@moeraki.com>

 * pygtk−gtkaction.xml (Properties) name property is construct only.

2004−08−11 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.html Bump version number.

 ================ 2.4.10 ==============
2004−08−11 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Set pubdate.

 * pygtk−gdkdisplay.xml pygtk−gdkdisplaymanager.xml
 * pygtk−gdkkeymap.xml pygtk−gdkpixbufloader.xml
 * pygtk−gdkscreen.xml pygtk−gtkaccelgroup.xml
 * pygtk−gtkaction.xml pygtk−gtkactiongroup.xml
 * pygtk−gtkadjustment.xml pygtk−gtkbutton.xml
 * pygtk−gtkcalendar.xml pygtk−gtkcelleditable.xml
 * pygtk−gtkcellrenderer.xml pygtk−gtkcellrenderertext.xml
 * pygtk−gtkcellrenderertoggle.xml pygtk−gtkcheckmenuitem.xml
 * pygtk−gtkcolorbutton.xml pygtk−gtkcolorselection.xml
 * pygtk−gtkcombobox.xml pygtk−gtkcontainer.xml
 * pygtk−gtkcurve.xml pygtk−gtkdialog.xml pygtk−gtkeditable.xml

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 990

 * pygtk−gtkentry.xml pygtk−gtkentrycompletion.xml
 * pygtk−gtkexpander.xml pygtk−gtkfilechooser.xml
 * pygtk−gtkfontbutton.xml pygtk−gtkhandlebox.xml
 * pygtk−gtkicontheme.xml pygtk−gtkimcontext.xml
 * pygtk−gtkinputdialog.xml pygtk−gtkitem.xml pygtk−gtklabel.xml
 * pygtk−gtklayout.xml pygtk−gtkmenu.xml pygtk−gtkmenuitem.xml
 * pygtk−gtkmenushell.xml pygtk−gtknotebook.xml
 * pygtk−gtkobject.xml pygtk−gtkoptionmenu.xml pygtk−gtkpaned.xml
 * pygtk−gtkplug.xml pygtk−gtkradioaction.xml
 * pygtk−gtkradiobutton.xml pygtk−gtkradiomenuitem.xml
 * pygtk−gtkrange.xml pygtk−gtkscale.xml
 * pygtk−gtkscrolledwindow.xml pygtk−gtksocket.xml
 * pygtk−gtkspinbutton.xml pygtk−gtkstatusbar.xml
 * pygtk−gtktextbuffer.xml pygtk−gtktexttag.xml
 * pygtk−gtktexttagtable.xml pygtk−gtktextview.xml
 * pygtk−gtktoggleaction.xml pygtk−gtktogglebutton.xml
 * pygtk−gtktoggletoolbutton.xml pygtk−gtktoolbar.xml
 * pygtk−gtktoolbutton.xml pygtk−gtktoolitem.xml
 * pygtk−gtktreemodel.xml pygtk−gtktreeselection.xml
 * pygtk−gtktreesortable.xml pygtk−gtktreeview.xml
 * pygtk−gtktreeviewcolumn.xml pygtk−gtkuimanager.xml
 * pygtk−gtkviewport.xml pygtk−gtkwidget.xml pygtk−gtkwindow.xml
 Fix signal titles.

2004−08−10 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Undo erroneous check−in

2004−08−06 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Bump version number and pubdate

 * pygtk−gtkclipboard.xml (Synopsis) Fix typo. (Able Daniel)

 ================ 2.4.9 ==============
2004−08−03 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Update pubdate.

2004−08−02 John Finlay <finlay@moeraki.com>

 * pygtk−gtkexpander.xml (gtk.expander_new_with_mnemonic)
 (gtk.Expander) Note that label is optional and defaults to None.
 (set_label) (set_label_widget) Note that label and label_widget
 can be None.

 * pygtk−gtkcomboboxentry.xml (gtk.ComboBoxEntry) Default value
 for column is −1.
 (Description) (set_text_column)
 Note that the text column can only be set once.

2004−07−31 John Finlay <finlay@moeraki.com>

 * pygtk−gtkmenu.xml (Properties) Swap Child and Style property titles.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 991

2004−07−29 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeview.xml (get_drag_dest_row) None is a valid return
 value.

 * pygtk−gtkliststore.xml (insert_before) (insert_after)
 sibling param can be None in PyGTK 2.4.

2004−07−28 John Finlay <finlay@moeraki.com>

 * pygtk−gtkicontheme.xml (Description) Fix broken ulink tag.

 * pygtk−gtkexpander.xml (Description) Fix bug in example code using
 "expanded" property signal. Add note about using "activate" signal.

2004−07−27 John Finlay <finlay@moeraki.com>

 * pygtk−gdkatom.xml (Description) Add note on support for
 Atom and string comparsion support in PyGTK 2.4.

 * pygtk−gdkwindow.xml (property_get) (property_change) Add links for
 gtk.gdk.Atom references. Fixes #148569. Thanks to Abel Daniel.

2004−07−24 John Finlay <finlay@moeraki.com>

 * pygtk−gdk−constants.xml (Filter Return Constants) Add reference to
 gtk.gdk.Window.Add_filter() method.

 * pygtk−gdkwindow.xml (add_filter) Add initializer for data.
 Describe return value for callback.

2004−07−23 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreemodel.xml ("row−inserted") ("row−changed") Add
 detail on when these are emitted.

2004−07−22 John Finlay <finlay@moeraki.com>

 * pygtk−gtktextbuffer.xml (add_selection_clipboard)
 (remove_selection_clipboard)
 (cut_clipboard) (copy_clipboard) (paste_clipboard)
 These methods are available in PyGTK 2.2.

 * pygtk−gtktextview.xml (Description) Clipboard access is available
 in PyGTK 2.2.

 * pygtk−gtkwidget.xml (get_clipboard) Available in PyGTK 2.2.

2004−07−21 John Finlay <finlay@moeraki.com>

 * pygtk−gtkclipboard.xml (gtk.Clipboard) Add description of defaults
 for optional params.
 (gtk.clipboard_get) Add description of this PyGTK 2.4 function.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 992

 * pygtk−gtk−functions.xml
 (gtk.clipboard_get) Add link for this PyGTK 2.4 function.

 * pygtk−gtkclipboard.xml (set_with_data) Add description of get_func
 and clear_func signatures.

2004−07−20 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeviewcolumn.xml (set_sort_column_id) Expand description
 of this convenience method.
 (set_sort_indicator) Add note re effect of set_sort_column_id() on
 use of this method.

2004−07−19 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreesortable.xml (set_sort_func) Add description of
 comaprison function return value. Thanks to Andrew Boie.

 * pygtk−gtktreeview.xml (get_path_at_pos) Return value if no path
 is None.

2004−07−18 John Finlay <finlay@moeraki.com>

 * pygtk−gtkactiongroup.xml (add_actions)
 (add_toggle_actions) (add_radio_actions) Document new user_data
 param.

2004−07−15 John Finlay <finlay@moeraki.com>

 * pygtk−gtkbutton.xml Add description of optional use_underline
 param added in PyGTK 2.4
 * pygtk−gtktogglebutton.xml Add description of optional use_underline
 param added in PyGTK 2.4. Add missing constructor param description.
 * pygtk−gtkcheckbutton.xml Add description of optional use_underline
 param added in PyGTK 2.4.
 * pygtk−gtkradiobutton.xml Add description of optional use_underline
 param added in PyGTK 2.4.
 * pygtk−gtkcheckmenuitem.xml Add description of optional use_underline
 param added in PyGTK 2.4.
 * pygtk−gtkmenuitem.xml Add description of optional use_underline
 param added in PyGTK 2.4.
 * pygtk−gtkradiomenuitem.xml Add description of optional use_underline
 param added in PyGTK 2.4.

2004−07−12 John Finlay <finlay@moeraki.com>

 * pygtk−gdkwindow.xml (set_geometry_hints) Add missing param names.
 Thanks to Theo Reed in #147458.

2004−07−09 John Finlay <finlay@moeraki.com>

 * pygtk−gtkbin.xml ("child") Add description of this attribute.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 993

 * pygtk−gtkcheckmenuitem ("active") Add description of this attribute.
 ("indicator−size") Add description of this style property.

 * pygtk−gtkgammadialog.xml (Attributes) Add description of attributes.

2004−07−08 John Finlay <finlay@moeraki.com>

 * pygtk−gdkcolor.xml (gtk.gdk.parse_color) Add info on exceptions.

 * pygtk−gdkcolormap.xml (alloc_color) Modify description on
 exceptions.

2004−07−04 John Finlay <finlay@moeraki.com>

 * pygtk−pygtkgenerictreemodel.xml Fix broken links.

 * pygtk−gtktreemodel.xml (rows_reordered) ("rows−reordered")
 Update these to indicate top level row reordering.

 * pygtk−gdkcolormap.xml (query_color) Add description of this
 PyGTK 2.4 method.

