
 A Byte of Python – www.python.g2swaroop.net

A Byte of Python

A Byte of Python
Swaroop C H

www.python.g2swaroop.net
Version 1.15
Copyright © 2004 Swaroop C H
This book is released under a Creative Commons License.
Revision History
Revision 1.15 28/03/2004 g2
Minor revisions
Revision 1.12 16/03/2004 g2
Additions and corrections
Revision 1.10 09/03/2004 g2
More typo corrections, thanks to many enthusiastic and helpful readers.
Revision 1.00 08/03/2004 g2
After tremendous feedback and suggestions from readers, I have made significant
revisions to the content along with typo corrections.
Revision 0.99 22/02/2004 g2
Added a new chapter on modules and about variable number of arguments in functions.
Revision 0.98 16/02/2004 g2
Wrote a Python script and CSS stylesheet to improve XHTML output, including a crude
lexical analyzer for syntax highlighting of the programs.
Revision 0.97 13/02/2004 g2
Another completely rewritten draft, in DocBook XML (again). Book has improved a lot -
It is more coherent and readable.
Revision 0.93 25/01/2004 g2
Added IDLE talk and more Windows-specific stuff
Revision 0.92 05/01/2004 g2
Changes to some examples, other improvements
Revision 0.91 30/12/2003 g2
Corrected some typos, improvised certain topics
Revision 0.90 18/12/2003 g2
Added 2 more chapters, OpenOffice format with revisions
Revision 0.60 21/11/2003 g2

1

 A Byte of Python – www.python.g2swaroop.net

Fully Rewritten and Expanded
Revision 0.20 20/11/2003 g2
Corrected some typos and errors
Revision 0.15 20/11/2003 g2
Converted to DocBook XML
Revision 0.10 14/11/2003 g2
Initial draft using KWord

Abstract
The Perfect Anti-Venom for your programming problems!
This book will help you learn to use the Python language, whether you are new to
computers or are an experienced programmer.

2

 A Byte of Python – www.python.g2swaroop.net

Dedication
This book is dedicated to each and every person in the free and open source

software community. They work hard to create such wonderful software and
technologies and share it with others. They selflessly share their knowledge and
expertise with us. The efforts of all the programmers, designers, artists, documentation
writers, bug-fixers and of course, the users, in creating such software and technologies
is truly inspiring and amazing.

3

 A Byte of Python – www.python.g2swaroop.net

Table of Contents
Preface

Who This Book Is For
History Lesson
Status of this Book
Official Website
License Terms
I'd Like To Hear From You
Something To Think About

1. Introduction
Introduction
Features of Python
Summary
Why not Perl?
What Programmers Say

2. Installing Python
For Linux/BSD Users
For Windows Users
Summary

3. First Steps
Introduction
Using The Interpreter Prompt
Choosing an Editor
Using A Source File
Using a Source File
Executable Python programs
Getting Help
Summary

4. The Basics
Literal Constants
Numbers
Strings
Variables
Identifier Naming
Data Types
Objects
Logical and Physical Lines
Indentation
Summary

5. Operators and Expressions
Introduction
Operators
Operator Precedence

4

 A Byte of Python – www.python.g2swaroop.net

Order of Evaluation
Associativity
Expressions
Using Expressions
Summary

6. Control Flow
Introduction
The if statement
Using the if statement
The while statement
Using the while statement
The for loop
Using the for statement
The break statement
Using the break statement
The continue statement
Using the continue statement
Summary

7. Functions
Introduction
Defining a Function
Function Parameters
Using Function Parameters
Local Variables
Using Local Variables
Using the global statement
Default Argument Values
Using Default Argument Values
Keyword Arguments
Using Keyword Arguments
The return statement
Using the return statement
DocStrings
Using DocStrings
Summary

8. Modules
Introduction
Using the sys module
Byte-compiled .pyc files
The from..import statement
A module's __name__
Using a module's __name__
Making your own Modules

5

 A Byte of Python – www.python.g2swaroop.net

Creating your own Modules
from..import
The dir() function
Using the dir function
Summary

9. Data Structures
Introduction
List
Objects and Classes
Using Lists
Tuple
Using Tuples
Tuples and the print statement
Dictionary
Using Dictionaries
Sequences
Using Sequences
References
Objects and References
More about Strings
String Methods
Summary

10. Problem Solving - Writing a Python Script
The Problem
The Solution
First Version
Second Version
Third Version
Fourth Version
More Refinements
The Software Development Process
Summary

11. Object-Oriented Programming
Introduction
The self
Classes
Creating a Class
Object Methods
Object Methods
Class and Object Variables
Using Class and Object Variables
Inheritance
Inheritance

6

 A Byte of Python – www.python.g2swaroop.net

Summary
12. Input/Output

Files
Using file
Pickle
Pickling and Unpickling
Summary

13. Exceptions
Errors
Try..Except
Handling Exceptions
Raising Exceptions
How To Raise Exceptions
Try..Finally
Using Finally
Summary

14. The Python Standard Library
Introduction
The sys module
Command Line Arguments
More sys
The os module
Summary

15. More Python
Special Methods
Single Statement Blocks
List Comprehensions
Using List Comprehensions
Receiving Tuples and Lists in Functions
Lambda Forms
Using Lambda Forms
The exec statement
The eval statement
The assert statement
The repr function
Summary

16. What Next?
Graphical Software
Summary of GUI Tools
Explore More
Summary

A. Free/Libre and Open Source Software (FLOSS)
B. About

7

 A Byte of Python – www.python.g2swaroop.net

Colophon
About the Author
About LinCDs.com
Feedback

List of Tables
5.1. Operators and their usage
5.2. Operator Precedence
15.1. Some Special Methods

List of Examples
3.1. Using The Python Interpreter prompt
3.2. Using a Source File
4.1. Using Variables and Literal Constants
5.1. Using Expressions
6.1. Using the if statement
6.2. Equivalent C Program
6.3. Using the while statement
6.4. Using the for statement
6.5. Using the break statement
6.6. Using the continue statement
7.1. Defining a function
7.2. Using Function Parameters
7.3. Using Local Variables
7.4. Using the global statement
7.5. Using Default Argument Values
7.6. Using Keyword Arguments
7.7. Using the return statement
7.8. Using DocStrings
8.1. Using the sys module
8.2. Using a module's __name__
8.3. How to create your own module
8.4. Using the dir function
9.1. Using Lists
9.2. Using Tuples
9.3. Output using tuples
9.4. Using dictionaries
9.5. Using sequences
9.6. Objects and references
9.7. String methods
10.1. Backup Script - The First Version
10.2. Backup Script - The Second Version
10.3. Backup Script - The Third Version (does not work!)

8

 A Byte of Python – www.python.g2swaroop.net

10.4. Backup Script - The Fourth Version
11.1. Simplest Class
11.2. Using Object Methods
11.3. Using Class and Object Variables
11.4. Inheritance
12.1. Using files
12.2. Pickling and Unpickling
13.1. Handling Exceptions
13.2. Raising Exceptions
13.3. Using Finally
14.1. Using sys.argv
15.1. Using List Comprehensions
15.2. Using Lambda Forms

9

 A Byte of Python – www.python.g2swaroop.net

Preface
Table of Contents
Who This Book Is For
History Lesson
Status of this Book
Official Website
License Terms
I'd Like To Hear From You
Something To Think About

Python is probably one of the first programming languages out there which is
both simple and powerful, which is good for both beginners as well as experts, and
importantly, fun to program with. This book will help you learn this wonderful language
and show how to get things done quickly and painlessly - in effect "The Perfect Anti-
Venom for your programming problems!"

Who This Book Is For

This book serves as a guide or tutorial to the Python programming language. It is
intended to help both newbies as well as experienced programmers to learn and get
started with Python. If all you know about computers is how to save text files, then you
can learn Python from this book. If you have previous programming experience, then
you can learn Python from this book also.

If you do have previous programming experience, you will be interested in the
differences between Python and your favorite programming language and I have
highlighted many such differences for you. A little warning though, Python is soon going
to become your favorite programming language!

History Lesson
I first started with Python when I needed to write an installer for my software

Diamond so that I could make the installation easy. I had to choose between Python or
Perl bindings for the Qt library. I did some research on the web and I came across an
article where Eric S Raymond (affectionately called ESR) talked about how Python
became his favorite programming language. I also found out that the PyQt bindings
were very good. So I decided that Python was the language for me.

I then started searching for a good book on Python. I couldn't find any! I kept
wondering why, though I found some O'Reilly books - they were either too expensive or
were more like a reference manual than a guide. I settled for the documentation that
came with Python, but it was too brief. It did give a good idea about Python but an

10

 A Byte of Python – www.python.g2swaroop.net

incomplete one and although I managed with it, I felt it was completely unsuitable for
newbies.

About six months after my first brush with Python, I installed the (then) latest Red
Hat 9.0 Linux and I was playing around with KWord when I suddenly got the idea of
writing some stuff on Python. It quickly became 30 pages long and I became serious
about converting it into a complete book. After many improvements and rewrites, it has
reached this stage where it has become a useful and complete guide to learning the
Python language. This book is my contribution and tribute to the open source
community.

In the true spirit of open source, I have received lots of constructive suggestions
and criticisms which have helped me improve this book a lot.

Status of this Book
This book is feature-complete as of today. However, your feedback is essential

to improve this book.

More chapters are planned for the future, including using PyGTK/wxPython, the
Python Imaging Library, and maybe even Boa Constructor.

Official Website
The official website of this book is www.python.g2swaroop.net . You can read

the book online at this website. You can also download the latest versions of the book
and send me feedback through this website.
License Terms

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 2.0 License. To view a copy of this license, visit the Creative Commons
website. Basically, you are free to copy, distribute, and display the book as long as you
give credit to me. The restrictions are that you cannot use this book for commercial
purposes without my permission. You are free to modify and build upon this work
provided that you clearly mark all changes and you release the modified work under the
same license as this book.

Please visit the Creative Commons website for the full text of the license or for
an easy-to-understand version of the license or even a comic strip explaining the terms
of the license.

I'd Like To Hear From You
I have put in a lot of effort to make this book as interesting and as accurate as

possible. However, if you find some things are not consistent or are incorrect, then

11

 A Byte of Python – www.python.g2swaroop.net

please do tell me so that I can correct them. Any constructive suggestions, appreciation
and criticisms can be sent to me at python@g2swaroop.net .

Something To Think About
There are two ways of constructing a software design: one way is to
make it so simple that there are obviously no deficiencies; the other is
to make it so complicated that there are no obvious deficiencies.

-- C.A.R. Hoare

Success in life is a matter not so much of talent and opportunity as of
concentration and perseverance.

-- C.W.Wendte

12

 A Byte of Python – www.python.g2swaroop.net

Chapter 1. Introduction
Table of Contents
Introduction
Features of Python

Summary
Why not Perl?
What Programmers Say

Introduction
Python is one of those rare languages which can claim to be both simple and

powerful. You will be pleasantly surprised to see how easy it is to concentrate on the
solution to the problem rather than on the syntax (i.e. the structure of the program that
you are writing) of the language.

The official Python introduction is

Python is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective approach to
object-oriented programming. Python's elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most
platforms.

I will discuss these features in more detail in the next section.

By the way, Guido van Rossum (the creator of the Python language) named the
language after the BBC show "Monty Python's Flying Circus". He doesn't particularly
like snakes that kill animals for food by winding their long bodies around them and
crushing them.

Features of Python
Simple

Python is a simple and minimalistic language. Reading a good Python
program feels almost like reading English (but very strict English!). This pseudo-
code nature of Python is one of its greatest strengths. It allows you to
concentrate on the solution to the problem rather than the syntax i.e. the
language itself.

Easy to Learn
As you will see, Python is extremely easy to get started with. Python has

an extraordinarily simple syntax as already mentioned.

13

 A Byte of Python – www.python.g2swaroop.net

Free and Open Source
Python is an example of a FLOSS (Free/Libre and Open Source

Software). In simple terms, you can freely distribute copies of this software, read
the software's source code, make changes to it, use pieces of it in new free
programs, and that you know you can do these things. FLOSS is based on the
concept of a community which shares knowledge. This is one of the reasons why
Python is so good - it has been created and improved by a community who just
want to see a better Python.

High-level Language
When you write programs in Python, you never need to bother about low-

level details such as managing the memory used by your program.
Portable

Due to its open-source nature, Python has been ported (i.e. changed to
make it work on) to many many platforms. All your Python programs will work on
any of these platforms without requiring any changes at all. However, you must
be careful enough to avoid any system-dependent features.

You can use Python on Linux, Windows, Macintosh, Solaris, OS/2, Amiga,
AROS, AS/400, BeOS, OS/390, z/OS, Palm OS, QNX, VMS, Psion, Acorn RISC
OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE and PocketPC !

Interpreted
This requires a little explanation.

A program written in a compiled language like C or C++ is translated from
the source language i.e. C/C++ into a language spoken by your computer (binary
code i.e. 0s and 1s) using a compiler with various flags and options. When you
run the program, the linker/loader software just stores the binary code in the
computer's memory and starts executing from the first instruction in the program.

When you use an interpreted language like Python, there is no separate
compilation and execution steps. You just run the program from the source code.
Internally, Python converts the source code into an intermediate form called
bytecodes and then runs it using a virtual machine. All this makes using Python
so much easier. You just run your programs - you never have to worry about
linking and loading with libraries, etc. They are also more portable this way
because you can just copy your Python program into another system of any kind
and it just works!

Object Oriented
Python supports procedure-oriented programming as well as object-

oriented programming. In procedure-oriented languages, the program is built
around procedures or functions which are nothing but reusable pieces of
programs. In object-oriented languages, the program is built around objects

14

 A Byte of Python – www.python.g2swaroop.net

which combine data and functionality. Python has a very powerful but simple
way of doing object-oriented programming, especially, when compared to
languages like C++ or Java.

Extensible
If you need a critical piece of code to run very fast, you can achieve this

by writing that piece of code in C, and then combine that with your Python
program.

Embeddable
You can embed Python within your C/C++ program to give scripting

capabilities for your program's users.