2004−07−03 John Finlay <finlay@moeraki.com>

 * pygtk−gdkpixbuf.xml (subpixbuf) Add description of this new
 PyGTK 2.4 method.

 * pygtk−pygtkgenerictreemodel.xml (Description) Add info on new
 methods invalidate_iters() and iter_is_valid().
 (invalidate_iters) (iter_is_valid) Add description of these
 PyGTK 2.4 methods.

 * pygtk−gtktreeview.xml (get_search_equal_func) Remove. This wasn't
 implemented.

 * pygtk−gtktreeview.xml (get_search_equal_func)
 (set_search_equal_func) Add description of these PyGTK 2.4 methods.
 Fix some typos.

 * pygtk−gobject−functions.xml (io_add_watch)

 * pygtk2−ref.html Bump version number.

 ================ 2.4.8 ==============
2004−07−01 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Change pubdate.

 * pygtk−gdkwindow.xml (set_user_data) Add info about TypeError
 exception.

 * pygtk−gtknotebook.xml (append_page) (append_page_menu)
 (prepend_page) (prepend_page_menu) (insert_page) (insert_page_menu)
 (set_tab_label) (set_menu_label)

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 994

 Describe default values for tab_label, menu_label and position params.

 * pygtk−gtkcombobox.xml (Description) Fix typo.
 * pygtk−introduction.xml Fix broken link
 * pygtk−gtkentrycompletion.xml Fix typo.
 Fixes #145239 thanks to Olav Vitters

2004−06−30 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreesortable.xml (Description)
 (get_sort_column_id) (set_sort_func_id) Add more detail on the
 meaning and use of sort column IDs.

 * pygtk−gtktreesortable.xml (set_default_sort_func) Revise
 description of sort_func param. Change
 gtk.TREE_SORTABLE_DEFAULT_SORT_COLUMN_ID to −1.
 (set_sort_column_id) Change gtk.TREE_SORTABLE_DEFAULT_SORT_COLUMN_ID
 to −1.

2004−06−28 John Finlay <finlay@moeraki.com>

 * pygtk−pygtkgenerictreemodel.xml (Properties) Add description
 of the "leak−references" property.

2004−06−20 John Finlay <finlay@moeraki.com>

 * pygtk−gtkwidget.xml (allocation) (window) These attributes are
 writeable in PyGTK 2.4
 * pygtk−gtkwidget.xml
 * pygtk−gtk−functions.xml (widget_class_install_style_property)
 Add description of this PyGTK 2.4 function.

 * pygtk−gtkcontainer.xml
 * pygtk−gtk−functions.xml (container_class_list_child_properties)
 Add description of this PyGTK 2.4 function.

 * pygtk−gtkitemfactory.xml (Description) Add link to gtk.UIManager
 in the deprecation message. Thanks to Matthew Bull.

 * pygtk−gdkwindow.xml (set_user_data) (get_user_data) Add
 description of these PyGTK 2.4 methods.

 * pygtk−gtknotebook.xml (insert_page) (set_tab_label) tab_label
 parameter can be None in PyGTK 2.4 and above.

 * pygtk−gtkwidget.xml ("drag−drop") Fix broken link.

 * pygtk−gtkaccelgroup.xml
 * pygtk−gtk−functions.xml (accel_groups_from_object) Add
 description of this PyGTK 2.4 function.

2004−06−14 John Finlay <finlay@moeraki.com>

 * pygtk−gtkwidget.xml ("drag−motion") ("drag−leave") ("drag−end")

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 995

 ("drag−drop") ("drag−data−received") ("drag−data−get")
 ("drag−data−delete") ("drag−begin") Update the documentation on
 these signals.

2004−06−13 John Finlay <finlay@moeraki.com>

 * pygtk−gtkicontheme.xml (Description) Fix typo and add exception
 handling to example. Thanks to Steve Chaplin.

 * pygtk−gtktextview.xml (Description) Add info about popup menu and
 selection clipboards.

2004−06−12 John Finlay <finlay@moeraki.com>

 * pygtk−gtkimage.xml ("pixbuf") Attribute contains a pixbuf not
 a pixmap. Thanks to Christian Reis.

2004−06−06 Johan Dahlin <johan@gnome.org>

 * pygtk−gdkevent.xml : Proper documentation of all attributes, in
 sync with latest CVS. Remove the common attribute and only show
 them in the beginning of the event list.

2004−06−02 John Finlay <finlay@moeraki.com>

 * pygtk−gtkpaned.xml (pack1) (pack2) Change references to expand
 param to resize. Thanks to Toon Verstraelen. Fixes #143589

2004−05−31 John Finlay <finlay@moeraki.com>

 * pygtk−gdkwindow.xml (add_filter) Add description of this PyGTK 2.2
 method.

2004−05−30 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreemodel.xml ("rows−reordered") Note that new_order is
 a gpointer value.

 * pygtk−gtktreeview.xml ("columns−changed") Fix confusing wording.
 ("test−collapse−row") ("test−expand−row") Update return value
 wording.

 * pygtk−gtktreedragdest.xml (row_drop_possible) Add missing word.

2004−05−29 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeview.xml (set_column_drag_function) Add description
 of this PyGTK2.4 method.

 * pygtk−pygtkgenerictreemodel.xml (Description) Add self as
 a param to all the methods to be implemented and use rowref
 instead of iter to avoid confusion. Correct method name from
 on_get_iter_next() to on_iter_next()

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 996

 * pygtk−gtktreemodel.xml (iter_next) Fix description.

2004−05−28 John Finlay <finlay@moeraki.com>

 * pygtk−gdkpixbuf.xml (save)
 (gdk.pixbuf_new_from_file)
 (gdk.pixbuf_new_from_file_at_size)
 (gdk.pixbuf_new_from_inline) Note that GError exception is
 raised on error.

 * pygtk−gdkpixbufanimation.xml (gtk.gdk.PixbufAnimation) Note that
 GError exception is raised on error.

 * pygtk−gdkpixbufloader.xml (gtk.gdk.PixbufLoader)
 (gtk.gdk.pixbuf_loader_new_with_mime_type)
 (write) (close) Note that GError exception is raised on error.

 * pygtk−gtkiconinfo.xml (load_icon) Note that GError exception
 is raised on error.

 * pygtk−gtkicontheme.xml (load_icon) Note that GError exception
 is raised on error.

 * pygtk−gtkuimanager.xml (add_ui_from_string)
 (add_ui_from_file) Note that GError exception is raised on error.

 * pygtk−gtkwindow.xml (set_icon_from_file) Add.
 (gtk.window_set_default_icon_from_file) Note that GError exception
 is raised on error.

 * pygtk−gtkfilechooser.xml (add_shortcut_folder)
 (remove_shortcut_folder)
 (add_shortcut_folder_uri)
 (remove_shortcut_folder_uri) Note that GError exception is raised
 on error.

 * pygtk−pangoattrlist.xml (pango.parse_markup) Note that GError
 exception is raised on error.

2004−05−27 John Finlay <finlay@moeraki.com>

 * pygtk−gtkcelllayout.xml (set_cell_data_func) Add description
 of this PyGTK 2.4 method.

 * pygtk−gtktreeviewcolumn.xml Add note that GtkTreeViewColumn
 implements the GtkCellLayout interface in PyGTK 2.4.

2004−05−25 John Finlay <finlay@moeraki.com>

 * pygtk−introduction.xml Add reference link to www.pygtk.org
 Thanks to Rafael Villar Burke.

 * pygtk−gtkentrycompletion.xml (Description) Fix example code.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 997

2004−05−24 John Finlay <finlay@moeraki.com>

 * pygtk−pygtktreemodelrowiter.xml (next) Fix broken links and name.

2004−05−22 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreemodelfilter.xml (set_modify_func) Add description.
 Add to Description re modify function.

 * pygtk2−ref.xml Bump release number to 2.4.8.

2004−05−21 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreemodel.xml (iter_n_children) Change NULL to None.

2004−05−20 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeviewcolumn.xml (pack_start)
 (pack_end) expand param can default to TRUE.

 =========== 2.4.7 ==============
2004−05−19 John Finlay <finlay@moeraki.com>

 * pygtk−pygtktreemodelrow.xml Add.

 * pygtk−pygtktreemodelrowiter.xml Add.

 * pygtk−gtk−classes.xml Add pygtk−pygtktreemodelrow.xml and
 pygtk−pygtktreemodelrowiter.xml

 * pygtk2−ref.xml Bump release number to 2.4.7

 * pygtk−gtktreemodel.xml Add description of mapping and iterator
 protocol support.

 =========== 2.4.6 ==============
2004−05−17 John Finlay <finlay@moeraki.com>

 * pygtk−gtk−constants.xml (gtk−selection−mode−constants) Fix typo.

 * pygtk−gtktreemodel.xml (get) Remove dangling tag.

 * pygtk2−ref.xml Bump release number to 2.4.6

2004−05−16 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeselection.xml (set_selection_function) Fix bogus
 description of signature of func.

2004−05−15 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeselection.xml Fix method links in Description.
 (set_mode) Add detail on selection mode and reference to selection
 constants.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 998

 (selected_foreach) Add note.

2004−05−13 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeselection.xml
 (get_selected) Add info that treeiter is None if no row selected.
 (get_selected_rows) Correct return value is a tuple with
 a tree modle and a list of selected paths.

2004−05−12 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeview.xml (get_dest_row_at_pos) Change parameters
 to x and y from drag_x and drag_y.

2004−05−10 John Finlay <finlay@moeraki.com>

 * pygtk−gtknotebook.xml (append_page) (append_page_menu)
 (prepend_page) (prepend_page_menu) (insert_page)
 (insert_page_menu) Add description of return value for PyGTK 2.4
 and above − these return a page index.

2004−05−07 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreestore.xml (remove) Fix return value explanation.

 * pygtk−gtkliststore.xml (iter_is_valid) (reorder)
 (move_before) (move_after) Change first release designation
 to PyGTK 2.2.

 * pygtk−gtktreemodel.xml (get) Add description of this PyGTK 2.4
 method.
 (get) Add column param to description.

2004−05−06 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreestore (insert) (insert_after) (insert_before)
 (append) (prepend) Add initializers to the Synopsis.

2004−05−05 John Finlay <finlay@moeraki.com>

 * pygtk−gobject−constants (gobject−type−constants) Fix link.

 * pygtk2−ref.xml Bump release number to 2.4.5

 ============= 2.4.4 =============
2004−05−05 John Finlay <finlay@moeraki.com>

 * pygtk−gtkmenuitem.xml (activate) Accidentally commented out
 description.

 * pygtk−introduction.xml Unscramble programlisting.

 * pygtk−gobject.xml Fix Attribute formatting.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 999

 * pygtk−gtkaction.xml (get_visible) Fix link.

 * pygtk−gtkbox.xml (pack_start_defaults)
 (pack_end_defaults) Add deprecation warnings. Remove references in
 Description.

 * pygtk−gtkcombo.xml Fix Properties formatting.

 * pygtk−gtkcontainer.xml Fix Attribute formatting.

 * pygtk−gtkdialog.xml Fix Attribute formatting.

 * pygtk−gtkfileselection.xml Fix Attribute formatting.

 * pygtk−gtkfontselectiondialog.xml Fix Attribute formatting.

 * pygtk−gtkmessagedialog.xml Fix Attribute formatting.

 * pygtk−gtknotebook.xml Fix Attribute formatting.

 * pygtk−gtkrequisition.xml Fix Attribute formatting.

 * pygtk−gtkselectiondata.xml Fix Attribute formatting.

 * pygtk−gtkstyle.xml Fix Attribute formatting.

 * pygtk−gtktextattributes.xml Fix Attribute formatting.

 * pygtk−gtktextbuffer.xml Fix Attribute formatting.

 * pygtk−gtktogglebutton.xml Fix Attribute formatting.

 * pygtk−gtktooltips.xml Fix Attribute formatting.

 * pygtk−gtkwidget.xml Fix Attribute formatting.

 * pygtk−gtkwindow.xml Fix Attribute formatting.

 * pygtk−gdkcolor.xml Fix Attribute formatting.

 * pygtk−gdkdevice.xml Fix Attribute formatting.

 * pygtk−gdkdragcontext.xml Fix Attribute formatting.

 * pygtk−gdkdrawable.xml Fix Attribute formatting.

 * pygtk−gdkevent.xml Fix Attribute formatting.

 * pygtk−gdkgc.xml Fix Attribute formatting.

 * pygtk−gdkpixbuf.xml Fix Attribute formatting.

 * pygtk−gdkrectangle.xml Fix Attribute formatting.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1000

 * pygtk−gdkvisual.xml Fix Attribute formatting.

 * pygtk−pangoattribute.xml Fix Attribute formatting.

 * pygtk−pangocolor.xml Fix Attribute formatting.

 * pygtk−pangoglyphstring.xml Fix Attribute formatting.

 * pygtk2−ref.xml Bump release number to 2.4.4

2004−05−04 John Finlay <finlay@moeraki.com>

 * pygtk−gtkmenuitem.xml (toggle_size_request) Add description.

 * pygtk−gtktextiter.xml (backward_find_char)
 (forward_find_char) Add descriptions of these methods.
 Fix spelling errors.

 * pygtk−gtktextview.xml Spell checked.

 * pygtk−gtktextbuffer.xml Spell checked.

 * pygtk−introduction.xml Add section listing major changes since 1.9.

 * pygtk−gobject−maincontext.xml Spell checked.

 * pygtk−gobject−functions.xml Spell checked.

 * pygtk−gobject−constants.xml Spell checked.

 * pygtk−gtkaccellabel.xml Spell checked.

 * pygtk−gtkaction.xml Spell checked.

2004−04−30 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Bump release number to 2.4.3

 * pygtk−gtkaction.xml
 * pygtk−gtkactiongroup.xml
 * pygtk−gtkborder.xml
 * pygtk−gtkclipboard.xml
 * pygtk−gtkcolorbutton.xml
 * pygtk−gtkcombobox.xml
 * pygtk−gtkcomboboxentry.xml
 * pygtk−gtkentrycompletion.xml
 * pygtk−gtkexpander.xml
 * pygtk−gtkfilechooser.xml
 * pygtk−gtkfilechooserdialog.xml
 * pygtk−gtkfilechooserwidget.xml
 * pygtk−gtkfilefilter.xml
 * pygtk−gtkfontbutton.xml
 * pygtk−gtkiconinfo.xml
 * pygtk−gtkicontheme.xml

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1001

 * pygtk−gtkradioaction.xml
 * pygtk−gtktoolbutton.xml
 * pygtk−gtkseparatortoolitem.xml
 * pygtk−gtktoggleaction.xml
 * pygtk−gtktoggletoolitem.xml
 * pygtk−gtktoolbutton.xml
 * pygtk−gtktoolitem.xml
 * pygtk−gtktreemodelfilter.xml
 * pygtk−gtktreerowreference.xml
 * pygtk−gtkuimanager.xml
 Add a note indicating which release of PyGTK the above were new in.

 ============ Release 2.4.2 ===============
2004−04−29 John Finlay <finlay@moeraki.com>

 * pygtk−gtkclipboard.xml Fix notes to correct release availabilities
 for object, constructor and methods.

 * pygtk−introduction.xml Update the introduction re: PyGTK 2.4
 and Pango. Also add description of Child Properties.

 * pygtk−gtktreestore.xml (remove) Add return value description.

 * pygtk−gtkliststore.xml (remove) Add return value description.

 * pygtk2−ref.xml Bump release level to 2.4.2

2004−04−27 John Finlay <finlay@moeraki.com>

 * pygtk−gobject−function.xml (io_add_watch) Add description of
 callback signature.

 * pygtk2−ref.xml Bump release level to 2.4.1

===== Release 2.4 =====

2004−04−27 John Finlay <finlay@moeraki.com>

 * pygtk−gtkclipboard.xml Fix link to gtk.gdk.atom−intern().

 * pygtk−gtkexpander.xml Fix link to pango.parse_markup().

 * pygtk−gtkicontheme.xml Fix link to gtk.gdk.pixbuf_new_from_inline()
 function.

 * pygtk−gtkscale.xml Fix link to pango.PIXELS().

 * pygtk−gtkwidget.xml Fix link to gtk.gdk.Screen.

 * pygtk−gtkwindow.xml Fix link to Gravity Constants.
 Remove bogus link to gdk_notify_startup_complete() function.

 * pygtk−gtk−constants.xml Fix links to gtk.gdk.DragConstext.finish()
 method.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1002

 * pygtk−pangocolor.xml Fix link to gobject.GBoxed.

 * pygtk−hierarchy.xml Tweak formatting.

 * pygtk−hierarchy.xml Use PyGTK 2.4 hierarchy.

 * pygtk−hierarchy.xml Remove undocumented ATK entries, etc.

 * pygtk−pango−constants.xml Remove reference to unimplemented
 functions.

 * pygtk−gdkwindow.xml Remove reference to unimplmented function.

 * pygtk−gdkdrawable.xml Remove reference to unimplmented function.

 * pygtk−gtkaccelgroup.xml Remove reference to unimplemnted function.

 * pygtk−gobject−ginterface.xml Add.

 * pygtk−gobject−classes.xml Add pygtk−gobject−ginterface.xml

 * pygtk2−ref.xml Update date and set version to 2.4

 * pygtk−gtkclipboard.xml Remove reference to unimplemnted function.
 Add initlaizers for user_data in request_* methods.