Extensive Libraries
The Python Standard Library is huge indeed. It can help you do various things

involving regular expressions, documentation generation, unit testing, threading,
databases, web browsers, CGI, ftp, email, XML, XML-RPC, HTML, WAV files,
cryptography, GUI(graphical user interfaces) using Tk, and also other system-
dependent stuff. Remember, all this is always available wherever Python is installed.
This is called the "batteries included" philosophy of Python.

Besides the standard library, there are various other high-quality libraries such
as the Python Imaging Library which is an amazingly simple image manipulation library.

Summary
Python is indeed an exciting and powerful language. It has the right combination of
performance and features that makes writing programs in Python both fun and easy.

Why not Perl?
If you didn't know, Perl is another very popular, free and open source interpreted

language.

If you have ever tried writing a large program in Perl, you would have answered
this question yourself! Perl programs are easy when they are small and simple, but they
quickly become unwieldy once you start writing bigger programs. When compared with
Perl, programs written in Python are definitely simpler, clearer, easier to write and
hence more understandable and maintainable. I do admire Perl and I still use it
(especially for my website), but whenever I write a program, I always think in terms of
Python. Too much hacking and changes have made Perl very complicated and
confusing. However, the upcoming Perl6 might do something about this but that is still a
long way off.

15

 A Byte of Python – www.python.g2swaroop.net

The only significant advantage that Perl has is its library called CPAN - the
Comprehensive Perl Archive Network. As the name suggests, this is a humongous
collection of Perl modules and is mind-boggling because of its sheer size and depth -
you can do virtually anything you can do with a computer using these modules. One of
the reasons that Perl has a better library than Python is that it has been around for a
much longer time than Python.

Also, the new Parrot virtual machine is designed to run both the completely
redesigned Perl6 as well as Python and other interpreted languages like Ruby, PHP
and Tcl. What this means to you is that maybe you will be able to use all Perl modules
from Python in the future, so that you will have the best of both worlds - the powerful
CPAN library combined with the powerful Python language. However, we will just have
to wait and see what happens.

What Programmers Say
You may find it interesting to read what great programmers like ESR have to say

about Python.

 Eric S Raymond (of "The Cathedral and the Bazaar" fame and also the person
who coined the term "open source") says that Python has become his favorite
language. Read more at Linux Journal . This article was the real inspiration for
my first brush with Python.

 Bruce Eckel (of "Thinking in C++" and "Thinking in Java" fame) says that no
language has made him more productive than Python. He says that Python is
the only language that focuses on making things easier for the programmer.
Read the complete interview at Artima.com . This interview/article is Part 1 of a
four-part series of interviews called "Python and the Programmer - A
Conversation with Bruce Eckel").

 Peter Norvig , a well-known Lisp author (thanks to Guido van Rossum for
pointing that out) and Director of Search Quality at Google says that Python has
always been an integral part of Google. You can actually verify this statement by
looking at the Google Jobs website which lists Python as a requirement for
software engineers.

 Bruce Perens (co-founder of OpenSource.org along with ESR) has started an
initiative called "UserLinux" which aims to create a standardized Linux
distribution supported by multiple vendors. Python has beaten contenders like

16

 A Byte of Python – www.python.g2swaroop.net

Perl and Ruby, to become the main programming language that will be
supported by UserLinux.

17

 A Byte of Python – www.python.g2swaroop.net

Chapter 2. Installing Python
Table of Contents
For Linux/BSD Users
For Windows Users
Summary

For Linux/BSD Users
If you are using a Linux distribution such as Fedora or Mandrake or {put your

choice here}, or a BSD system such as FreeBSD or OpenBSD, then you probably
already have Python installed on your system.

To test if you have Python already installed in your Linux box, open a shell terminal
(gnome-terminal or konsole or xterm) and enter the command python -V as shown
below.

$ python -V
Python 2.3.3

Note
$ is the prompt of the shell. It will be different for different users and
hence I will indicate the prompt by just $.

If you see some version information like the one shown above, then you have
Python installed already.

However, if you get a message like this one:

$ python -V
bash: python: command not found

then you don't have Python installed. This is highly unlikely but possible. You have two
ways of installing Python on your system.

 Install Python from your Linux distribution CDs [1] such as your Fedora/Red
Hat/Mandrake/Debian/{your choice here}.

 Visit Python.org/download/ , get the latest version and follow the instructions
given at the website on how to install Python.

For Windows Users

18

 A Byte of Python – www.python.g2swaroop.net

Visit Python.org/download/ and download the latest version from this website
(which was Python-2.3.3.exe as of this writing). It is about 9 MB only. It is very compact
compared to other languages. Installation is just like any other Windows-based
software.

Caution
When you are given the option of unchecking any optional components,
please don't! Some of these components will be useful for you,
especially IDLE (short for Integrated DeveLopment Environment).

An interesting fact is that about 70% of Python downloads are by Windows
users. Of course, this doesn't give the complete picture since almost all Linux users will
have Python installed already on their systems by default.

Note
You can always use IDLE to run your Python programs, but if you want
to run your Python programs from the DOS prompt, then add the
following line to C:\AUTOEXEC.BAT :

PATH=%PATH%;C:\Python23

Then restart the system. However, be sure to give the correct folder
name.
A reader has also pointed out to me that Windows XP requires using the
menu Control Panel -> System to set environment variables like we did
above.

Summary
It is easy to install Python on Windows and will probably be already installed on

your Linux/BSD system or you may have had to install Python by yourself - whichever
the case, I will assume that you have Python installed on your system now.
Next, we will write our first Python program.

[1] See LinCDs.com for more details.

19

 A Byte of Python – www.python.g2swaroop.net

Chapter 3. First Steps
Table of Contents
Introduction
Using The Interpreter Prompt
Choosing an Editor
Using A Source File

Using a Source File
Executable Python programs
Getting Help
Summary

Introduction
We will now see how to run a traditional "Hello World" program in Python. This

will also teach you how to write, save and run Python programs.

There are two ways of using Python to run your program - using the interactive
interpreter prompt or using a source file. We will now see how to use both the methods.

Using The Interpreter Prompt

Run the interpreter interactively by entering python in the shell. Now enter print
'Hello World' followed by the Enter key. You should see the words Hello World as output.

Caution
When I mean run the interpreter, Linux users can use the shell as shown
in the examples here or use IDLE. Windows users can click on Start ->
Programs -> Python 2.3 -> IDLE (Python GUI). The Programs menu
folder name might be different depending on the version of Python that
you have installed.

Example 3.1. Using The Python Interpreter prompt
$ python
Python 2.2.3 (#1, Oct 15 2003, 23:33:35)
[GCC 3.3.1 20030930 (Red Hat Linux 3.3.1-6)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'hello world'
hello world
>>>

What you just entered is a single Python statement i.e. you stated to Python that
you want to get something done. We use the print operator to (unsurprisingly) print any

20

 A Byte of Python – www.python.g2swaroop.net

value that you give it. Here, we are supplying the string Hello World to the print statement
which promptly prints it to the screen.

Important
To exit the Python interpreter prompt, press

Ctrl-d if you are using Linux or using IDLE (both Linux and Windows).

Ctrl-z followed by Enter if you are using Windows, especially, the DOS
prompt.

Choosing an Editor

Before we get started on writing Python programs in a source file, we need an
editor to create the source files. The choice of an editor is very crucial indeed. You have
to choose an editor as you would choose a car you would buy. A good editor will help
you write Python programs easily, making your journey more comfortable and helps you
reach your destination (achieve your goal) in a much faster and safer way.

One of the basic requirements is syntax highlighting where the Python
keywords, operators, strings, etc. i.e. the things that are special to Python are colorized
so that you can see your program and visualize its running.

If you are using Windows, then I suggest that you stick with IDLE. IDLE does
syntax highlighting and a lot more such as allowing you to run your programs from
within IDLE and so on. Whatever you do, don't use Notepad - because, among other
things, we will need indentation and it would be tedious to type it in Notepad compared
to other good editors such as IDLE which will automatically help you with this.

If you are using Linux/FreeBSD, then I suggest that you use KWrite or you can
use IDLE as well. If you are an experienced programmer, then you must be already
using VIM or Emacs or XEmacs. Even Microsoft people use VIM and Emacs while
demoing their .NET programs at their famous Professional Developers' Conference
(PDC). VIM and XEmacs are available for Windows and are always part of the standard
Linux and BSD systems.

I personally use VIM for most of my programs but occasionally I do use XEmacs.
These two programs are the most powerful editors you can ever find. If you intend to do
a lot of programming or even editing, then I highly recommend that you learn one of
these editors. There are tutorials that come with these editors to help you get started.

21

 A Byte of Python – www.python.g2swaroop.net

If you still want to explore other choices, please see the comprehensive list of
Python Editors at Python.org - take a look and make your choice. I repeat, please
choose a proper editor - it will help you a lot in the long run.

Using A Source File

Using a Source File

Okay, now let's get back to some programming. We will write the traditional
"Hello World" program - whenever you learn a new programming language, the first
program that you write and run is usually a Hello World program. As Simon Cozens
(one of the leading Perl6/Parrot hackers) puts it, it is the traditional incantation to the
programming gods to help you learn the language better.

Open your editor of choice, enter the following program and save it as
hello_world.py. All Python programs usually have the file extension .py .

Example 3.2. Using a Source File

#!/usr/bin/python
Filename : hello_world.py
print 'Hello World!'

Run this program by opening a shell (Linux terminal or DOS prompt) and entering
the command python hello_world.py. If you are using IDLE, use the menu Edit -> Run
Script or the keyboard shortcut Ctrl-F5. The output is as shown below.

Output

$ python hello_world.py
Hello World!

If you got the above output, congratulations! You have successfully run your first
Python program. If you got an error, please type the program exactly as above and run
the program again. Note that Python is case-sensitive i.e. print is not the same as Print -
note the lowercase p in the former and the uppercase P in the latter. Also, ensure there
are no spaces or tabs before the first character in each line - we will see later why this
is important.

How It Works
Consider the first two lines:

22

 A Byte of Python – www.python.g2swaroop.net

#!/usr/bin/python
Filename : hello_world.py

These are called comments. Anything to the right of the # character (which is not
inside a string) is a comment and is mainly useful as notes for the reader of the
program. Python does not use comments in any way.

However, the first line in this case is special. It is called the shebang line. Whenever
the first two characters of the source file are #! - followed by the location of the
interpreter it tells your Linux/Unix system that this program should be run with this
interpreter, when you execute the program. This is explained in detail in the next
section. Note that you can always run the program on any platform using the interpreter
directly by running the command python program.py .

Important
Please use comments sensibly in your program so that readers of the
program can easily understand the program when they read it.
Remember, that person could be yourself after six months!

Executable Python programs

This applies only to Linux/Unix systems but Windows users might be curious as well
about the first line of the program. First, give the program executable permission using
the chmod command and then run the source program.

$ chmod a+x hello.py
$./hello.py
Hello World

The chmod command is used here to change the mode of the file by giving execute
permission to all users. Then, we execute the program directly. We use the ./ to indicate
that the program is located in the current directory.

To make things more fun, you can rename the file to just hello and run it as ./hello
and it will still work since the system knows that it has to run the program using the
interpreter located at the filename specified in the first line.

You are now able to run the program as long as you know the path of the program,
but what if you wanted to be able to run the program from anywhere? You can do this
by putting the program in one of the directories listed in the PATH environment variable.

23

 A Byte of Python – www.python.g2swaroop.net

Whenever you run a program, the system looks for that command in each of the
directories listed in the PATH environment variable.

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/home/swaroop/bin
$ cp hello /home/swaroop/bin
$ hello
Hello World!

What we are doing here, is that we first see what the PATH environment variable
contains using the echo command as shown above. Note that we retrieve the value of
variables in the shell by prefixing $ to the name of the variable. We see that /
home/swaroop/bin is one of the directories in the PATH variable (where swaroop is the
username I am using in my system). There might be a similar directory for your
username in your system. Next, we copy the file to this directory. Now, we simply run
hello and we get those famous words. Note that now you can run your program from
anywhere i.e. irrespective of your current directory.

This method will be very useful when you want to write certain scripts and you want
to be able to run those programs anytime anywhere. It is like creating your own
commands just like cd or any other commands you use in the Linux terminal or DOS
prompt.

Caution
With respect to Python, a program or script or software all mean the
same thing.

Getting Help
If you need quick information about any function or statement in Python, then use

the help functionality. This is especially useful when using the interpreter prompt. For
example,

>>> help(str)

24

 A Byte of Python – www.python.g2swaroop.net

This displays the help for the str class which represents all strings that you use in
your program. Try this now. Classes will be explained in detail in the chapter on object-
oriented programming.

Important
Press q to exit the help.

Similarly, you can obtain information about almost anything in Python. Use help() to
learn more about using help itself! However, to get help for operators like print, you need
the PYTHONDOCS environment variable set. This can be done easily on Linux/Unix using
the env command.

$ env \
> PYTHONDOCS=/usr/share/doc/python-docs-2.2.3/html/ \
> python
Python 2.2.3 (#1, Oct 15 2003, 23:33:35)
[GCC 3.3.1 20030930 (Red Hat Linux 3.3.1-6)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> help('print')

You will notice that I have used quotes to specify print as a string - this is so that
Python can understand that it does not have to print something, but it should fetch help
about the print statement. The location that I have used above is the one for the Python
standard installation which comes with Fedora Core 1 Linux, it might be different for
different installations of Python.

Summary
You should now be able to write, save and run Python programs at ease. Now

that you are a Python user, let's learn some more Python concepts - the ones that get
the job done.

25

 A Byte of Python – www.python.g2swaroop.net

Chapter 4. The Basics
Table of Contents
Literal Constants
Numbers
Strings
Variables

Identifier Naming
Data Types
Objects

Logical and Physical Lines
Indentation
Summary

Just printing "Hello World" is not exciting, is it? You want to do more than that -
you want to be able to do some manipulation of data and get some output just like you
would with other commands on your system. We can achieve this using constants and
variables.

Literal Constants
A literal constant is a number like 5, 1.23, 9.25e-3 or a string like 'This is a string' or

"It's a string!" . It is called a literal because it is literal - you use its value literally. The
number 2 always represents itself and nothing else. It is a constant because it's value
cannot be changed.

Numbers
Numbers in Python are of four types - integers, long integers, floating point and

complex numbers. Examples of integers are 2 and -3 which are just whole numbers.
Long integers are just bigger numbers. Examples of floating point numbers (or floats for
short) are 3.23 and -52.3E-4. The E notation indicates powers of 10. In this case, -52.3E-4
means -52.3 * 10-4. Examples of complex numbers are (-5+4j) and (2.3 - 4.6j).

Strings
A string is a sequence of characters . Strings are basically just words.

I can almost guarantee that you will be using strings in every Python program that you
write, so pay careful attention to the following part. Here's how you can use strings in
Python:

 Using Single Quotes ('). You can specify strings using single quotes such as
'Quote me on this' . All white space i.e. spaces and tabs are preserved as-is.

26

 A Byte of Python – www.python.g2swaroop.net

 Using Double Quotes("). Strings in double quotes work exactly the same way as
strings in single quotes. An example is "What's your name?" .

 Using Triple Quotes (''' or """). You can specify multi-line strings using triple
quotes. Also, you can use single quotes and double quotes freely within triple
quotes. Examples are

'''This is a multi-line string. This is the first line.
This is the second line.
"What's your name?," I asked.
He said "Bond, James Bond."
'''

 Escape Sequences. Suppose you want to have a string which contains a single
quote ('), how will you specify this string? For example, the string is What's your
name?. You cannot specify 'What's your name?' because Python will be confused as
to where the string starts and ends. So, you will have to specify that this single
quote does not indicate the end of the string. This is done with the help of what is
called an escape sequence. You specify the single quote as \' - notice the
backslash. Now, you can specify the string as 'What\'s your name?'

Another way of specifying this specific string would be "What's your name?"
i.e. using double quotes. Similarly, you have to use an escape sequence for
using a double quote itself in a double quoted string. Also, you have to indicate
the backslash itself using an escape sequence \\.

What if you wanted to specify a two-line string? One way is to use a triple-
quoted string as shown above or you can use an escape sequence for the
newline character \n which indicates that a new line is about to start. An example
is 'This is the first line.\nThis is the second line.'

Other escape sequences include \r (carriage return), \a (bell), etc. Also,
remember that a single backslash at the end of the line indicates that the string
is continued in the next line but it does not mean that there is a newline. For
example,

"This is the first sentence.\
This is the second sentence."

is equivalent to "This is the first sentence.This is the second sentence."

27

 A Byte of Python – www.python.g2swaroop.net

 Raw Strings. If you need to specify some strings where you don't want any
special processing such as escape sequences, then you can specify the string
as a raw string by prefixing r or R to the string. An example is r"Newlines are
indicated by \n.".

 Unicode Strings. Unicode is a standard used for internationalization. If you want
to write text in your native language such as Hindi or Arabic, then you need to
have a Unicode-enabled text editor. If you want to use Unicode strings in Python,
you can prefix the string with u or U such as u"This is a Unicode string.". Remember
to use Unicode strings when you deal with text files, especially, if it involves text
written in languages other than English.

 Strings are immutable. This means that once you have created a string, you
cannot change it. Although this might seem like a bad thing, it really isn't. We will
see why this is not a limitation in the various programs that we see later on.

 String literal concatenation. If you place two string literals side by side, they are
automatically concatenated by Python. For example, 'What\'s ' "your name?" is
automatically converted to "What's your name?" .

Note for C/C++ Programmers
There is no separate char data type in Python. There is no real need for it
and I am sure you won't miss it.

Note for Perl/PHP Programmers
Remember that single-quoted strings and double-quoted strings are the
same - they do not differ in any way.

Note for Regular Expression Users
Always use raw strings when dealing with regular expressions.
Otherwise, a lot of backwhacking may be required. For example,
backreferences can be referred to as '\\1' or r'\1'.

Variables
Using just literal constants can soon become boring - we need some way of

storing some information and manipulate that information. This is where variables come
into the picture. Variables are exactly what they mean - their value can vary i.e. you can
store anything in a variable. Variables are just parts of your computer's memory where

28

 A Byte of Python – www.python.g2swaroop.net

you store some information. Unlike literal constants, you need some method of
accessing these variables i.e. you give them names.

Identifier Naming
Variables are examples of identifiers. Identifiers are names given to identify

something. There are some strict rules you have to follow for naming identifiers:

 The first character of the identifier must start with a letter of the alphabet (upper
or lowercase) or an underscore ('_').

 The rest of the identifier name can consist of letters, underscores or digits.

 Identifier names are case-sensitive. For example, myname and myName are not
the same. Note the lowercase n in the former and the uppercase N in the latter.

 Examples of valid identifier names are i, __my_name, name_23, and a1b2_c3.

 Examples of invalid identifier names are 2things, this is spaced out and my-name.

Data Types
Variables can hold values of different types called data types. The basic types

are numbers and strings, which we have already discussed. We will see how to create
your own types using classes in the chapter on object-oriented programming.

Objects
Remember, Python refers to anything used in a program as an object. This is

meant in the generic sense. Instead of saying "the something that we have", we say
"the object that we have" .

Note to Object Oriented Programming users
Python is strongly object-oriented in the sense that everything is an
object including numbers, strings and even functions.

We will now see how to use variables along with literal constants. Save the
following example and run the program.

Note

29

 A Byte of Python – www.python.g2swaroop.net

Henceforth, the standard procedure to save and run your Python
program is as follows.

1. Open your favorite editor.

2. Enter the program code given in the example.

3. Save it as a file with the filename mentioned in the comment. All
Python programs should have an extension of .py .

4. Run the interpreter with the command python program.py or use
IDLE to run the programs. You can also use the executable
method as explained earlier.

Example 4.1. Using Variables and Literal Constants

#!/usr/bin/python
Filename : var.py

i = 5
print i
i = i + 1
print i

s = '''This is a multi-line string.
This is the second line.'''
print s
Output

$ python var.py
5
6
This is a multi-line string.
This is the second line.

How It Works
First, we assign the literal constant value 5 to the variable i using the assignment

operator (=). This line is called a statement because it states that something should be
done. Next, we print the value of i using the print statement.
Then, we add 1 to the value stored in i and store it back in i and then we print the value
to confirm that it is indeed 6.

30

 A Byte of Python – www.python.g2swaroop.net

Similarly we assign the literal string to the variable s and then print it.

Note to C/C++ Programmers
Variables are used by just naming them and assigning a value. No
declaration or data type definition is required.

Logical and Physical Lines
Python implicitly assumes that each physical line corresponds to a logical line. A

physical line is what you see when you write the program. A logical line is what Python
sees as a single statement. An example of a logical line is a statement like print 'Hello
World!'. If this was on a line by itself, it also corresponds to a physical line.
If you want to specify more than one logical line on a single physical line, then you have
to explicitly specify this using the semicolon (;) which indicates the end of a logical
line/statement. For example,

i = 5
print i

is effectively equal to

i = 5;
print i;

The neat thing is that you don't need to put the semicolon if you write a single logical
line in every physical line. Experienced programmers need to remember this in
particular.

The above two Python statements can also be written as

i = 5; print i;

or even

i = 5; print i

However, I strongly recommend that you stick to writing a single logical line in a
single physical line only. Use more than one physical line only if the logical line is really
long. Avoid using the semicolon as far as possible. In fact, I have never used or even
seen a semicolon in a Python program and this makes the programs simpler and more
readable.

31

 A Byte of Python – www.python.g2swaroop.net

An example of writing a logical line spanning many physical lines follows. This is
referred to as explicit line joining.

s = 'This is a string. \
This continues the string.'
print s

This gives the output

This is a string. This continues the string.

Similarly,

print \
i

is equivalent to

print i

Sometimes, there is an implicit assumption in certain logical statements spanning
multiple physical lines where you don't need to use the backslashes. These are
statements which involve parentheses, square brackets or curly braces. This is called
implicit line joining. You can see this when we write programs using lists in later
chapters.

Indentation
Whitespace is important in Python. Actually, whitespace at the beginning of the

line is important. This is called indentation. Leading whitespace (spaces and tabs) at
the beginning of the logical line is used to determine the indentation level of the logical
line, which in turn is used to determine the grouping of statements.

This means that statements which go together must have the same indentation.
Each such set of statements is called a block. We will see examples of how blocks are
important in later chapters.

One example of how wrong indentation can give rise to errors is

i = 5
 print 'Value is', i # Notice a single space at the start of the line.
This is an error!

32

 A Byte of Python – www.python.g2swaroop.net

print 'I repeat, the value is', i

When you run this, you get the following error:

 File "<stdin>", line 2
 print i
 ^
SyntaxError: invalid syntax

Notice that there is a single space at the beginning of the second line. The error
indicated by Python tells us that the syntax of the program is invalid i.e. the program
was not properly written. This means that you cannot arbitrarily start new blocks of
statements (except for the main block which you have been using all along, of course).
Cases where you can use new blocks will be detailed in later chapters such as the
control flow chapter.

Important
Do not use a mixture of tabs and spaces for the indentation as it is not
cross-platform compatible. I strongly recommend that you use a single
tab or two or four spaces for each indentation level. Choose one of
these three indentation styles and use it consistently i.e. use that
indentation type only.

Summary
Now that we have gone through the nitty-gritty details, we can move on to more

interesting stuff such as control flow statements. Be sure to become comfortable with
what you have read in this chapter.

33

 A Byte of Python – www.python.g2swaroop.net

Chapter 5. Operators and Expressions
Table of Contents
Introduction
Operators
Operator Precedence

Order of Evaluation
Associativity

Expressions
Using Expressions

Summary

Introduction
Most statements (logical lines) that you write will contain expressions. A simple

example of an expression is 2 + 3. An expression can be broken down into operators
and operands. Operators are functionality that do something and can be represented
by symbols (such as +) or by special keywords. Operators require some data to operate
on and such data are called operands. In this case, 2 and 3 are operands.

Operators
We will briefly take a look at the operators and their usage, depicted in the

following table.
Tip

You can evaluate the expressions given in the examples using the
interpreter interactively. For example, to test the expression 2 + 3, use the
interactive Python interpreter prompt:

>>> 2 + 3
5
>>> 3 * 5
15
>>>

34

 A Byte of Python – www.python.g2swaroop.net

Table 5.1. Operators and their usage
Operator Name Explanation Examples
+ Plus Adds the two objects 3 + 5 gives 8. 'a' + 'b' gives 'ab'.

- Minus
Either gives a negative number
or gives the subtraction of one
number from the other.

-5.2 returns a negative number. 50 -
24 gives 26.

* Multiply

Gives the multiplication of the
two numbers or returns the
string repeated by that many
times.

2 * 3 gives 6. 'la' * 3 gives 'lalala'.

** Power Returns x to the power of y 3 ** 4 gives 81 (i.e. 3 * 3 * 3 * 3)

/ Divide Divides x by y
4/3 gives 1 since division of
integers gives an integer. 4.0/3 or
4/3.0 gives 1.3333333333333333.

// Floor
Division

Returns the floor of the
quotient 4 // 3.0 gives 1.0

% Modulo Returns remainder of the
division 8%3 gives 2. -25.5 % 2.25 gives 1.5 .

<< Left Shift

Shifts the bits of the number to
the left by the number of bits
specified. Each number is
represented in memory by bits
(binary digits i.e. 0 and 1)

2 << 2 gives 8. 2 is represented by
10 in bits. Left shifting by 2 bits
gives 1000 which represents the
decimal 8.

>> Right
Shift

Shifts the bits of the number to
the right by the number of bits
specified.

11 >> 1 gives 5. 11 is represented in
bits by 1011 which when right
shifted by 1 bit gives 101 which is
nothing but decimal 5.

& Bit-wise
AND Bitwise AND of the numbers 5 & 3 gives 1.

| Bit-wise
OR Bitwise OR of the numbers 5 | 3 gives 7.

^ Bit-wise
XOR Bitwise XOR of the numbers 5 ^ 3 gives 6

~ Bit-wise
invert

The bit-wise inversion of x is -
(x+1) ~5 gives -6

35

 A Byte of Python – www.python.g2swaroop.net

Operator Name Explanation Examples

< Less
Than

Returns whether x is less than
y. All comparison operators
return 1 for true and 0 for false.
This is equivalent to the special
variables True and False
respectively. Note the
capitalization of these
variables' names.

5 < 3 gives 0 and 3 < 5 gives 1 i.e. 5
< 3 gives False and 3 < 5 gives True.
Comparisons can be chained
arbitrarily. 3 < 5 < 7 gives True.

> Greater
Than

Returns whether x is greater
than y

5 > 3 returns True. If both operands
are numbers, they are first
converted to a common type.
Otherwise, it always returns False.

<=
Less
Than or
Equal To

Returns whether x is less than
or equal to y x = 3; y = 6; x <= y returns True.

>=
Greater
Than or
Equal To

Returns whether x is greater
than or equal to y x = 4; y = 3; x >= 3 returns True.

== Equal To Compares if the objects are
equal

x = 2; y = 2; x == y returns True. x = 'str';
y = 'stR'; x == y returns False. x = 'str'; y
= 'str'; x == y returns True.

!= Not Equal
To

Compares if the objects are not
equal x = 2; y = 3; x != y returns True

not Boolean
NOT

If x is True, it returns False. If x
is False, it returns True

x = True; not y returns False.

and Boolean
AND

x and y returns False if x is
False, else it returns evaluation
of y

x = False; y = True; x and y returns
False since x is False. In this case,
Python will not evaluate y since it
knows that the value of the
expression has to be False. This is
called short-circuit evaluation.

or Boolean
OR

If x is True, it returns x else it
returns evaluation of y

x = True; y = False; x or y returns True.
Short-circuit evaluation applies
here as well.

Operator Precedence
If you had an expression such as 2 + 3 * 4, is the addition done first or the

multiplication? Our high school maths tells us that the multiplication should be done

36

 A Byte of Python – www.python.g2swaroop.net

first. It means that the multiplication operator has higher precedence that the addition
operator.