 * pygtk−gtk−classes Add pygtk−gtk−constants.xml

2004−04−26 John Finlay <finlay@moeraki.com>

 * pygtk−gdk−constants.xml Add.

 * pygtk−gdk−classes.xml Add pygtk−gdk−constants.xml to list.

 * pygtk−pango−constants.xml Reorganize with a Synopsis and add
 a description for each set of constants.

 * pygtk−gobject−constants.xml Add.

 * pygtk−gobject−gboxed.xml Add.

 * pygtk−gobject−gboxed.xml Remove gobject from Ancestry.

 * pygtk−gobject−gboxed.xml Fix typo.

 * pygtk−gobject−maincontext.xml Add.

 * pygtk−gobject−mainloop.xml Add.

 * pygtk−gobject−classes.xml Add pygtk−gobject−gboxed.xml,
 pygtk−gobject−maincontext.xml and pygtk−gobject−mainloop.xml to
 the list of files to be processed.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1003

 * pygtk−gobject−maincontext.xml Add description of constructor.

 * pygtk−gobject.xml Move Ancestry section ahead of Description.

 * pygtk−gobject.xml Add some attribute descriptions.

 * pygtk−gobject−gpointer.xml Add.

 * pygtk−gtk−constants.xml Add.

2004−04−25 John Finlay <finlay@moeraki.com>

 * pygtk−pango−functions.xml Add.

 * pygtk−pangolanguage.xml Add pango functions to cover the real
 API pre−PyGTK 2.4.

 * pygtk−pango−functions.xml Remove extraneous sections.

 * pygtk−gdkscreen.xml ("size−changed") Add description.

 * pygtk−gtk−stock−items.xml (gtk.stock_lookup)
 (gtk.stock_list_ids) Add reference links.

 * pygtk−pango−markup.xml ("fallback") Add description of this
 attribute type.

 * pygtk−pangoattribute.xml Reorder attributes.

 * pygtk−pangofontmap.xml (get_shape_engine_type) Add description.

 * pygtk−gdk−classes.xml Add new xml files for processing.

 * pygtk−gdk−functions.xml Add links to all module functions.

 * pygtk−pango−classes.xml Add class references for FontsetSimple
 and pango functions for processing.

 * pygtk−pango−constants.xml Add.

 * pygtk−pango−classes.xml Add Pango Constants ref.

 * pygtk−gdkgc.xml Fix typo.

 * pygtk−gdkwindow.xml (get_state) Add to WINDOW_STATE flag list.

2004−04−24 John Finlay <finlay@moeraki.com>

 * pygtk−pangoattribute.xml Fix typo. Reorder attributes.

 * pygtk−pangoattrlist.xml (filter) Add description of this
 PyGTK 2.4 method.

 * pygtk−pangocontext.xml Fix link in Description.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1004

 * pygtk−pangofontface.xml (list_sizes) Add desciption of this
 PyGTK 2,4 method.

 * pygtk−pangofontfamily.xml (is_monospace) Add description of this
 PyGTK 2.4 method.

 * pygtk−pangofontset.xml Fix typo in Description.
 (foreach) Add description of this PyGTK 2.4 method.

 * pygtk−pangofontsetsimple.xml Add.

2004−04−23 John Finlay <finlay@moeraki.com>

 * pygtk−gdkwindow.xml (set_accept_focus) (get_group)
 Add descriptions of these methods.
 (gtk.gdk.window_lookup_for_display)
 (gtk.gdk.window_foreign_new_for_display)
 Add description for these functions.

 * pygtk−gdkatom.xml Fix constructor link.

 * pygtk−gdkdisplaymanager.xml Fix gdkdisplay link.

 * pygtk−gdkkeymap.xml Fix signal links.
 Fix keyval_get_keys link − change to lookup_key method.
 ("keys−changed") Add description of this GTK+ 2.2 signal.
 (gtk.gdk.keyval_to_lower) Fix name.

 * pygtk−gdk−functions.xml
 (gtk.gdk.screen_width) (gtk.gdk.screen_height)
 (gtk.gdk.screen_width_mm) (gtk.gdk.screen_height_mm)
 Remove these descriptions − now with GdkWindow.
 Add links to all functions.

 * pygtk−gdkwindow.xml Fix links to gtk.Window.set_wmclass method.
 fix reference to gtk.gdk.window_constrain_size function

 * pygtk−gdkvisual.xml (visual_get_best_with_type)
 Add missing parameter.

 * pygtk−gdkpixbuf.xml (gtk.gdk.pixbuf_new_from_file_at_size)
 Fix parameter name.

 * pygtk−gdk−functions.xml Fix reference to gtk.gdk.atom_intern.
 Update the description. Reorder function listing.

 * pygtk−gtkvseparator.xml Fix link to constructor.

 * pygtk−gtkwindow.xml (gtk.window_set_auto_startup_notification)
 Add description for this PyGTK 2.2 function.

 * pygtk−gtkobject.xml (gtk.bindings_activate_event) Add.
 (gtk.bindings_activate) Fix name.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1005

 * pygtk−gtk−stock−items.xml (gtk.stock_add)
 (gtk.stock_lookup) (gtk.stock_list_ids) Add description of
 these functions.

 * pygtk−gtk−functions.xml Add links to all functions and update
 description.

 * pygtk−gtkwindow.xml Fix typo.

 * pygtk−gtk−functions.xml Add gtkWidget function links.

 * pygtk−pangoattribute.xml (AttrFallback) Add description of this
 PyGTK 2.4 function.

 * pygtk−pangoattriter.xml (get_attrs) Add description of this
 PyGTK 2.4 method.

2004−04−22 John Finlay <finlay@moeraki.com>

 * pygtk−gdkpixbuf.xml
 (gtk.gdk.pixbuf_new_from_data) (gtk.gdk.pixbuf_new_from_array)
 Add descriptions of these PyGTK 2.2 functions.
 (gtk.gdk.pixbuf_new_from_file_at_size)
 (gtk.gdk.pixbuf_get_formats) (gtk.gdk.pixbuf.get_file_info)
 Add descriptions of these PyGTK 2.4 functions.
 ("bits−per−sample"(("colorspace") ("has−alpha") ("height")
 ("n−channels") ("pixels") ("rowstride") ("width")
 Add descriptions fo these GTK+ 2.4 properties.

 * pygtk−gdkpixbuf.xml (gtk.gdk.pixbuf_get_formats) Tweak description.

 * pygtk−gdkpixbufloader.xml (set_size) (get_format)
 Add descriptions for these PyGTK 2.4 methods.
 (gtk.gdk.pixbuf_loader_new_with_mime_type)
 Add description for this PyGTK 2.4 function
 ("size−prepared") Add desription of this GTK+ 2.2 signal.

 * pygtk−gdkpixmap.xml (gtk.gdk.pixmap_foreign_new_for_display)
 (gtk.gdk.pixmap_lookup_for_display) Add descriptions for these
 PyGTK 2.2 functions.

 * pygtk−gdkrectangle.xml (union) Fix typo.

 * pygtk−gdkscreen.xml Add.
 Add purpose description.

 * pygtk−gdkvisual.xml Reorder attribute list.
 (get_screen) Add desciption of this PyGTK 2.2 method.
 (query_depths) (query_visual_types)
 Add description of these PyGTK 2.4 functions.

 * pygtk−gdkwindow.xml (set_keep_above) (set_keep_below)
 (set_skip_taskbar) (set_skip_pager) (set_geometry_hints)

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1006

 (get_deskrelative_origin) (set_icon_list)
 (fullscreen) (unfullscreen)
 Add descriptions of these methods.
 (gtk.gdk.window_at_pointer)
 Add description for this function.

2004−04−21 John Finlay <finlay@moeraki.com>

 * pygtk−gdkgc.xml (get_screen) Add description of this PyGTK 2.2
 method

 * pygtk−gdkkeymap.xml (keymap_get_for_display) Add desciption of
 this PyGTK 2.2 function.
 (keyval_convert_case) Add description of this PyGTK 2.4 function.
 (get_entries_for_keyval)
 (get_entries_for_keycode)
 (lookup_key)
 (translate_keyboard_state) Add descriptions of these PyGTK 2.4 methods.

 * pygtk−gdkevent.xml (gtk.gdk.KEY_PRESS) Add "hardware_keycode"
 attribute description for PyGTK 2.2. Add "group" attribute
 description for PyGTK 2.4.

2004−04−20 John Finlay <finlay@moeraki.com>

 * pygtk−gtk−classes.xml Add pygtk−gtk−stock−items.xml to list

 * pygtk−gtk−stock−items.xml Fix reference to stock_network_24.png
 and stock_new_24.png

 * pygtk−gdkatom.xml Tweak the description.

 * pygtk−gdkcolormap.xml (get_screen) Add description of
 PyGTK 2.4 method.
 (gtk.gdk.colormap_get_system) Add reference to
 gtk.gdk.Screen.get_system_colormap() method.