The following table gives the operator precedence table for Python, from the
lowest precedence (least binding) to the highest precedence (most binding). This
means that in an expression, Python will first evaluate the operators lower in the
following table before the operators listed higher in the table.

I have given the following list for the sake of completeness. I strongly advise you
to use parentheses for grouping of operators and operands in order to explicitly specify
the precedence and to make the program as readable as possible. For example, 2 + (3 *
4) is definitely easier to understand than 2 + 3 * 4. As with everything else, the
parentheses should be used sensibly.

37

 A Byte of Python – www.python.g2swaroop.net

Table 5.2. Operator Precedence
Operator Description

lambda Lambda Expression
or Boolean OR
and Boolean AND
not x Boolean NOT
in, not in Membership tests
is, is not Identity tests
<, <=, >, >=, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and Subtraction
*, /, % Multiplication, Division and Remainder
+x, -x Positive, Negative
~x Bitwise NOT
** Exponentiation
x.attribute Attribute reference
x[index] Subscription
x[index:index] Slicing
f(arguments, ...) Function call
(expressions, ...) Binding or tuple display
[expressions, ...] List display
{key:datum, ...} Dictionary display
`expressions, ...` String conversion

The operators which are not already explained will be seen in later chapters.
Operators with the same precedence are listed in the same row in the above

table. For example, + and - have the same precedence.

Order of Evaluation
By default, the operator precedence table decides which operators are evaluated

before others. However, if you want to change the order in which they are evaluated,
you can use parentheses. For example, if you want the addition to be evaluated before
multiplication in an expression like 2 + 3 * 4 , then write the expression as (2 + 3) * 4.

38

 A Byte of Python – www.python.g2swaroop.net

Associativity
Operators are usually associated from left to right i.e. operators with same

precedence are evaluated in a left to right manner. For example, 2 + 3 + 4 is evaluated
as ((2 + 3) + 4). Some operators like assignment operators have right to left associativity
i.e. a = b = c is treated as (a = (b = c)).

Expressions

Using Expressions
Example 5.1. Using Expressions

#!/usr/bin/python
Filename : expression.py

length = 5
breadth = 2

area = length * breadth
print 'Area is', area
print 'Perimeter is', 2 * (length + breadth)

Output

$ python expression.py
Area is 10
Perimeter is 14

How It Works
Here, we are given the length and breadth of a rectangle. We then calculate the

area and perimeter of the rectangle using expressions. We store the result of the
expression length * breadth in the variable area and then print it using the print statement.
In the second case, we directly use the value of the expression 2 * (length + breadth) in the
print statement.

Also, notice how Python "pretty-prints" the output. Even though we have not
specified a space between 'Area is' and the variable area, Python puts it for us so that we
get a clean nice output and the program is much more readable this way. This is an
example of how Python makes life easy for the programmer.

Summary
We have seen how to use operators, operands and expressions - these are the

basic building blocks of any program. Next, we will see how we make use of these in
our programs using other statements.

39

 A Byte of Python – www.python.g2swaroop.net

Chapter 6. Control Flow
Table of Contents
Introduction
The if statement

Using the if statement
The while statement

Using the while statement
The for loop

Using the for statement
The break statement

Using the break statement
The continue statement

Using the continue statement
Summary

Introduction
In the programs we have seen till now, there has always been a series of

statements and Python faithfully executes them in the same order. What if you wanted
to change the flow of execution? For example, to take some decisions and do different
things depending on different situations such as printing "Good Morning" or "Good
Evening" depending on the time of the day?

As you might have guessed, this is achieved using control flow statements.
There are three control flow statements in Python - if, for and while.

The if statement
The if statement is used to check a condition and if the condition is true, we

process a block of statements (called the if-block), else we process another block of
statements (called the else-block). The else clause is optional.

Using the if statement
Example 6.1. Using the if statement

#!/usr/bin/python
Filename : if.py

number = 23
guess = int(raw_input('Enter an integer : '))

if guess == number:
 print 'Congratulations, you guessed it.' # new block starts here
 print "(but you don't win any prizes!)" # new block ends here

40

 A Byte of Python – www.python.g2swaroop.net

elif guess < number:
 print 'No, it is a little higher than that.' # another block
 # You can do whatever you want in a block ...
else:
 print 'No, it is a little lower than that.'
 # you must have guess > number to reach here
print 'Done'
This last statement is always executed, after the if statement
is executed.

Output

$ python if.py
Enter an integer : 50
No, it is a little lower than that.
Done
$ python if.py
Enter an integer : 22
No, it is a little higher than that.
Done
$ python if.py
Enter an integer : 23
Congratulations, you guessed it.
(but you don't win any prizes!)
Done

How It Works
In this program, we take guesses from the user and check if it is the number that

we have. We set the variable number to any integer we want, say 23. Then, we take the
user's guess using the raw_input() function. Functions are just reusable pieces of
programs.

We supply a string to the built-in raw_input function which then prints it to the
screen and waits for input. Once we enter a number and press enter, then the function
returns that input which, in the case of raw_string(), is always a string. We then convert
this string to an integer using int and then store it in the variable guess. Actually, the int is
a class but all you need to know right now is that you can use it to convert a string to an
integer.

Then, we compare the guess of the user with the number we have. If they are
equal, we print a success message. Notice that we use indentation levels to tell Python
which statements belong to which block. This is why indentation is so important in
Python. I hope you are sticking to 'one tab per indentation level' rule.

41

 A Byte of Python – www.python.g2swaroop.net

Notice how the if statement contains a colon at the end - we are indicating to
Python that a block of statements follows.

Then, we check if the guess is less than the number, and if so, we inform the
user to guess a little higher than that. What we have used here is the elif clause which
actually combines two related if else-if else statements into one combined if-elif-else
statement. This makes the program more readable and clearer. It also reduces the
amount of indentation required.

The elif and else statements must also have a colon at the end of the logical line
followed by their corresponding block of statements (with higher level of indentation, of
course).

You can have another if statement inside the if-block of an if statement - this is
called a nested if statement.

Remember that the elif and else parts are optional. A minimal valid if statement is

if True:
 print 'Yes, it is true'

After Python has finished executing the complete if statement along with the
associated elif and else clauses, it moves on to the next statement in the block
containing the if statement. In this case, it is the main block where execution of your
program starts and Python moves on to the print 'Done' statement, then sees the end of
the program and quits.

Although this is a very simple program, I have been pointing out a lot of things that
you should notice even in this simple program. All these are pretty straightforward (and
surprisingly simple for those of you from C/C++ backgrounds) and requires you to
become aware of them initially but after that, you will become comfortable with it.

Equivalent C program
We will now see an equivalent program of the above in C to help newbies to

understand how easy Python is compared to a language like C, and to help
experienced programmers grasp the differences between the C/C++ family of
languages and Python.

You can skip this section if you want to.

Note that indentation does not matter in C. One of the reasons why C programs
are (usually) more difficult to understand is that it may not be written clearly. However, a
good programmer always has a good and consistent indentation style. When it comes
to Python, the programs always have to be written clearly!

42

 A Byte of Python – www.python.g2swaroop.net

Example 6.2. Equivalent C Program

#include <stdio.h>
/* Filename: if.c */

/* Execution of a C program always start from the main() function */
int main()
{
 /* declare variables before using them,
 we also have to specify the data type of the variables.
 */
 int number, guess;

 /* the number we have to guess */
 number = 23;

 /* input the guess of the user */
 printf("Enter an integer : ");
 scanf("%d", &guess);

 if (guess == number) /* expression within parentheses */
 { /* block enclosed within parentheses */
 printf("Congratulations, you guessed it.\n");
 printf("(but you don't win any prizes!)\n");
 }
 else
 if (guess < number)
 {
 printf("No, it is a little higher than that.\n");
 }
 else
 {
 /* you must have guess > number to reach here */
 printf("No, it is a little lower than that.\n");
 }

 printf("Done.\n");

 return 0; /* return an exit value to the shell */
}

Note to C/C++ Programmers
There is no switch statement in Python. You can use an if..elif..else
statement to do the same thing.

The while statement

43

 A Byte of Python – www.python.g2swaroop.net

The while statement allows you to repeatedly execute a block of statements as
long as a condition is true. A while statement is an example of what is called a looping
statement. A while statement can have an optional else clause.

Using the while statement
Example 6.3. Using the while statement

#!/usr/bin/python
Filename : while.py

number = 23
stop = False

while not stop:
 guess = int(raw_input('Enter an integer : '))

 if guess == number:
 print 'Congratulations, you guessed it.'
 stop = True # This causes the while loop to stop
 elif guess < number:
 print 'No, it is a little higher than that.'
 else: # you must have guess > number to reach here
 print 'No, it is a little lower than that.'
else:
 print 'The while loop is over.'
 print 'I can do whatever I want here.'

print 'Done.'

Output

$ python while.py
Enter an integer : 50
No, it is a little lower than that.
Enter an integer : 22
No, it is a little higher than that.
Enter an integer : 23
Congratulations, you guessed it.
The while loop is over.
I can do whatever I want here.
Done.

How It Works

Here, we are still playing the guessing game, but the advantage is that the user
is allowed to keep guessing until he guesses correctly - there is no need to repeatedly

44

 A Byte of Python – www.python.g2swaroop.net

execute the program for repeated guesses. This aptly demonstrates the use of the while
statement.

We move the raw_input and if statements to inside the while loop and set the
variable stop to True before the while loop. First, we check the variable stop and if it is
True, we proceed to execute the corresponding while-block. After this block is executed,
the condition is again checked which in this case is the stop variable. If it is true, we
execute the while-block again, else we continue to execute the optional else-block if it
exists, and then continue to the next statement in the block containing the while
statement.

The else block is executed when the while loop condition becomes False - this may
even be the first time that the condition is checked. If there is an else clause for a while
loop, it is always executed unless you have a while loop which loops forever without
ever breaking out!

The True and False are just special variables which are assigned the value 1 and 0
respectively. Please use True and False instead of 1 and 0 wherever it makes more
sense, such as in the above example.

The else-block is actually redundant since you can put those statements in the
same block (as the while statement) after the while statement. This has the same effect
as an else-block.

Note to C/C++ Programmers
Remember that you can have an else clause for the while loop.

The for loop
The for..in statement is another looping statement where the number of times that

the loop is executed is known (one way or another). The for statement is used to iterate
over the elements of a sequence i.e. go through each item of a sequence. We will see
more about sequences in detail in later chapters. What you need to know right now is
that a sequence is just an ordered collection of items.

Using the for statement
Example 6.4. Using the for statement

#!/usr/bin/python
Filename : for.py

for i in range(1, 5):
 print i

45

 A Byte of Python – www.python.g2swaroop.net

else:
 print 'The for loop is over.'

Output

$ python for.py
1
2
3
4
The for loop is over.

How It Works
In this program, we are printing a sequence of numbers. We get this sequence of

numbers using the built-in range function. What we do here is supply it two numbers and
range returns a sequence of numbers starting from the first number and up to the
second number. For example, range(1, 5) returns the sequence [1, 2, 3, 4]. By default,
range takes a step count of 1. If we supply a third number to range, then that becomes
the step count.

For example, range(1, 5, 2) returns [1, 3]. Remember, that the range extends up to
the second number i.e. it does not include the second number.

The for loop then iterates over this range i.e. for i in range(1, 5) is equivalent to for i in
[1, 2, 3, 4] which is like assigning each number in the sequence to i one at a time and
executing the block of statements for each value of i. In this case, we print the value of
i.

Remember that the else part is optional. When included, it is always executed
once after the for loop is over.

Remember that the for..in loop works for any sequence. Here we have used a list
generated by the built-in range function but in general, we can use any list, tuple or
string. We will explore this in detail in later chapters.

Note for C/C++/Java/C# Programmers
The Python for loop is radically different from the C/C++ for loop.

C# programmers will note that the for loop in Python is similar to the
foreach loop in C#. Java programmers will note that the same is similar to
for(int i : IntArray) in Java 1.5 .

46

 A Byte of Python – www.python.g2swaroop.net

In C/C++, if you write for (int i = 0; i < 5; i++), then in Python, you write
for i in range(0, 5). As you can see, the for loop is simpler, more expressive
and less error prone in Python.

The break statement

The break statement is used to break out of a loop statement i.e. stop the
execution of a looping statement, even if the loop condition has not become False or the
sequence of items has been completely iterated over.

An important note is that if you break out of a for or while loop, any loop else
block is not executed.

Using the break statement
Example 6.5. Using the break statement

#!/usr/bin/python
Filename : break.py

while True:
 s = raw_input('Enter something : ')
 if s == 'quit':
 break
 print 'Length of the string is', len(s)
print 'Done'

Output

$ python break.py
Enter something : Programming is fun
Length of the string is 18
Enter something : When the work is done
Length of the string is 22
Enter something : if you wanna make your work also fun:
Length of the string is 37
Enter something : use Python!
Length of the string is 12
Enter something : quit
Done

47

 A Byte of Python – www.python.g2swaroop.net

How It Works

In this program, we repeatedly take the user's input and print the length of the
input each time. We need to take care of the special condition where if the user enters
the string quit, then we have to stop the loop. This is done by checking if the input is
equal to the string quit and if so, then we use the break statement to quit the loop.
Remember that the break statement can be used with the for loop as well.

G2's Poetic Python
The input I have used here is a mini poem I have written called G2's Poetic

Python:

Programming is fun
When the work is done
if you wanna make your work also fun:
use Python!

The continue statement
The continue statement is used to tell Python to skip the rest of the statements in

the current loop block and to continue to the next iteration of the loop.

Using the continue statement
Example 6.6. Using the continue statement

#!/usr/bin/python
Filename : continue.py

while True:
 s = raw_input('Enter something : ')
 if s == 'quit':
 break
 if len(s) < 3:
 continue
 print 'Sufficient length'

Output

$ python continue.py
Enter something : a
Enter something : 12
Enter something : abc
Sufficient length
Enter something : quit

48

 A Byte of Python – www.python.g2swaroop.net

How It Works
In this program, we accept input from the user, but we process them only if they

are at least 3 characters long. So, we use the built-in len function which gives the length
of the string. If the value returned by the len function is less than 3, then we skip the rest
of the statements in the block using the continue statement, otherwise the rest of the
statements in the loop are executed.