 * pygtk−gdkcursor.xml (get_display) Add description of this
 PyGTK 2.2 method.
 Add descriptions of 2 more constructor signatures for PyGTK 2.4.

 * pygtk−gdkdevice.xml Reorder attribute list.

 * pygtk−gdkatom.xml (atom_intern) Note that value of
 only_if_exists is ignored.

 * pygtk−gdkdisplay.xml Add.

 * pygtk−gdkdisplaymanager.xml Add.

 * pygtk−gdkdragcontext.xml (find_window_for_screen) Add description
 for this PyGTK 2.2 method.

 * pygtk−gdkdrawable.xml (get_screen) (get_display) (draw_pixbuf)

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1007

 Add descriptions of these PyGTK 2.2 methods. Update the Description.

 * pygtk−gdkdrawable.xml ("xid") ("handle")
 Add attribute descriptions.

 * pygtk−gdkevent.xml (get_state) Add note about availability.
 Added description of event masks.
 (gtk.gdk.Event) Added for PyGTK 2.2.

 * pygtk−gdkevent.xml (set_screen) (get_screen) Add descriptions of
 these PyGTK 2.2 methods.

2004−04−19 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreeview.xml (expand_to_path) (map_expanded_rows)
 (set_cursor_on_cell)
 Add descriptions of these methods added in PyGTK 2.2
 ("fixed−height−mode") ("even−row−color") ("odd−row−color")
 Add descriptions of these properties.
 Add signal return value descriptions as needed.

 * pygtk−gtktreeviewcolumn.xml (set_expand) (get_expand)
 (cell_get_position)
 Add description of these PyGTK 2.4 methods.
 (focus_cell) Add description of this PyGTK 2.2 method.
 ("expand") Add description of this GTK+ 2.4 signal.

 * pygtk−gtkuimanager.xml Add.

 * pygtk−gtkvbuttonbox.xml Tweak description.

 * pygtk−gtkwidget.xml (set_no_show_all) (get_no_show_all)
 (queue_resize_no_redraw) (can_activate_accel)
 (get_clipboard) (get_screen) (has_screen) (get_display)
 (get_root_window)
 Add descriptions of these PyGTK 2.4 methods.
 (gtk.widget_list_style_properties)
 Add description of this PyGTK 2.4 function.
 (get_size_request) Add description.
 (get_accessible) Remove description.
 ("can−activate−accel") ("screen−changed") ("key−release−event")
 Add descriptions for these signals.

 * pygtk−gtkwindow.xml (set_screen) (get_screen) (is_active)
 (has_toplevel_focus) (activate_key) (propagate_key_event)
 (fullscreen) (unfullscreen) (set−keep−above) (set−keep−below)
 Add description for these PyGTK 2.2 and 2.4 methods.
 ("accept−focus") ("decorated") ("gravity") ("role")
 ("has−toplevel−focus") ("is−active") ("screen") ("skip−pager−hint")
 (skip−taskbar−hint") ("type−hint")
 Add decriptions for these GTK+ 2.2 adn 2.4 properties.
 (gtk.set_default_icon) (gtk.set_default_icon_from_file)
 Add descriptions of these functions.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1008

 * pygtk−gtktoolitem.xml Fix reference to gtk.Button.set_relief()
 method.

 * pygtk−gtktoolbar.xml Fix reference to gtk.SeparatorToolItem class.

 * pygtk−gtkseparatortoolitem.xml Fix reference to
 gtk.SeparatorToolItem class.

 * pygtk−gtkscale.xml Fix reference to get_layout_offsets() method.

 * pygtk−gtknotebook.xml Fix formatting error.

 * pygtk−gtk−classes.xml Add missing pygtk−gtkiconinfo.xml include.

 * pygtk−gtkwindow.xml Fix references to gtk.Widget
 "window−state−event" signal.

 * pygtk−gdkatom.xml Fix reference to gtk.atom_intern() constructor.

 * pygtk−gtkwidget.xml Fix reference to
 gtk.widget_set_default_direction() function. Fix references and id
 for gtk.widget_list_style_properties function.

 * pygtk−gtkicontheme.xml Fix reference to gtk.pixbuf_new_from_inline
 function.

 * pygtk−gtk−stock−items.xml Add.

2004−04−18 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreemodelfilter.xml Add.

 * pygtk−gtktreemodelsort.xml (iter_is_valid) Add description of
 PyGTK 2.2 method.

 * pygtk−gtktreerowreference.xml Add.

 * pygtk−gtktreeselection.xml (get_selected_rows)
 (count_selected_rows) (unselect_range) Add new methods for PyGTK 2.2

 * pygtk−gtktreestore.xml (iter_is_valid) (reorder) (swap)
 (move_after) (move_before) Add descriptions for these PyGTK 2.2
 methods.

2004−04−17 John Finlay <finlay@moeraki.com>

 * pygtk−gtktoolbutton.xml Add.

 * pygtk−gtktoolitem.xml Add.

 * pygtk−gtktoolitem.xml (set_tooltip) tip_text and tip_private can
 default to None.

 * pygtk−gtkwindow.xml (tooltips_get_info_from_tip_window) Add

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1009

 description of PyGTK 2.4 method.

 * pygtk−gtktreeiter.xml Add class info for TreeIter creation methods.

 * pygtk_gtktreemodel.xml (filter_new) Add description of new
 PyGTK 2.4 method.

2004−04−16 John Finlay <finlay@moeraki.com>

 * pygtk−gtksocket.xml ("plug−removed") Add return value description
 for this signal handler.

 * pygtk−gtkspinbutton.xml ("input") ("output") Add return value
 descriptions. Reorder property descriptions.

 * pygtk−gtkspinbutton.xml ("input") ("output") Fix typos.

 * pygtk−gtkstatusbar.xml ("has−resize−grip") Add GTK+ 2.4 property
 description.

 * pygtk−gtk−functions.xml (gtk.draw_insertion_cursor) Add.

 * pygtk−gtktable.xml (attach_defaults) Remove − it's deprecated.
 Reorder property descriptions.

 * pygtk−gtktextbuffer.xml (create_tag) Remove keyword role.
 (select_range) (add_selection_clipboard) (remove_selection_clipboard)
 (cut_clipboard) (copy_clipboard) (paste_clipboard) Add for PyGTK 2.4

 * pygtk−gtktextiter.xml (forward_visible_word_end)
 (backward_visible_word_start) (forward_visible_word_ends)
 (backward_visible_word_starts) Add descriptions for PyGTK 2.4

 * pygtk−gtktexttag.xml Reorder property descriptions.
 ("event") Add return value description.

 * pygtk−gtktexttagtable.xml (foreach) Add description for PyGTK 2.4

 * pygtk−gtkaccelgroup.xml
 pygtk−gtkpaned.xml
 pygtk−gtkscrolledwindow.xml
 pygtk−gtkspinbutton.xml
 pygtk−gtktreeview.xml
 pygtk−gtkwidget.xml
 pygtk−gtkwindow.xml Make keycombos simultaneous.

 * pygtk−gtktextview.xml ("move−viewport") ("select−all") Add
 descriptions of these signals for GTK+ 2.4 and 2.2.
 ("accepts−tab") ("overwrite") Add descriptions of these GTK+ 2.4
 properties.
 (set_accepts_tab) (get_accepts_tab) (set_overwrite) (get_overwrite)
 Add descriptions of these PyGTK 2,4 methods.

 * pygtk−gtktoggleaction.xml Add.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1010

 * pygtk−gtktoggletoolbutton.xml Add.

 * pygtk−gtktoolbar.xml Add new GTK+ 2.4 method descriptions.
 Add deprecation warnings for old toolbar methods.

2004−04−15 John Finlay <finlay@moeraki.com>

 * pygtk−gtkmessagedialog.xml (set_markup) Add description of this
 PyGTK 2.4 method.

 * pygtk−gtknotebook.xml (get_n_pages) Add description.
 Add GTK+2.4 style properties
 Add return value description for "focus−tab" and "select−page"
 signals.

 * pygtk−gtkoptionmenu.xml Added deprecation warning for PyGTK 2.4

 * pygtk−gtkpaned.xml (get_child1) (get_child2) Add descriptions of
 these PyGTK 2.4 methods.
 ("max−position") ("min−position") Add descriptions of these GTK+ 2.4
 properties.
 ("resize") ("shrink") Add descriptions of these GTK+ 2.4 child
 properties.
 Add return value description for signals.

 * pygtk−gtkplug.xml (gtk.plug_new_for_display) Add description.
 (construct) Add warning − method not available since PyGTK 2.2

 * pygtk−gtkradioaction.xml Add.

 * pygtk−gtkradiobutton.xml Add description of "group−changed" signal
 for GTK+ 2.4

 * pygtk−gtkradiomenuitem.xml Add description of "group−changed" signal
 for GTK+ 2.4

 * pygtk−gtkradioaction.xml Fix description of "group" property.