Note that the continue statement works with the for loop as well.

Summary
We have seen how to use the three control flow statements - if, while and for

along with their associated break and continue statements. These are the most often used
parts of Python, so becoming comfortable with them is essential. Next, we will see how
to create and use functions.

49

 A Byte of Python – www.python.g2swaroop.net

Chapter 7. Functions
Table of Contents
Introduction

Defining a Function
Function Parameters

Using Function Parameters
Local Variables

Using Local Variables
Using the global statement

Default Argument Values
Using Default Argument Values

Keyword Arguments
Using Keyword Arguments

The return statement
Using the return statement

DocStrings
Using DocStrings

Summary

Introduction
Functions are reusable pieces of programs. They allow you to give a name to a

block of statements and you can execute that block of statements by just using that
name, anywhere in your program and any number of times. This is known as calling the
function.

Functions are defined using the def keyword. This is followed by an identifier
name for the function. This is followed by a pair of parentheses which may enclose
some names of variables. The line ends with a colon and this is followed by a new
block of statements which forms the body of the function. An example will make this
easy to understand.

Defining a Function
Example 7.1. Defining a function

#!/usr/bin/python
Filename : function1.py

def sayHello():
 print 'Hello World!' # A new block
End of the function
sayHello() # call the function

50

 A Byte of Python – www.python.g2swaroop.net

Output

$ python function1.py
Hello World!

How It Works
We define a function called sayHello using the syntax explained above. This

function takes no parameters - there are no variables declared in the parentheses. We
call this function by specifying the name of the function followed by a pair of
parentheses.

Function Parameters
A function can take parameters. Parameters are just values you supply to the

function so that the function can do something by utilising those values. These
parameters are just like variables except that the values of these variables are defined
when we call the function and are not assigned values within the function itself.

Parameters are specified within the pair of parentheses in the function definition,
separated by commas. When we call the function, we supply the values in the same
way. Note the terminology used - the names given in the function definition are called
parameters whereas the values you supply in the function call are called arguments.

Using Function Parameters
Example 7.2. Using Function Parameters

#!/usr/bin/python
Filename : func_param.py

def printMax(a, b):
 if a > b:
 print a, 'is maximum'
 else:
 print b, 'is maximum'

printMax(3, 4) # Directly give literal values

x = -5
y = -7

printMax(x, y) # Give variables as arguments

Output

51

 A Byte of Python – www.python.g2swaroop.net

$ python func_param.py
4 is maximum
-5 is maximum

How It Works
Here, we define a function called printMax where we take two parameters called a

and b. We print the greater number using an if statement. In the first usage of printMax,
we directly supply the numbers i.e. the arguments. In the second usage, we call the
function using variable names. printMax(x, y) causes value of argument x to be assigned
to parameter a and value of argument y to be assigned to parameter b. The printMax
function works the same either way.

Local Variables
When you declare variables inside a function definition, they are not related in

any way to other variables with the same names used outside the function. That is,
variable declarations are local to the function. This is called the scope of the variable.
All variables have the scope of the block they are declared in, starting from the point of
definition of the variable.

Using Local Variables
Example 7.3. Using Local Variables

#!/usr/bin/python
Filename : func_local.py

def func(x):
 print 'Local x is', x
 x = 2
 print 'Changed local x to', x

x = 50
func(x)
print 'x is still', x

Output

$ python func_local.py
Local x is 50
Changed local x to 2
x is still 50

52

 A Byte of Python – www.python.g2swaroop.net

How It Works
The variable x that we define is local to our function. So, when we change the

value of x in the function, the x defined in the main block remains unaffected.

Using the global statement
If you want to assign to a variable defined outside the function, then you have to

use the global statement. This is used to declare that the variable is global i.e. it is not
local. It is impossible to assign to a variable defined outside a function without the global
statement.

You can use the values of such variables defined outside the function (and there
is no variable with the same name within the function). However, this is discouraged
and should be avoided since it becomes unclear to the reader of the program as to
where that variable's definition is. Using the global statement makes it clear that the
variable is defined in an outer block.

Example 7.4. Using the global statement

#!/usr/bin/python
Filename : func_global.py

def func():
 global x

 print 'x is', x
 x = 2
 print 'Changed x to', x

x = 50
func()
print 'Value of x is', x

Output

$ python func_global.py
x is 50
Changed x to 2
Value of x is 2

How It Works
The global statement is used to declare that x is a global variable. Hence, when

we assign to x inside the function, that change is reflected when we use the value of x
in the outer block i.e. the main block in this case.

53

 A Byte of Python – www.python.g2swaroop.net

You can specify more than one global variable using the same global statement. For
example, global x, y, z .

Default Argument Values
For some functions, you may want to make some parameters as optional and

use default values if the user does not want to provide values for such parameters. This
is done with the help of default argument values. You can specify default argument
values for parameters by following the parameter name in the function definition with
the assignment operator (=) followed by the default argument.

Note that the default argument value should be immutable. This may not make
much sense now but you will understand it when you come to the later chapters. Just
remember that you have to use only immutable values and you cannot use mutable
objects such as lists for default argument values.

Using Default Argument Values
Example 7.5. Using Default Argument Values

#!/usr/bin/python
Filename : func_default.py

def say(s, times = 1):
 print s * times

say('Hello')
say('World', 5)

Output

$ python func_default.py
Hello
WorldWorldWorldWorldWorld

How It Works
The function named say is used to print a string as number of times as we want.

If we don't supply a value, then by default, the string is printed just once. This is done
by giving a default argument value of 1 to the parameter times. In the first usage of say,
we supply only the string and it prints the string once. In the second usage of say, we
supply both the string and an argument 5 stating that we want to say the string 5 times.

Important

54

 A Byte of Python – www.python.g2swaroop.net

Only those parameters which are at the end of the parameter list can be
given default argument values i.e. you cannot have a parameter with a
default argument value before a parameter without a default argument
value, in the order of parameters declared, in the function parameter list.
This is because values are assigned to the parameters by position. For
example, def func(a, b=5) is valid, but def func(a=5, b) is not valid.

Keyword Arguments
If you have some functions with many parameters and you want to specify only

some parameters, then you can give values for such parameters by naming them - this
is called keyword arguments. We use the name instead of the position which we have
been using all along. This has two advantages - One, using the function is easier since
we do not need to worry about the order of the arguments. Two, we can give values to
only those parameters which we want, provided that the other parameters have default
argument values.

Using Keyword Arguments
Example 7.6. Using Keyword Arguments

#!/usr/bin/python
Filename : func_key.py

def func(a, b=5, c=10):
 print 'a is', a, 'and b is', b, 'and c is', c

func(3, 7)
func(25, c=24)
func(c=50, a=100)

Output

$ python func_key.py
a is 3 and b is 7 and c is 10
a is 25 and b is 5 and c is 24
a is 100 and b is 5 and c is 50

How It Works
The function named func has one parameter without default argument values

followed by two parameters with default argument values. In the first usage func(3, 7),
the parameter a gets the value 3, the parameter b gets the value 5 and c gets the default
value of 10.

55

 A Byte of Python – www.python.g2swaroop.net

In the second usage func(25, c=24), the variable a gets the value of 25 due to the
position the argument. Then, the parameter c gets the value of 24 due to naming i.e.
keyword arguments. The variable b gets the default value of 5.

In the third usage func(c=50, a=100), we use keyword arguments to specify the
values. Notice that we are giving values to parameter c before a here even though a is
defined before c in the function definition list.

The return statement
The return statement is used to return from a function i.e. break out of the

function. We can optionally return a value from the function as well.

Using the return statement
Example 7.7. Using the return statement

#!/usr/bin/python
Filename : return.py

def max(x, y):
 if x > y:
 return x
 else:
 return y

print max(2, 3)

Output

$ python return.py
3

How It Works
The max function returns the maximum of the parameters i.e. numbers supplied

to the function. When it determines the maximum, it returns that value.

Note that a return statement without a value is equivalent to return None. None is a
special value in Python which presents nothingness. For example, it is used to indicate
that a variable has no value if the variable has a value of None.

56

 A Byte of Python – www.python.g2swaroop.net

Every function implicitly contains a return None statement. You can see this by
running print someFunction() where the function someFunction does not use the return
statement such as

def someFunction():
 pass

The pass statement is used in Python to indicate an empty block of statements.

DocStrings
Python has a nifty feature called documentation strings which are usually

referred to by their shorter name docstrings. DocStrings are an important tool that you
should make use of since it helps to document the program better. We can even get
back the docstring from a function at runtime i.e. when the program is running.

Using DocStrings
Example 7.8. Using DocStrings

#!/usr/bin/python
Filename : func_doc.py

def printMax(x, y):
 '''Prints the maximum of the two numbers.

 The two values must be integers. If they are floating
 point numbers, then they are converted to integers.'''

 x = int(x) # Convert to integers, if possible
 y = int(y)

 if x > y:
 print x, 'is maximum'
 else:
 print y, 'is maximum'

printMax(3, 5)
print printMax.__doc__

Output

$ python func_doc.py
5 is maximum
Prints the maximum of the two numbers.

 The two values must be integers. If they are floating

57

 A Byte of Python – www.python.g2swaroop.net

 point numbers, then they are converted to integers.

How It Works
A string on the first logical line of a function is a docstring for that function. The

convention followed for a docstring is a multi-line string where the first line starts with a
capital letter and ends with a dot. Then the second line is blank followed by any detailed
explanation starting from the third line. You are strongly advised to follow such a
convention for all your docstrings for all your functions.

We access the docstring of the printMax function using the __doc__ attribute of that
function. Just remember that Python treats everything as an object including functions.
Objects will be explored in detail in the chapter on object-oriented programming.
If you have used the help() in Python, then you have already seen the usage of
docstrings! What it does is just fetch the __doc__ attribute of the function and prints it for
you. You can try it out on the function above. Just include the help(printMax) statement.

Remember to press q to exit the help().

Automated tools can retrieve documentation from your program in this manner.
Therefore, I strongly recommend that you use docstrings for any nontrivial function that
you write. The pydoc command that comes with your Python distribution works similarly
to help() using docstrings.

Summary
We have seen many aspects of functions. Note that we still have not covered all

aspects but this is more than enough to handle any situation using functions.
Next, we will see how to use and create modules.

58

 A Byte of Python – www.python.g2swaroop.net

Chapter 8. Modules
Table of Contents
Introduction

Using the sys module
Byte-compiled .pyc files
The from..import statement
A module's __name__

Using a module's __name__
Making your own Modules

Creating your own Modules
from..import

The dir() function
Using the dir function

Summary

Introduction
You have seen how you can reuse code in your program by defining functions

once. What if you wanted to reuse a number of functions in other programs that you
write? As you might have guessed, the answer is modules. A module is basically a file
containing all your functions and variables that you have defined. The filename of the
module must have a .py extension.

A module can be imported by another program to make use of its functionality.
This is how we use the Python standard library as well. First, we will see how to use the
standard library modules.

Using the sys module
Example 8.1. Using the sys module

#!/usr/bin/python
Filename : using_sys.py

import sys

print 'The command line arguments used are:'
for i in sys.argv:
 print i

print '\n\nThe PYTHONPATH is', sys.path, '\n'

Output

59

 A Byte of Python – www.python.g2swaroop.net

$ python using_sys.py we are arguments
The command line arguments used are:
using_sys.py
we
are
arguments

The PYTHONPATH is ['', '/usr/lib/python2.2',
'/usr/lib/python2.2/plat-linux2', '/usr/lib/python2.2/lib-tk',
'/usr/lib/python2.2/lib-dynload', '/usr/lib/python2.2/site-packages',
'/usr/lib/python2.2/site-packages/gtk-2.0']

How It Works
First, we import a module using the import statement. Here, we import the sys

module which contains some functionality related to the Python interpreter and its
environment. When Python comes to the import sys statement, it looks for the file sys.py
in one of the directories listed in the sys.path variable. If the file is found, then the
statements in the main block of that module is run, and then the module is made
available for you to use. Note that the initialization is done only the first time that we
import a module. Also, "sys" is short for "system".

The argv variable in the sys module is referred to using the notation sys.argv. One
of the advantages of this approach is that it does not clash with any argv variable
declared in our program. Also, it indicates that this variable belongs to the sys module
and has not been defined in our module.

The sys.argv variable is a list of strings. We will learn more about lists in later
chapters. What you need to know right now is that a list contains an ordered collection
of items. The sys.argv variable contains the list of command line arguments i.e.
arguments passed to the your program using the command line. Be especially careful
to pass command line arguments as shown in the above output if you are using an IDE.

In this case, when we execute python using_sys.py we are arguments, we are
executing the program using_sys.py with the python command. The other things are the
arguments stored in the sys.argv variable. Remember, the name of the script running is
always the first argument in the sys.argv. So, in this case we will have 'using_sys.py' as
sys.argv[0], 'we' as sys.argv[1], 'are' as sys.argv[2] and 'arguments' as sys.argv[3].

We then use the for..in loop to iterate over this list and we print each argument.

The sys.path contains the list of directory names where modules are imported
from. Observe that the first string in sys.path is empty - this empty string indicates the
current directory which is also part of the sys.path (this is same as the PYTHONPATH
environment variable). This means that you can directly import modules located in the

60

 A Byte of Python – www.python.g2swaroop.net

current directory. Otherwise, you will have to place your module in one of the directories
listed in sys.path.

Byte-compiled .pyc files
Importing a module is a relatively costly affair, so Python does some

optimizations to create byte-compiled files with the extension .pyc . If you import a
module such as, say, module.py, then Python creates a corresponding byte-compiled
module.pyc . This file is useful when you import the module the next time (even from a
different program) - it will be much faster. These byte-compiled files are platform-
independent.