 * pygtk−gtkradiotoolbutton.xml Add.

 * pygtk−gtkrange.xml Reorder property descriptions.

 * pygtk−gtkrcstyle.xml Add gtk.rc_reset_style() function for PyGTK 2.4

 * pygtk−gtkscale.xml (get_layout) (get_layout_offsets) Add
 descriptions for PyGTK 2.4

 * pygtk−gtkscrollbar.xml Reorder property descriptions.

 * pygtk−gtkscrolledwindow.xml Add "scrollbar−spacing" style property
 available in GTK+ 2.2

 * pygtk_gtkselectiondata.xml Add function description of

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1011

 gtk.selection_owner_set_for_display().

 * pygtk_gtkseparatortoolitem.xml Add. Add purpose description

 * pygtk−gtksettings.xml (gtk.settings_get_for_screen) Add description.
 Add various properties for GTK+ 2.2 and 2.4

2004−04−14 John Finlay <finlay@moeraki.com>

 * pygtk−gtkiconsource.xml Add gtk.icon_size_lookup_for_settings()
 function.

 * pygtk−gdkpixmap.xml Fix description and parameter list of
 gtk.pixmap_create_from_data() function.

 * pygtk−gtkicontheme.xml Add.

 * pygtk−gtkiconinfo.xml Add.

 * pygtk−gtkinvisible.xml Add the set_screen() and get_screen() methods
 available in PyGTK 2.2

 * pygtk−gtkitemfactory.xml Add deprecation warning.

 * pygtk−gtklabel.xml Fix typo.

 * pygtk−gtkliststore.xml (set_column_types)
 (iter_is_valid) (reorder) (swap) (move_after) (move_before) Add
 descriptions for these methods.

 * pygtk−gtkmenu.xml (set_screen) (attach) (set_monitor) Add
 descriptions for these methods.

 * pygtk−gtkmenu.xml ("move−scroll") Add description for this GTK+ 2.2
 signal. Add descriptions for the style and child properties added in
 GTK+ 2.4

 * pygtk−gtkmenuitme.xml ("toggle−size−allocate") Fix typo.

 * pygtk−gtkmenushell.xml (select_first) (cancel) Add descriptions
 for these methods in PyGTK 2.2 and 2.4 respectively.

2004−04−13 John Finlay <finlay@moeraki.com>

 * pygtk−gtkexpander.xml Add.

 * pygtk−gtkimcontext.xml Add return value description for
 "delete−surrounding" and "retrieve−surrounding" signals.

 * pygtk−gtkclipboard.xml Add the request_* and wait_for_targets
 method descriptions.

2004−04−10 John Finlay <finlay@moeraki.com>

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1012

 * pygtk−gtkactiongroup.xml (add_toggle_actions) Add description of
 is_active item in toggle action tuple.
 (add_radio_actions) Add description of value and on_change parameters.
 Remove callback description from radio action tuple.

 * pygtk−gdkatom.xml Add.

 * pygtk−gdk−functions.xml (atom_intern) Remove.
 Fix dumb error.

 * pygtk−gtkclipboard.xml Add.

 * pygtk−gdk−classes.xml Add pygtk−gdkatom.xml.
 Hide unimplemented new classes

 * pygtk−gtk−classes Hide unimplemented new classes

 * pygtk−gtkaccelgroup.xml
 * pygtk−gtkbutton.xml
 * pygtk−gtkentrycompletion.xml
 * pygtk−gtkfilechooserdialog.xml
 * pygtk−gtkfontselectiondialog.xml
 * pygtk−gtkgenericcellrenderer.xml
 * pygtk−gdkatom.xml Fix some link errors.

2004−04−09 John Finlay <finlay@moeraki.com>

 * pygtk−gtkaction.xml Add.

 * pygtk−gtkactiongroup.xml Add.

 * pygtk−gtkborder.xml Add.

2004−04−08 John Finlay <finlay@moeraki.com>

 * pygtk−gtkfilefilter.xml Fix links to get_needed() method. Fix custom
 function signature and description.

 * pygtk−gtkfontbutton.xml Add.

 * pygtk−gtkfontbutton.xml Add purpose description. Fix
 GtkFontSelectionDialog links.

 * pygtk−gtkfontselectiondialog.xml Add note about lack of font filters,
 etc. in GTK+ 2.2 and above.

 * pygtk−gtkhandlebox.xml Add "snap−edge−set" property description.
 GTK+ 2.2 and above.

 * pygtk−gtkhbuttonbox.xml Tweak the description.

2004−04−07 John Finlay <finlay@moeraki.com>

 * pygtk−gtkfilechooser.xml Add.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1013

 * pygtk−gtkfilechooserdialog.xml Add.
 * pygtk−gtkfilechooserwidget.xml Add.
 * pygtk−gtkfilefilter.xml Add.

 * pygtk−gtkfilefilter.xml (add_custom) Doesn't take keyword args.

2004−04−06 John Finlay <finlay@moeraki.com>

 * pygtk−gtkeventbox.xml Add new methods: set_visible_window(),
 get_visible_window(), set_above_child() and get_above_child(); and
 properties: "above−child" and "visible−window" for PyGTK 2.4 and
 GTK+ 2.4.

2004−04−05 John Finlay <finlay@moeraki.com>

 * pygtk−gtkcomboboxentry.xml Add.

 * pygtk−gtkcontainer.xml Fix bug in synopsis of get_focus_chain().

 * pygtk−gtkcontainer.xml Property "child" is read−only.

 * pygtk−gtkdrawingarea.xml Tweak the description.

 * pygtk−gtkcombobox.xml
 * pygtk−gtkcomboboxentry.xml Add gtk.CellLayout to class synopsis.

 * pygtk−gtkeditable.xml Tweak description to specify it's an interface.

 * pygtk−gtkentry.xml Add PyGTK 2,4 methods set_alignment(),
 get_alignment(), set_completion(), get_completion(). Also add GTK+2.4
 property "xalign"

 * pygtk−gtkentrycompletion.xml Add.

2004−04−04 John Finlay <finlay@moeraki.com>

 * pygtk−gtkcombobox.xml Add.

 * pygtk−gtkcelllayout.xml. Add.

2004−04−03 John Finlay <finlay@moeraki.com>

 * pygtk−gtkcheckbutton.xml Fix formatting of Ancestry description.

 * pygtk−gtkcheckmenuitem.xml Minor reformatting.

 * pygtk−gtkcolorbutton.xml Add description of GtkColorButton in
 GTK+ 2.4 and PyGTK 2.4.

 * pygtk−gtkcombo.xml Added deprecation warning for PyGTK 2.4.

2004−04−02 John Finlay <finlay@moeraki.com>

 * pygtk−gtkbutton.xml Added descriptions of "focus−on−click", "xalign"

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1014

 and "yalign" propertiees for GTK+ 2.4. Added descriptions of the
 set_alignment(), get_alignment(), set_focus_on_click() and
 get_focus_on_click() methods available in PyGTK 2.4

 * pygtk−gtkbuttonbox.xml Add description of get_child_secondary()
 method available in PyGTK 2.4.

 * pygtk−gtkcalendar.xml Add descriptions of get_display_options() and
 set_display_options() methods available in PyGTK 2.4. Add deprecation
 warning for display_options() method.

 * pygtk−gtkcellrenderer.xml Add description of editing_canceled()
 method available in PyGTK 2.4. Add description of "editing−canceled"
 signal available in GTK+ 2.4.

2004−04−01 John Finlay <finlay@moeraki.com>

 * pygtk−gtkaccelgroup.xml Added descriptions of connect_by_path()
 method, and accel_map_add_entry(), accel_map_lock_path and
 accel_map_unlock_path() functions.

 * pygtk−gtkalignment.xml Fix small bug in get_padding() description.

2004−03−31 John Finlay <finlay@moeraki.com>

 * pygtk−gtkalignment.xml Add description of set_padding() and
 get_padding() methods available in PyGTK 2.4

2004−03−30 John Finlay <finlay@moeraki.com>

 * pygtk−gtkcellrenderertoggle.xml Add description of "inconsistent"
 property added in GTK+ 2.2. Update other property descriptions.

 * pygtk−gtkcheckmenuitem.xml Add description of "draw−as−radio"
 property fro GTK+ 2.4 and add PyGTK2.4 methods set_draw_as_radio() and
 get_draw_as_radio().

2004−03−29 John Finlay <finlay@moeraki.com>

 * pygtk−gtkaccelgroup.xml Add documentation on the connect() method.
 Add a description of the return value for the "accel−activate" signal.

 * pygtk−gtkadjustment.xml Add description of properties available in
 GTK+2.4. Reformat the Attributes description.

 * pygtk−gtkalignment.xml Add description of padding properties
 available in GTK+ 2.4.

 * pygtk−gtkaccessible.xml Added one line description.

 * pygtk−gtkcalendar.xml Added description of properties available in
 GTK+2.4.

 * pygtk−gtkcellrenderertext.xml Added description of properties

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1015

 available in GTK+2.4.

2004−03−25 John Finlay <finlay@moeraki.com>

 * pygtk−gdkwindow.xml Remove description of atom_intern function.

 * pygtk−gdk−function.xml Add description of atom_intern function. Fixes
 #137935 (thanks to Erik Grinaker).

 * pygtk−gtkdrawingarea.xml Add explanation that drawing is done on the
 contained gtk.gdk.Window using the gdk.Drawable methods. Fixes #136297.
 (thanks to pachi@mmn−arquitectos.com)

2004−03−22 John Finlay <finlay@moeraki.com>

 * pygtk−gtkmessagedialog.xml (MessageDialog) Remove
 gtk.DIALOG_NO_SEPARATOR from the list of valid flags. Fixes #136984.
 (thanks to j.jordens and Eric Grinaker).

2004−04−13 Erik Grinaker <erikg@wired−networks.net>

 * pygtk−gdkwindow.xml (raise): Changed name of raise() to
 raise_(), and added a note to explain this is because
 raise is a reserved Python keyword.

2004−01−28 John Finlay <finlay@moeraki.com>

 * pygtk−gtktogglebutton.xml (get_mode)
 (set_mode) Clarify the use of these methods as applied to checkbuttons
 and radiobuttons and the results. (thanks to Antonio A. A.)

 * pygtk2−ref.xml Change date. Version number to 1.9

2003−11−18 John Finlay <finlay@moeraki.com>

 * pygtk−gtktreemodel.xml (foreach) Add description of function
 signature.

2003−10−07 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Change date. Version number to 1.8

 * pygtk−gtkcellrenderertext.xml Fix signature an ddescription of the
 "edited" signal to add path and new_text arguments. (thanks to Steve
 Chaplin)

 * pygtk−gtkcellrenderertoggle.xml Fix signature and description of
 "toggled" signal to add path argument. (thanks to Steve Chaplin)

2003−08−25 John Finlay <finlay@moeraki.com>

 * pygtk−gtkadjustment.xml (set_all) Remove deprecation note and add
 keyword designations.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1016

 * pygtk−gdkpixbufloader.xml (write) Set initializer on parameter count
 and change description to indicate how count is used.

 * pygtk−gtktextbuffer.xml (create_tag) tag_name defaults to None.

2003−08−23 John Finlay <finlay@moeraki.com>

 * pygtk−gdkpixbuf.xml Note that pixel_array attribute array contents
 can be changed.

 * pygtk−gdk−functions.xml (threads_init) Remove comments about broken
 threads imiplementation which is now fixed in 1.99.17+.

 * pygtk−gtktreemodel.xml (rows_reordered) Add description of this
 method.

 * pygtk−gtktreeview.xml (enable_model_drag_source)
 (emable_model_drag_dest)
 (get_drag_dest_row)
 (get_dest_row_at_pos)
 (enable_model_drag_source)
 (enable_model_drag_dest) Add descriptions of these methods.

 * pygtk−gtkwidget.xml (drag_source_set) Fix typo.

 * pygtk−gtkdialog.xml (add_buttons) Add description of this method.

 * pygtk−gobject.xml (handler_is_connected) Add description of this
 method.

 * pygtk2−ref.xml Change date. Version number to 1.7

 * pygtk−gtkdialog.xml (add_buttons) Fix typo in synopsis.

 * pygtk−gobject.xml (handler_is_connected) Fix link in synopsis.

 * pygtk−gdkwindow.xml Fix link references to
 function−gdk−−window−foreign−new and function−gdk−−visual−get−system.

2003−07−20 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Change date. Version number to 1.6

 * pygtk−gdkwindow.xml (gtk.gdk.Window) Add documentation on the
 constructor.

2003−07−17 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Change date and version number to 1.5.

 * pygtk−gtkeditable.xml Remove extraneous "widget" parameter from
 "insert−text" signal description. Add description indicating position
 can't be retrieved in PyGTK.

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1017

2003−07−16 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Change date and version number to 1.4.

 * pygtk−gtkitmefactory.xml (gtk.ItemFactory)
 (construct) Change container_type to refer to PyGTK types: gtk.Menu,
 gtk.MenuBar and gtk.OptionMenu.

2003−07−15 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.html Change to version 1.3

 * pygtk−gtkliststore.xml (insert)
 (insert_after)
 (insert_before)
 (prepend)
 (append) Add an entry for the return value for these methods.

 * pygtk−gtktoolbar.xml (insert_stock) Remove extraneous stock_id entry.

2003−07−12 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.html Change version number.

 * pygtk−pangoattriter.xml Change to pango.AttrIterator to match
 GTK+and PyGTK naming.

 * pygtk−pangoattrlist.xml (get_iterator) Change to reference
 pango.AttrIterator.

2003−07−11 John Finlay <finlay@moeraki.com>

 * pygtk2−ref.xml Change date tag to pubdate tag so it will be
 displayed.

 * pygtk−pangolayout.xml Correct the references to the Pango Markup
 Language reference page.

 * pygtk−gtk−functions.xml Fix incorrect reference to gtk.Object class.

 * pygtk−gtktextview.xml Remove reference to pango.TabArray.free

 * Pango Add content to pango class files (they were empty):
 pygtk−pangoattribute.xml
 pygtk−pangoattriter.xml
 pygtk−pangoattrlist.xml
 pygtk−pangocolor.xml
 pygtk−pangocontext.xml
 pygtk−pangofontdescription.xml
 pygtk−pangofontface.xml
 pygtk−pangofontfamily.xml
 pygtk−pangofontmap.xml
 pygtk−pangofontmetrics.xml

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1018

 pygtk−pangofontset.xml
 pygtk−pangofont.xml
 pygtk−pangoglyphstring.xml
 pygtk−pangolanguage.xml
 pygtk−pangolayout.xml
 pygtk−pango−markup.xml
 pygtk−pangotabarray.xml

 * pygtk−pango−classes.xml Add include for:
 pygtk−pangoattribute.xml
 pygtk−pangoattriter.xml
 pygtk−pango−markup.xml

 * pygtk2−ref.html Update date and version number. Add pango class
 reference chapter.

2003−07−10 John Finlay <finlay@moeraki.com>

 * Pango Add pango class files:
 pygtk−pangoattribute.xml
 pygtk−pangoattriter.xml
 pygtk−pangoattrlist.xml
 pygtk−pangocolor.xml
 pygtk−pangocontext.xml
 pygtk−pangofontdescription.xml
 pygtk−pangofontface.xml
 pygtk−pangofontfamily.xml
 pygtk−pangofontmap.xml
 pygtk−pangofontmetrics.xml
 pygtk−pangofontset.xml
 pygtk−pangofont.xml
 pygtk−pangoglyphstring.xml
 pygtk−pangolanguage.xml
 pygtk−pangolayout.xml
 pygtk−pango−markup.xml
 pygtk−pangotabarray.xml

 * ChangeLog Add this change log

 * pygtk2−ref.xml Include ChangeLog info in reference.

 * pygtk−gtkliststore.xml (insert)
 (insert_before)
 (insert_after)
 (prepend)
 (append) Fix description of row arg to be a sequence of values.

 * pygtk−gtktreestore.xml (insert)
 (insert_before)
 (insert_after)
 (prepend)
 (append) Fix description of row arg to be a sequence of values.

2003−07−02 John Finlay <finlay@moeraki.com>

PyGTK 2.0 Reference Manual

Appendix A. ChangeLog 1019

 * pygtk2−ref.xml Update date.

 * pygtk−gdk−functions.xml (gtk.gdk.threads_init) Update
 description of thread support.

 * ChangeLog Add change log.

Prev Up
pango Constants Home

Copyright and License Notice
Prev Introduction Next

Copyright and License Notice

The PyGTK 2.0 Reference is Copyright (C) 2004 John Finlay.

This work is licensed under the Creative Commons Attribution−ShareAlike License. To view a copy of this
license, visit http://creativecommons.org/licenses/by−sa/1.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

Prev Up Next
Reference Page Format Home PyGTK Class Hierarchy

Reference Page Format
Prev Introduction Next

Reference Page Format

Each PyGTK class is described in a reference page that has a number of sections in a fixed format. Each
reference page will have a subset of the following sections:

Name The name and a one−line description of the class.
Synopsis A synopsis of the class and its methods and optionally a list of associated functions.

Ancestry The list of the parent classes of the class. This section may not be present in all class
descriptions.

Properties

A list of the properties (internal state) supported by the class. This section may not be
present in all classes. The property descriptions include the name, the access operations
(e.g. Read, Write), and a brief description. Properties are accessed using the
gobject.set_property() and gobject.get_property() methods that are
available to every PyGTK object. This section may not be present in all class descriptions.