The from..import statement
If you want to directly import the argv variable into your program, then you can

use the from sys import argv statement. If you want to import all the functions, classes and
variables in the sys module, then you can use the from sys import * statement. This works
for any module. In general, avoid using the from..import statement and use the import
statement instead since your program will be much more readable that way.

A module's __name__
Every module has a name and statements in a module can find out this name.

This is especially handy in one particular situation. As mentioned previously, when a
module is imported, the main block in that module is run. What if we want to run the
block only if the program was used by itself and not when it was imported as a module?
This can be achieved using the __name__ variable.

Using a module's __name__
Example 8.2. Using a module's __name__

#!/usr/bin/python
Filename : using__name__.py

if __name__ == '__main__':
 print 'I am here only if this program is run by itself'
 print 'and not imported as a module'

Output

$ python using__name__.py
This is run only if this program is run by itself
and not imported as a module

61

 A Byte of Python – www.python.g2swaroop.net

$ python
Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import using__name__
>>>

How It Works
Every Python module/program has a variable defined called __name__ which is

set to '__main__' when the program is run by itself. If it is imported to another program, it
is set to the name of the module. We make use of this to run a block of statements only
if the program was run by itself.

Making your own Modules
Creating your own modules is easy, you have been doing it all along! Every

Python program is also a module. The following example should make it clear.

Creating your own Modules
Example 8.3. How to create your own module

#!/usr/bin/python
File : mymodule.py

def sayhi():
 print 'Hi, this is mymodule speaking.'

version = '0.1'

End of mymodule.py

The above was a sample 'module'. As you can see, there is nothing special in it
compared to our usual Python programs. The following is a Python program that uses
this module. Remember that the module should be placed in the same directory as the
program or in one of the directories listed in sys.path.

#!/usr/bin/python
File : mymodule_demo.py

import mymodule

62

 A Byte of Python – www.python.g2swaroop.net

mymodule.sayhi()
print mymodule.version

Output

$ python mymodule_demo.py
Hi, this is mymodule speaking.
0.1

from..import
Here is also a version utilising the from..import syntax.

#!/usr/bin/python
File : mymodule_demo2.py

from mymodule import *
You can also use:
from mymodule import sayhi, version

sayhi()
print version

The output of mymodule_demo2.py program is the same as the output of mymodule_demo.py
program.

The dir() function
You can use the built-in dir function to list the identifiers that a module defines.

The identifiers are the functions, classes and variables defined. When you supply a
module name to the dir() function, it returns the list of the names defined in that module.
When no argument is supplied to it, it returns the list of names defined in the current
module.

Using the dir function
Example 8.4. Using the dir function

$ python
Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__name__',
'__stderr__', '__stdin__', '__stdout__', '_getframe', 'argv',
'builtin_module_names', 'byteorder', 'copyright', 'displayhook',

63

 A Byte of Python – www.python.g2swaroop.net

'exc_info', 'exc_type', 'excepthook', 'exec_prefix', 'executable',
'exit', 'getdefaultencoding', 'getdlopenflags', 'getrecursionlimit',
'getrefcount', 'hexversion', 'maxint', 'maxunicode', 'modules',
'path', 'platform', 'prefix', 'ps1', 'ps2', 'setcheckinterval',
'setdlopenflags', 'setprofile', 'setrecursionlimit', 'settrace',
'stderr', 'stdin', 'stdout', 'version', 'version_info', 'warnoptions']

>>> dir()
['__builtins__', '__doc__', '__name__', 'sys']
>>> a = 5
>>> dir()
['__builtins__', '__doc__', '__name__', 'a', 'sys']
>>> del a
>>> dir()
['__builtins__', '__doc__', '__name__', 'sys']

How It Works
Notice how the assigning of a variable automatically adds that identifier name to

the list returned by the dir() function. When we delete the variable i.e. undeclare the
variable, then it is automatically removed from the list returned by the dir() function. We
delete a variable using the del statement. After the statement del a, you can no longer
access the variable a (unless you define it again, of course) - it was as if it never existed
in the current program.

Summary
We have seen how to use modules and create our own modules. Modules are

useful because they provide services and functionality that you can reuse in your
programs. The standard library is an example of a set of such modules.
Next, we will see some more interesting stuff called data structures.

64

 A Byte of Python – www.python.g2swaroop.net

Chapter 9. Data Structures
Table of Contents
Introduction
List

Objects and Classes
Using Lists

Tuple
Using Tuples
Tuples and the print statement

Dictionary
Using Dictionaries

Sequences
Using Sequences

References
Objects and References

More about Strings
String Methods

Summary

Introduction
Data structures are basically just that - they are structures which hold data

together. They are used to store a collection of related data. There are three built-in
data structures in Python - list, tuple and dictionary.

List
A list is a data structure that holds an ordered collection of items i.e. you can

store a sequence of items in a list. This is easy to imagine if you can think of a shopping
list where you have a list of items you want to buy, except that you probably have each
item on a separate line in your shopping list whereas in Python you put commas in
between them.

The list of items should be enclosed in square brackets so that Python
understands that you are specifying a list. You can add, remove or search for items in a
list.

Objects and Classes
Although, we have been generally delaying discussion of objects and classes till

now, a little explanation is needed right now so that you can understand lists better. We
will explore this topic in detail in its own chapter.

65

 A Byte of Python – www.python.g2swaroop.net

A list is an example of usage of objects and classes. When you use a variable i
and assign an integer, say 5 to it, you can think of it as creating an object (instance) i of
class (type) int. In fact, you can see help(int) to understand this better.

A class can also have methods i.e. functions defined for use with respect to that
class only i.e. you can use these pieces of functionality only when you have an object of
that class. For example, Python provides an append method for the list class which
allows you to add an item to the list. For example, mylist.append('an item') will add that
string to the list mylist. Note the use of dot notation for accessing methods of objects.

A class can also have fields which are nothing but variables defined for use with
respect to that class only i.e. you can use these variables only when you have an object
of that class. Fields are also accessed by dot notation, such as mylist.field.

Using Lists
Example 9.1. Using Lists

#!/usr/bin/python
Filename : list.py

This is my shopping list
shoplist = ['apple', 'mango', 'carrot', 'banana']

print 'I have', len(shoplist), 'items to purchase.'

print 'These items are:', # Notice the comma at the end
for item in shoplist:
 print item,

print '\nI also have to buy rice.'
shoplist.append('rice')
print 'My shopping list now is', shoplist

shoplist.sort()
print 'Sorted shopping list is', shoplist

print 'The first item I will buy is', shoplist[0]
olditem = shoplist[0]
del shoplist[0]
print 'I bought the', olditem
print 'My shopping list now is', shoplist

Output

$ python list.py

66

 A Byte of Python – www.python.g2swaroop.net

I have 4 items to purchase.
These items are: apple mango carrot banana
I also have to buy rice.
My shopping list now is ['apple', 'mango', 'carrot', 'banana', 'rice']
Sorted shopping list is ['apple', 'banana', 'carrot', 'mango', 'rice']
The first item I will buy is apple
I bought the apple
My shopping list now is ['banana', 'carrot', 'mango', 'rice']

How It Works

The variable shoplist is a shopping list for someone who is going to the market.
Here, I am storing just strings in the list but remember that you can add anything to the
list i.e. you can add any object to the list - even numbers or other lists.

We have also used the for..in loop to go through the items of the list. By now, you
should have realised that a list is also an example of a sequence. The speciality of
sequences will be discussed in detail later.

Notice that we use a comma at the end of the print statement to suppress the
automatic printing of a line break after every print statement. This is a bit of an ugly way
of doing it, but it gets the job done.

Next, we add an item to the list using the append method of the list object, as
discussed before. Then, we check that the item has been indeed added to the list by
printing the contents of the list. Note that the print statement automatically prints the list
in a neat manner for us.

Then, we sort the list by using the sort method of the list object. Remember that
this method affects the list itself and does not return a changed list - this is different
from strings. This is what we mean by saying that lists are mutable and that strings are
immutable.

Next, when we finish buying an item in the market, we want to remove it from the
list. We achieve this using the del statement. Here, we mention which item of the list we
want to remove and the del statement removes it from the list for us. Then, we just print
the list to check that it has been indeed removed from the list.

We can access members of the list by using their position as shown above.
Remember that Python starts counting from 0. Therefore, if you want to access the first
item in a list then you can use mylist[0] to get the first item in the list.
If you want to know all the methods defined by the list object, see help(list) for complete
details.

67

 A Byte of Python – www.python.g2swaroop.net

Tuple
Tuples are just like lists except that they are immutable (like strings) i.e. you

cannot modify tuples. Tuples are defined by specifying items separated by commas
within a pair of parentheses. Tuples are usually used in cases where a statement or a
user-defined function can safely assume that the collection of values i.e. the tuple of
values used will not change.

Using Tuples
Example 9.2. Using Tuples

#!/usr/bin/python
Filename : tuple.py

zoo = ('wolf', 'elephant', 'penguin')
print 'Number of animals in the zoo is', len(zoo)
new_zoo = ('monkey', 'dolphin', zoo)
print 'Number of animals in the new zoo is', len(new_zoo)
print new_zoo # Prints all the animals in the new zoo
print new_zoo[2] # Prints animals brought from the old zoo
print new_zoo[2][2] # Prints the last animal brought from the old zoo

Output

$ python tuple.py
Number of animals in the zoo is 3
Number of animals in the new zoo is 3
('monkey', 'dolphin', ('wolf', 'elephant', 'penguin'))
('wolf', 'elephant', 'penguin')
penguin

How It Works
Here, the variable zoo refers to a tuple of items. We see that the len function can

be used to get the length of a tuple as well. This also indicates that a tuple is a
sequence as well.

We are now shifting these animals to a new zoo since the old zoo is being
closed. Therefore, the new_zoo tuple contains some animals which are already there
along with the animals brought over from the old zoo. Back to reality, note that a tuple
within a tuple does not lose it's identity.

68

 A Byte of Python – www.python.g2swaroop.net

We can access the items in the tuple using the indexing operator just like we did
for lists. We just specify the item's position within a pair of square brackets following the
name of the tuple such as new_zoo[2]. In this case, this object is a tuple. So we can
access items of this object as well using new_zoo[2][2].

Tuple with 0 or 1 items. An empty tuple is constructed by an empty pair of parentheses
such as myempty = (). However, a tuple with a single item is not so simple. You have to
specify it using a comma following the single item so that Python can differentiate
between a tuple and a pair of parentheses used for grouping in an expression i.e. you
have to specify singleton = (some_item ,) .

Note to Perl programmers
A list within a list does not lose it's identity i.e. lists are not flattened as in
Perl. The same applies to a tuple within a tuple, or a tuple within a list, or
a list within a tuple. As far as Python is concerned, they are just objects
stored using another object, that's all.

Tuples and the print statement
Tuples are most often used alongwith the print statement. An example will make

this clear.
Example 9.3. Output using tuples

#!/usr/bin/python
File : tuple.py

age = 21
name = 'Swaroop'

print '%s is %d years old' % (name, age)
print "Why is %s playing with that python?" % name

Output

$ python tuple.py
Swaroop is 21 years old
Why is Swaroop playing with that python?

How It Works
The print statement takes a string using certain specifications followed by a %

symbol which is followed by a tuple. The string can have specifications such as %s for
strings and %d for integers. The tuple must have items corresponding to these
specifications in the same order.

69

 A Byte of Python – www.python.g2swaroop.net

Observe the first usage where we have used %s first and this corresponds to the
string name which is the first item in the tuple. Then, the second specification is %d
which corresponds to the number age which is the second item in the tuple.

What Python does here is that it converts each item in the tuple into a string and
substitutes that string value into the place of the specification. Therefore the %s in the
first usage will be replaced by the value of the name variable, and so on.

This usage of the print statement makes writing output extremely easy and avoids
using commas everywhere as we have done until now.

Most of the time, you can just use the %s specification and let Python take care
of the rest for you. This works even for numbers, but you may want to give correct
specifications in order to ensure that objects of proper type are being used.
In the second usage, we are using a single specification in the string followed by the %
symbol followed by a single item - there are no pair of parentheses. This works only in
the case where there is a single specification in the string.

Dictionary
A dictionary is like an address-book where you can find the address or contact

details of a person by knowing only his/her name i.e. we associate keys (name) with
values (details). Note that the key must be unique - you cannot find out the correct
information if you have two persons with the exact same name.

A word of caution: you can use only immutable values (like strings) for keys of a
dictionary but you can use either immutable or mutable values for values. This basically
means to say that you can use only simple objects as keys.

Pairs of keys and values are specified in a dictionary by using the notation d =
{key1 : value1, key2 : value2 }. Notice that the key and value pairs are separated by a colon,
and the pairs are separated themselves by commas and all this is enclosed in a pair of
curly brackets.

Remember that key/value pairs in a dictionary are not ordered in any manner. If
you want a particular order, then you will have to sort them yourself.
The dictionaries that you will be using are objects of class dict.

Using Dictionaries
Example 9.4. Using dictionaries

#!/usr/bin/python
Filename : dict.py

'ab' is short for 'a'ddress'b'ook

70

 A Byte of Python – www.python.g2swaroop.net

ab = { 'Swaroop' : 'python@g2swaroop.net',
 'Miguel' : 'miguel@novell.com',
 'Larry' : 'larry@wall.org',
 'Spammer' : 'spammer@hotmail.com'
 }

print "Swaroop's address is %s" % ab['Swaroop']

Adding a key/value pair
ab['Guido'] = 'guido@python.org'

Deleting a key/value pair
del ab['Spammer']

print "\nThere are %d contacts in the address-book\n" % len(ab)

for name, address in ab.items():
 print 'Contact %s at %s' % (name, address)

if ab.has_key('Guido'):
 print "\nGuido's address is %s" % ab['Guido']

Output

$ python dict.py
Swaroop's address is python@g2swaroop.net

There are 4 contacts in the address-book

Contact Swaroop at python@g2swaroop.net
Contact Larry at larry@wall.org
Contact Miguel at miguel@novell.com
Contact Guido at guido@python.org

Guido's address is guido@python.org

How It Works
We create the dictionary ab using the notation we have already discussed. We

then access key/value pairs by specifying the key using the indexing operator as
discussed in the context of lists and tuples.