Style Properties

A list of style properties supported by the class. Similar to the properties (described above)
the style properties hold information about the style of a widgets e.g. border style, shadow
type, etc. Most widgets do not support style properties so this section is not present in most
class descriptions. Only PyGTK 2.4 has the ability to access style properties.

Child Properties

A list of child properties supported by the class. Similar to the properties (described above)
the child properties hold information about the properties of a widget's child widget. Only
container widgets support child properties so this section is not present in most class
descriptions.

Attributes A set of internal object state data accessible as Python attributes (e.g. object.attr). The
attribute descriptions include a name by which the attribute data is accessed, the access

PyGTK 2.0 Reference Manual

Copyright and License Notice 1020

http://creativecommons.org/licenses/by-sa/1.0/

mode (e.g. Read, Write), and a brief description of the attribute. Most PyGTK classes do
not support attributes so this section is not present in most class descriptions.

Signal Prototypes
A list of the signals supported by the class including the signal name and a synopsis of the
signal handler function prototype. This section may not be present in all class descriptions;
most gtk.gdk classes do not support signals.

Description A description of the class and possibly some of the methods supported by the class.

Constructor

The description of the class object constructor including the synopsis with brief parameter
descriptions and a description of th use of the constructor. There may be more than one
constructor description if the constructor supports different parameter lists. This section
may not be present in all class descriptions.

Methods
A list of methods supported by the class. Each method description includes: a synopsis of
the method and its parameters as well as a brief description of each parameter and return
value (if any); and, a description of the use of the method.

Functions A list of related functions. Each function description includes a synopsis of the function
and its parameters and return value (if any), and a description of the use of the function.

Signals

A list of signals including a synopsis of the signal handler prototype function with its
parameters and return value (if any). The signal emission conditions are briefly described.
This section is not present in all class descriptions; specifically, the gtk.gdk classes do
not usually support signals.

The function and method synopsis parameters are displayed in bold to denote Python keyword parameters.
Also if the parameter is optional its default value will be displayed. For example the gtk.Button() constructor
synopsis is:

gtk.Button(label=None, stock=None)

The parameters label and stock are keyword parameters that can be specified in a call either by position
or keyword (in which case position is not important). The following calls have the same result:

 b = gtk.Button("Cancel")
 b = gtk.Button(label="Cancel")
 b = gtk.Button("Cancel", None)
 b = gtk.Button("Cancel", stock=None)
 b = gtk.Button(stock=None, label="Cancel")

Parameters that are not keyword parameters are displayed in italic and must be specified positionally but may
also be optional.

Prev Up Next
Introduction Home Copyright and License Notice

PyGTK 2.0 Reference Manual

Reference Page Format 1021

	PyGTK 2.0 Reference Manual
	gtk.gdk.Atom
	gtk.gdk.Color
	gtk.gdk.Colormap
	gtk.gdk.Cursor
	gtk.gdk.Device
	gtk.gdk.Display
	gtk.gdk.DisplayManager
	gtk.gdk.DragContext
	gtk.gdk.Drawable
	gtk.gdk.Event
	gtk.gdk.GC
	gtk.gdk.Image
	gtk.gdk.Keymap
	gtk.gdk.Pixbuf
	gtk.gdk.PixbufAnimation
	gtk.gdk.PixbufAnimationIter
	gtk.gdk.PixbufLoader
	gtk.gdk.Pixmap
	gtk.gdk.Rectangle
	gtk.gdk.Screen
	gtk.gdk.Visual
	gtk.gdk.Window
	gtk.glade.XML
	gobject.GObject
	gobject.GBoxed
	gobject.GInterface
	gobject.GPointer
	gobject.MainContext
	gobject.MainLoop
	gtk.AboutDialog
	gtk.AccelGroup
	gtk.AccelLabel
	gtk.Accessible
	gtk.Action
	gtk.ActionGroup
	gtk.Adjustment
	gtk.Alignment
	gtk.Arrow
	gtk.AspectFrame
	gtk.Bin
	gtk.Border
	gtk.Box
	gtk.Button
	gtk.ButtonBox
	gtk.Calendar
	gtk.CellEditable
	gtk.CellLayout
	gtk.CellRenderer
	gtk.CellRendererCombo
	gtk.CellRendererPixbuf
	gtk.CellRendererProgress
	gtk.CellRendererText
	gtk.CellRendererToggle
	gtk.CellView
	gtk.CheckButton
	gtk.CheckMenuItem
	gtk.Clipboard
	gtk.ColorButton
	gtk.ColorSelection
	gtk.ColorSelectionDialog
	gtk.Combo
	gtk.ComboBox
	gtk.ComboBoxEntry
	gtk.Container
	gtk.Curve
	gtk.Dialog
	gtk.DrawingArea
	gtk.Editable
	gtk.Entry
	gtk.EntryCompletion
	gtk.EventBox
	gtk.Expander
	gtk.FileChooser
	gtk.FileChooserButton
	gtk.FileChooserDialog
	gtk.FileChooserWidget
	gtk.FileFilter
	gtk.FileSelection
	gtk.Fixed
	gtk.FontButton
	gtk.FontSelection
	gtk.FontSelectionDialog
	gtk.Frame
	gtk.GammaCurve
	gtk.HandleBox
	gtk.HBox
	gtk.HButtonBox
	gtk.HPaned
	gtk.HRuler
	gtk.HScale
	gtk.HScrollbar
	gtk.HSeparator
	gtk.IconFactory
	gtk.IconInfo
	gtk.IconSet
	gtk.IconSource
	gtk.IconTheme
	gtk.IconView
	gtk.Image
	gtk.ImageMenuItem
	gtk.IMContext
	gtk.IMContextSimple
	gtk.IMMulticontext
	gtk.InputDialog
	gtk.Invisible
	gtk.Item
	gtk.ItemFactory
	gtk.Label
	gtk.Layout
	gtk.ListStore
	gtk.Menu
	gtk.MenuBar
	gtk.MenuItem
	gtk.MenuShell
	gtk.MenuToolButton
	gtk.MessageDialog
	gtk.Misc
	gtk.Notebook
	gtk.Object
	gtk.OptionMenu
	gtk.Paned
	gtk.Plug
	gtk.ProgressBar
	gtk.RadioAction
	gtk.RadioButton
	gtk.RadioMenuItem
	gtk.RadioToolButton
	gtk.Range
	gtk.RcStyle
	gtk.Requisition
	gtk.Ruler
	gtk.Scale
	gtk.Scrollbar
	gtk.ScrolledWindow
	gtk.SelectionData
	gtk.Separator
	gtk.SeparatorMenuItem
	gtk.SeparatorToolItem
	gtk.Settings
	gtk.SizeGroup
	gtk.Socket
	gtk.SpinButton
	gtk.Statusbar
	gtk.Style
	gtk.Table
	gtk.TearoffMenuItem
	gtk.TextAttributes
	gtk.TextBuffer
	gtk.TextChildAnchor
	gtk.TextIter
	gtk.TextMark
	gtk.TextTag
	gtk.TextTagTable
	gtk.TextView
	gtk.ToggleAction
	gtk.ToggleButton
	gtk.ToggleToolButton
	gtk.Toolbar
	gtk.ToolButton
	gtk.ToolItem
	gtk.Tooltips
	gtk.TreeDragDest
	gtk.TreeDragSource
	gtk.TreeIter
	gtk.TreeModel
	gtk.TreeModelFilter
	gtk.TreeModelSort
	gtk.TreeRowReference
	gtk.TreeSelection
	gtk.TreeSortable
	gtk.TreeStore
	gtk.TreeView
	gtk.TreeViewColumn
	gtk.UIManager
	gtk.VBox
	gtk.VButtonBox
	gtk.Viewport
	gtk.VPaned
	gtk.VRuler
	gtk.VScale
	gtk.VScrollbar
	gtk.VSeparator
	gtk.Widget
	gtk.Window
	gtk.WindowGroup
	PyGTK Class Hierarchy
	pango.Attribute
	pango.AttrIterator
	pango.AttrList
	pango.Color
	pango.Context
	pango.Font
	pango.FontDescription
	pango.FontFace
	pango.FontFamily
	pango.FontMap
	pango.FontMetrics
	pango.Fontset
	pango.FontsetSimple
	pango.GlyphString
	pango.Language
	pango.Layout
	pango.LayoutIter
	pango.TabArray
	gtk.GenericCellRenderer
	gtk.GenericTreeModel
	gtk.TreeModelRow
	gtk.TreeModelRowIter
	The gtk.gdk Class Reference
	gtk.gdk Constants
	gtk.gdk Functions
	The gtk.glade Class Reference
	The gobject Class Reference
	gobject Constants
	gobject Functions
	The gtk Class Reference
	gtk Constants
	gtk Functions
	Stock Items
	The pango Class Reference
	pango Constants
	pango Functions
	The Pango Markup Language
	Introduction
	Appendix A. ChangeLog
	Copyright and License Notice
	Reference Page Format