We can also add new key/value pairs using the indexing operator - we just
access that key and assign that value, as we have done for Guido in the above case.

71

 A Byte of Python – www.python.g2swaroop.net

We can delete key/value pairs using our old friend - the del statement. We
specify which key/value pair by specifying the dictionary followed by an index operation
for that key with the del statement (there is no need to use the value for this operation).

Next, we access each key/value pair of the dictionary using the items method of
the dictionary which returns a list of tuples where each tuple contains two items - the
key followed by the value. We retrieve these two items in each tuple and assign them to
the variables name and address. Then, we use the for..in loop to iterate over this and we
print these values in the for-block.

We can check if a key/value pair exists using the has_key method of a dictionary
as used above. You can see documentation for the complete list of methods of the dict
class using help(dict).

Keyword Arguments and Dictionaries. On a different note, if you have used keyword
arguments in your functions, you have already used dictionaries! Just think about it -
the key/value pair is specified by you in the parameter list of the function definition and
when you access variables within your function, it is just a key access of a dictionary
(which is called the symbol table in compiler design terminology).

Sequences
Lists, tuples and strings are examples of sequences, but what is so special about

sequences? Two of the main features of a sequence is the indexing operation which
allows us to fetch a particular item in the sequence and the slicing operation which
allows us to retrieve a slice of the sequence i.e. a part of the sequence.

Using Sequences
Example 9.5. Using sequences

#!/usr/bin/python
Filename : seq.py

shoplist = ['apple', 'mango', 'carrot', 'banana']

Indexing or 'Subscription'
print shoplist[0]
print shoplist[1]
print shoplist[2]
print shoplist[3]
print shoplist[-1]
print shoplist[-2]

Slicing using a list
print shoplist[1:3]
print shoplist[2:]

72

 A Byte of Python – www.python.g2swaroop.net

print shoplist[1:-1]
print shoplist[:]

Slicing using a string
name = 'swaroop'
print name[1:3]
print name[2:]
print name[1:-1]
print name[:]

Output

apple
mango
carrot
banana
banana
carrot
['mango', 'carrot']
['carrot', 'banana']
['mango', 'carrot']
['apple', 'mango', 'carrot', 'banana']
wa
aroop
waroo
swaroop

How It Works
First, we see how to use indexes to get individual items of a sequence. This is

also referred to as subscription. Whenever you specify a number to a sequence within
square brackets as shown above, Python will fetch you the item corresponding to that
position in the sequence. Remember that Python starts counting numbers from 0.
Hence, shoplist[0] fetches the first item and shoplist[3] fetches the fourth item in the shoplist
sequence. The index can also be a negative number, in which case, the position is
calculated from the end of the sequence. Therefore, shoplist[-1] fetches the last item and
shoplist[-2] fetches the second last item in the shoplist sequence.

The slicing operation is used by specifying the name of the sequence followed
by an optional pair of numbers separated by a colon, within square brackets. Note that
this is very similar to the indexing operation you have been using till now. Remember
the numbers are optional when using slices but the colon isn't.

The first number is the position from where the slice starts and the second
number is where the slice will stop at. If the first number is left out, Python defaults to

73

 A Byte of Python – www.python.g2swaroop.net

the beginning of the sequence. If the second number is left out, Python defaults to the
end of the sequence.

Thus, shoplist[1:3] returns a slice of the sequence starting at position 1, includes
position 2 but stops at position 3 i.e. it does not include position 3. Therefore a slice of 2
items is returned. Also, shoplist[:] returns a copy of the whole sequence.

You can also try out slicing with negative numbers. Negative numbers are used
for positions from the end of the sequence. For example, shoplist[:-1] will return a slice of
the sequence which excludes the last item of the sequence.

Try various combinations of such slice specifications using the Python interpreter
interactively i.e. the prompt so that you can see the results quickly. The great thing
about sequences is that you can access tuples, lists and strings all in the same way.

References
Lists are examples of objects. When you create an object and assign it to a

variable, the variable only refers to the object and is not the object itself i.e. the variable
points to that part of your computer's memory where the list is stored. Generally, you
don't need to be worried about this, but there is a subtle effect due to references which
you need to be aware of. This is demonstrated by the following example.

Objects and References
Example 9.6. Objects and references

#!/usr/bin/python
Filename : reference.py

shoplist = ['apple', 'mango', 'carrot', 'banana']
mylist = shoplist
mylist is just another reference to the same list!

del shoplist[0]
I purchased the first item, so I remove it from the list.

print 'shoplist is', shoplist
print 'mylist is', mylist
Notice that shoplist and mylist both print a list without the
'apple' confirming that they refer to the same list object

mylist = shoplist[:]
Obtain a full slice to make a copy
del mylist[0]

print 'shoplist is', shoplist
print 'mylist is', mylist

74

 A Byte of Python – www.python.g2swaroop.net

Notice now that the two lists are different

Output

$ python reference.py
shoplist is ['mango', 'carrot', 'banana']
mylist is ['mango', 'carrot', 'banana']
shoplist is ['mango', 'carrot', 'banana']
mylist is ['carrot', 'banana']

How It Works
Most of the explanation is available in the comments itself. What you need to

remember is that if you want to make a copy of a list or such sequences and objects
(not simple objects such as integers), then you have to use a slicing operation without
numbers to make a copy. If you just assign the variable name to another variable name,
both of them refer to the same object and not different objects.

Note to Perl programmers
Remember that an assignment statement for lists does not create a
copy. You have to use the slicing operation to make a copy of the
sequence.

More about Strings
We have already discussed strings in detail earlier. What more can there be to

add? Well, did you know that strings are also objects and have methods which do
everything from checking substrings to stripping spaces!

The strings that you use in your program are all objects (instances) of the class
str. Some useful methods of this class are demonstrated in the following example. For a
complete list of such methods, see help(str).

String Methods
Example 9.7. String methods

#!/usr/bin/python
Filename : str_methods.py

75

 A Byte of Python – www.python.g2swaroop.net

name = 'Swaroop' # This is a string object

if name.startswith('Swa'):
 print 'Yes, the string starts with "Swa"'

if 'a' in name:
 print 'Yes, it contains the string "a"'

if name.find('war') != -1:
 print 'Yes, it contains the string "war"'

delimiter = '-*-'
mylist = ['India', 'China', 'Finland', 'Brazil']
print delimiter.join(mylist)

Output

$ python str_methods.py
Yes, the string starts with "Swa"
Yes, it contains the string "a"
Yes, it contains the string "war"
India-*-China-*-Finland-*-Brazil

How It Works
Here, we see a lot of the string methods in action. The startswith method is used

to find out whether the string starts with the given string. The in operator is used to
check if a given string is a substring of the string i.e. is part of the string.

The find method is used to do the same thing but it returns -1 when it is
unsuccessful and returns the position of the substring when it is successful. The string
object also has a neat method called join which is used to put the items of a sequence in
a string separated by that string.

Summary
We have explored the various built-in data structures of Python in detail. These

data structures will be essential for writing programs of reasonable size.
Now that we have a lot of the basics of Python in place, we will see how to design and
write a real-world Python program next.

76

 A Byte of Python – www.python.g2swaroop.net

Chapter 10. Problem Solving - Writing a Python Script
Table of Contents
The Problem
The Solution

First Version
Second Version
Third Version
Fourth Version
More Refinements

The Software Development Process
Summary

We have explored various parts of the Python language and now we will take a
look at how all these parts fit together, by designing and writing a program which does
something useful.

The Problem

The problem is "I want a program which creates a backup of all my important
files".

Although this is a simple problem, there is not enough information for us to get
started with the solution. A little more analysis is required. For example, how do we
specify which files are to be backed up? Where is the backup stored? How are they
stored in the backup?

After analyzing the problem properly, we design our program. We make a list of
things about how our program should and will work. In this case, I have created the
following list.

1. The files and directories to be backed up are given in a list.

2. The backup must be stored in a main backup directory.

3. The files are backed up into a zip file.

4. The name of the zip archive is the current date and time.

77

 A Byte of Python – www.python.g2swaroop.net

5. We use the zip command available by default in any standard Linux/Unix
distribution. Windows users can use the Info-Zip program. Note that you can use
any archiving command you want as long as it has a command line interface so
that we can pass arguments to it from our script.

The Solution
As the design of our program is now stable, we can write the code which is an

implementation of our solution.

First Version
Example 10.1. Backup Script - The First Version

#!/usr/bin/python
Filename : backup_version1.py

import os
import time

1. The files and directories to be backed up are given in a list.
source = ['/home/g2swaroop/all', '/home/g2swaroop/bin']
If you are using Windows, use source = [r'C:\Documents', r'D:\Work']

2. The backup must be stored in a main backup directory.
target_dir = '/mnt/d/backup/'

3. The files are backed up into a zip file.
4. The name of the zip archive is today's date and time.
target = target_dir + time.strftime('%Y%m%d%H%M%S') + '.zip'

5. We use the zip command (in Unix/Linux) to put the files in a zip
archive
zip_command = "zip -qr '%s' %s" % (target, ' '.join(source))

Run the backup
if os.system(zip_command) == 0:
 print 'Successful backup to', target
else:
 print 'Backup FAILED'

Output

$ python backup_version1.py
Successful backup to /mnt/d/backup/20031124174143.zip

78

 A Byte of Python – www.python.g2swaroop.net

Now, we are in the testing phase where we test that our program works properly. If
it doesn't behave as expected, then we have to debug our program i.e. remove the
bugs (errors) from the program.

How It Works

You will notice how we have converted our design into code in a step-by-step
manner.

We first import the os and time modules to use some of the functionality of these
modules. Then, we specify the files and directories to backup in the source list. The
target directory is where we store all our backup files and this is specified by the
target_dir variable. The name of the zip archive backup that we are going to create is the
current date and time as returned by the time.strftime() function with the .zip extension and
this archive is stored in the target_dir directory.

The time.strftime() function takes a specification like the one we have used in the
above program. The %Y specification will be replaced by the year without the century.
The %m specification will be replaced by the month as a decimal number between 01
and 12 for the current date, and so on. The complete list of such specifications can be
found in the [Python Reference Manual] that comes with your Python distribution.

Then we create the name of the target zip file using the addition operator which
concatenates the strings i.e. returns a string which combines those two strings. Then,
we create a string zip_command which contains the command that we are going to
execute. You can execute this command directly from the shell (Linux terminal or DOS
prompt) to check if it works properly.

The zip command that we are using is like this - we use the option -q to indicate
that the zip command should work quietly. The option -r indicates that the zip command
should work recursively for directories i.e. it should include subdirectories and files
within the subdirectories as well. The two options are combined to get -qr. The options
are followed by the name of the zip archive to create, followed by the list of files and
directories to backup. We convert the source list into a string using the join method of
strings which we have already seen how to use.

Then, we finally run the command using the os.system function which runs the
command as if it was run from the system i.e. the shell. It then returns 0 if the command
was successfully. It will return an error number otherwise.

Depending on the outcome of the command we print an appropriate message
and that's it, we have created a backup of our important files!

Note to Windows Users

79

 A Byte of Python – www.python.g2swaroop.net

You can set the source list and target directory to any file and directory
names in Windows, but you have to be a little careful. The problem is
that Windows uses the backslash as the directory separator character
but Python uses backslashes to represent escape sequences! So, you
have to represent a backslash itself as an escape sequence or you have
to use raw strings. For example, use 'C:\\Documents' or use r'C:\Documents',
but do not use 'C:\Documents' - you are using an unknown escape
sequence \D in this case!

Now that we have a working backup script, we can use it whenever we want to
take the backup of files. Linux/Unix users are advised to use the executable method we
discussed earlier so that they can run the backup script anytime anywhere. This is
called the operation phase or the deployment phase of the software.

The above program works properly, but (usually) first programs may not work
exactly as you expect. For example, there might be problems if you have not designed
the program properly or if you have not written the code according to the design or you
might have made a mistake in typing. Appropriately, you will have to go back to the
design phase or you will have to debug your program.

Second Version
The first version at our script is good, but we can make some refinements to it so

that it can work better. This is called the maintenance phase of the software.

One of the refinements I felt was useful is a better file-naming mechanism - using
the time as the name of the file within a directory with the current date as time within the
main backup directory. One advantage is that your backups are stored in a hierarchical
manner and therefore much easier to manage. Another advantage is that the length of
the filenames are much shorter this way. Another advantage is that separate directories
will help you to check that you have taken a backup for each day since the directory will
be created only if you have taken a backup that day.

Example 10.2. Backup Script - The Second Version

#!/usr/bin/python
Filename : backup_version2.py

import os
import time

The files and directories to backup
source = ['/home/g2swaroop/all', '/home/g2swaroop/bin']
If you are using Windows, use source = [r'C:\Documents', r'D:\Work']

80

 A Byte of Python – www.python.g2swaroop.net

The directory where to store the backup
target_dir = '/mnt/d/backup/'

The date - the subdirectory in the main backup directory
today = target_dir + time.strftime('%Y%m%d')
The time - the name of the zip archive
now = time.strftime('%H%M%S')

Create the subdirectory if it doesn't exist
if not os.path.exists(today):
 os.mkdir(today) # make directory
 print 'Successfully created directory', today

The name of the zip file
target = today + os.sep + now + '.zip'

The zip command to run
zip_command = 'zip -qr %s %s' % (target, ' '.join(source))

Run the backup
if os.system(zip_command) == 0:
 print 'Successful backup to', target
else:
 print 'Backup FAILED'

Output

$ python backup_version2.py
Successfully created directory /mnt/d/backup/20031124
Successful backup to /mnt/d/backup/20031124/174239.zip
$ python backup_version2.py
Successful backup to /mnt/d/backup/20031124/174241.zip

How It Works
Most of the program remains the same. The addition is that we check if the

directory with the current date as name exists inside the main backup directory using
the os.exists function. If not, we create it using the os.mkdir function (which is short for
make directory). Notice the use of the os.sep variable - this gives the directory separator
according to your operating system i.e. it is '/' in Linux/Unix, it is '\\' in Windows and ':' in
Mac OS. Using os.sep instead of these characters makes our programs portable.

Third Version
The second version works fine, but when I do many backups, I am finding it hard

to differentiate what the backups were for. For example, I might have made some major

81

 A Byte of Python – www.python.g2swaroop.net

changes to a document, then I want to associate what those changes are with the
name of the backup archive. This can be achieved by attaching a user-supplied
comment to the name of the zip archive.

Example 10.3. Backup Script - The Third Version (does not work!)

#!/usr/bin/python
Filename : backup_version3.py

import os, time

The files and directories to backup
source = ['/home/g2swaroop/all', '/home/g2swaroop/bin']
If you are using Windows, use source = [r'C:\Documents', r'D:\Work']

The directory where to store the backup
target_dir = '/mnt/d/backup/'

The date - the subdirectory in the main backup directory
today = target_dir + time.strftime('%Y%m%d')
The time - the name of the zip archive
now = time.strftime('%H%M%S')

Take a comment from the user
comment = raw_input('Enter a comment --> ')
if len(comment) == 0: # Check if a comment was entered
 # The name of the zip file
 target = today + os.sep + now + '.zip'
else:
 target = today + os.sep + now + '_' +
 comment.replace(' ', '_') + '.zip'

Create the subdirectory if it doesn't exist
if not os.path.exists(today):
 os.mkdir(today)
 print 'Successfully created directory', today

The zip command to run
zip_command = 'zip -qr %s %s' % (target, ' '.join(source))

Run the backup
if os.system(zip_command) == 0:
 print 'Successful backup to', target
else:
 print 'FAILED to take the backup'

Output

82

 A Byte of Python – www.python.g2swaroop.net

$ python backup_version3.py
 File "backup_version3.py", line 23
 target = today + os.sep + now + '_' +
 ^
SyntaxError: invalid syntax

How It (does not) Work
This program does not work! Python says there is a syntax error which means

that the script does not satisfy the structure that Python it expects. When we observe
the error given by Python, we see that it gives us the place where it detected the error
as well. So we start debugging our program from that line.

On careful observation, we see that the single logical line has been split into two
physical lines and we have not specified that these two physical lines belong together.
Basically, Python has found the addition operator (+) without any operand in that logical
line. We can specify that the logical line continues in the next physical line by the use of
a backslash at the end of the physical line as we have already seen. So we make this
correction to our program.

Fourth Version
Example 10.4. Backup Script - The Fourth Version

#!/usr/bin/python
Filename : backup_version4.py

import os, time

The files and directories to backup
source = ['/home/g2swaroop/all', '/home/g2swaroop/bin']
If you are using Windows, use source = [r'C:\Documents', r'D:\Work']

The directory where to store the backup
target_dir = '/mnt/d/backup/'

The date - the subdirectory in the main backup directory
today = target_dir + time.strftime('%Y%m%d')
The time - the name of the zip archive
now = time.strftime('%H%M%S')

Take a comment from the user
comment = raw_input('Enter a comment --> ')
if len(comment) == 0: # Check if a comment was entered
 # The name of the zip file
 target = today + os.sep + now + '.zip'

83

 A Byte of Python – www.python.g2swaroop.net

else:
 target = today + os.sep + now + '_' + \ # Notice backslash
 comment.replace(' ', '_') + '.zip'

Create the subdirectory if it doesn't exist
if not os.path.exists(today):
 os.mkdir(today)
 print 'Successfully created directory', today

The zip command to run
zip_command = 'zip -qr %s %s' % (target, ' '.join(source))

Run the backup
if os.system(zip_command) == 0:
 print 'Successful backup to', target
else:
 print 'FAILED to take the backup'

Output

$ python backup_version4.py
Enter a comment --> fixed bug
Successful backup to /mnt/d/backup/20031124/181157_fixed_bug.zip
$ python backup_version4.py
Enter a comment -->
Successful backup to /mnt/d/backup/20031124/181202.zip

How It Works
This program now works. Let us go through the actual enhancements that we

had made in version 3. We take the user's comment using the raw_input function and
then check if the user actually entered something or not. If the user has just pressed
enter for some reason (maybe it was a routine backup and no special changes were
made), then we proceed as before.

However, if a comment was supplied, then this is attached to the name of the zip
archive just before the .zip extension. Notice that we replace spaces in the comment
with underscores because managing such filenames are easier.

More Refinements
The fourth version must be a satisfactorily working script for most users, but

there is always room for improvement. For example, you can include a verbosity level
for the program where you can specify -v option to make your program more talkative,
or you can backup additional files and directories specified on the command line using
the sys.argv list.

84

 A Byte of Python – www.python.g2swaroop.net

One refinement I prefer is the use of the tar command instead of the zip
command in Linux/Unix. One advantage is that when you use tar along with gzip, the
backup is much faster and the archive size created is also much smaller. If I need to
use this archive in Windows, then WinZip handles such .tar.gz files as well.

The command to use for utilising the tar is

tar = 'tar -cvzf %s %s -X /home/g2swaroop/bin/excludes.txt' % (dst,
' '.join(srcdir))

where the options are explained below.

 -c indicates creation of an archive.

 -v indicates verbose i.e. the command should be more talkative.

 -z indicates that the gzip filter should be used.

 -f indicates force in creation of archive i.e. over-writing.

 -X indicates a file which contains a list of filenames which must be included from
backup. For example, you can specify *~ in this file to not include any filenames
ending with ~ in the backup.

Note
An even better way of creating a backup script is to use the zipfile module
included in the Python Standard Library. This avoids using os.system()
which is generally not advisable to use.
For pedagogical purposes, I decided to use os.system() so that the
example is simple enough to be understood by everybody but real
enough to be useful.

The Software Development Process
We have now gone through the various phases in the process of writing a software.

These phases can be summarised as follows.

1. What (Analysis)

85

 A Byte of Python – www.python.g2swaroop.net

2. How (Design)

3. Do It (Implementation)

4. Test (Testing and Debugging)

5. Use (Operation or Deployment)

6. Maintain (Refinement)

Important
A recommended way of writing programs is the procedure we have
followed here - Do the analysis and design. Start implementing with a
simple version. Test and debug it. Use it to ensure that it behaves as
expected. Now, add any features you want and continue to repeat the
Do It-Test-Use cycle as many times as required. Remember, "Software
is grown, not built" .

Summary
We have seen how we can create our own Python programs/scripts and the

various stages involved in writing such programs. You may find it useful to create your
own program just like we did in this chapter so that you become comfortable with
Python as well as problem solving.

Next, we will discuss object-oriented programming.

86

 A Byte of Python – www.python.g2swaroop.net

Chapter 11. Object-Oriented Programming
Table of Contents
Introduction
The self
Classes

Creating a Class
Object Methods

Object Methods
Class and Object Variables

Using Class and Object Variables
Inheritance

Inheritance
Summary

Introduction
In our programs till now, we designed our program around functions or blocks of

statements which manipulate data. This is called the procedural programming
paradigm. There is another way of organising your program which is to combine data
and functionality and wrap it inside what is called an object. This is called the object
oriented programming paradigm. Most of the time you can use procedural programming
but when you want to write large programs or if you have a program that is better suited
to it, you can use object oriented programming techniques.

Classes and objects are the two main aspects of object oriented programming. A
class creates a new type where objects are instances of the class. An analogy is that
you can have variables of type int which translates to saying that variables that store
integers are variables which are instances (objects) of the int class.

Note to C/C++/Java/C# Programmers
Please note that even integers are treated as objects of the class int.
This is unlike C++ and Java (<1.5) where integers are magic types. See
help(int) for more details.
This level of object-orientation in Python is strikingly different from other
languages, especially, when compared to C++ and Perl. However, C#
programmers will be familiar with this concept since it closely resembles
the boxing and unboxing technique (see the Microsoft C# and Mono [go-
mono.com] websites). Now, even Java 1.5 has the same thing which it
refers to as autoboxing and auto-unboxing (see the Java website).

87

 A Byte of Python – www.python.g2swaroop.net

Objects can store data using ordinary variables that belong to the object.
Variables that belong to an object or class are called as fields. Objects can also have
functionality by using functions that belong to the class. Such functions are called
methods. This terminology is important because it helps us to differentiate between a
function which is separate by itself and a method which belongs to an object.

Remember, that fields are of two types - they can belong to each instance
(object) of the class or they belong to the class itself. They are called instance variables
and class variables respectively.

A class is created using the class keyword. The fields and methods of the class
are listed in an indented block.

The self
Class methods have only one specific difference from ordinary functions - they

have an extra variable that has to be added to the beginning of the parameter list, but
you do not give a value for this parameter when you call the method. This particular
variable refers to the object itself, and by convention, it is given the name self.

Although, you can give any name for this parameter, it is strongly recommended
that you use the name self - any other name is definitely frowned upon. There are many
advantages to using a standard name - any reader of your program will immediately
recognize that it is the object variable i.e. the self and even specialized IDEs (Integrated
Development Environments such as Boa Constructor) can help you if you use this
particular name.

Note to C++/Java Programmers
The self variable is equivalent to the this pointer in C++ and the this
reference in Java.

You must be wondering why you don't need to give a value for this parameter
just like you do for other parameters. The reason is that Python will automatically
provide this value. For example, if you have a class called MyClass and an instance
(object) of this class called MyObject, then when you call a method of this object as
MyObject.method(arg1, arg2), this is automatically converted to MyClass.method(MyObject, arg1,
arg2). This is what the special self is all about.

Classes

The simplest class possible is shown in the following example.

88

 A Byte of Python – www.python.g2swaroop.net

Creating a Class
Example 11.1. Simplest Class

#!/usr/bin/python
Filename : simplestclass.py

class Person:
 pass # A new block

p = Person()
print p

Output

$ python simplestclass.py
<__main__.Person instance at 0x816a6cc>

How It Works
We create a new class using the class statement followed by the name of the

class (Person in this case),followed by a block of statements with a higher level of
indentation which forms the body of the class. In this case, we have an empty block
which is indicated using the pass statement.

Next, we create an object (instance) of this class using the name of the class
followed by a pair of parentheses. We will discuss instantiation of objects in more detail
later. For our verification, we confirm the type of the variable i.e. object using the print
statement. Notice that the address and the type of the object is printed. The address
will have a different value on your computer, but the type confirms that we have indeed
created an object of the class Person.

Object Methods
We have already discussed that classes/objects can have methods which are

just like functions except for the usage of the self variable. Even if your method does not
take any parameters, you still have to have the self variable.

Object Methods
Example 11.2. Using Object Methods

#!/usr/bin/python
Filename: methods.py

89

 A Byte of Python – www.python.g2swaroop.net

class Person:
 def sayHi(self):
 print 'Hello, how are you?'

p = Person()
p.sayHi() # This short example can also be written as Person().sayHi()

Output

$ python methods.py
Hello, how are you?

How It Works
Here we see the self variable in action. Notice, that the sayHi method takes no

parameters but still has the self variable in it's parameter list in the function definition.
Other than this, methods are no different from functions.

The __init__ method
You can define a special method for a class with the name __init__ which is run as

soon as an object of this class is instantiated. This method is used for any initialization
you want to do with your object. The next example will demonstrate this.

Note to C++/Java/C# Programmers
The __init__ method is analogous to a constructor in C++ or C# or Java.

Class and Object Variables
We will now discuss the data part of the object - the variables. We have two

types - the class variables and the object variables. The difference is in the ownership -
does the class own the variables or does the object own the variables?

When the class owns the variables, it is called a class variable. Class variables
are shared in the sense that they can be accessed by all objects (instances) of that
class. When the object owns the variables, it is called an object variable. In this case,
each object has its own copy of this variable i.e. they are not shared and are not related
in any way to the variable of the same name in a different instance of the same class.
An example will make this clearer.

Using Class and Object Variables
Example 11.3. Using Class and Object Variables

90

 A Byte of Python – www.python.g2swaroop.net

#!/usr/bin/python
Filename: objvar.py

class Person:
 '''Represents a person.'''
 population = 0

 def __init__(self, name):
 '''Initializes the person.'''
 self.name = name
 print '(Initializing %s)' % self.name

 # When this person is created,
 # he/she adds to the population
 Person.population += 1

 def sayHi(self):
 '''Greets the other person.

 Really, that's all it does.'''
 print 'Hi, my name is %s.' % self.name

 def howMany(self):
 '''Prints the current population.'''
 # There will always be atleast one person
 if Person.population == 1:
 print 'I am the only person here.'
 else:
 print 'We have %s persons here.' % \
 Person.population

swaroop = Person('Swaroop')
swaroop.sayHi()
swaroop.howMany()

kalam = Person('Abdul Kalam')
kalam.sayHi()
kalam.howMany()

swaroop.sayHi()
swaroop.howMany()

Output

$ python objvar.py
(Initializing Swaroop)
Hi, my name is Swaroop.
I am the only person here.

91

 A Byte of Python – www.python.g2swaroop.net

(Initializing Abdul Kalam)
Hi, my name is Abdul Kalam.
We have 2 persons here.
Hi, my name is Swaroop.
We have 2 persons here.

How It Works
This example, although a long one, helps demonstrate the nature of class and

object variables. Here, we refer to the population variable of the Person class as
Person.population and not as self.Population. Note that an object variable with the same
name as a class variable will hide the class variable!

We refer to the object variable name using self.name in the methods. Remember
this simple difference between class and object variables. To summarize,
ClassName.field1 refers to the class variable called field1 of the class ClassName. This
variable is shared by all instances/objects of this class. The variable self.field2 refers to
the object variable of the class and is different in different objects.

Observe that the __init__ method is run first even before we get to use the object
and this method is used to initialize the object variables for later use. This is confirmed
by the output of the program which indicates when the particular object is initialized.

Notice that when we change the value of Person.population, all the objects use the
new value which confirms that the class variables are indeed shared by all the
instances of that class. We can also observe that the values of the self.name variable is
specific to each object which indicates the nature of object variables. Remember, that
you must refer to the variables and methods of the same object using the self variable
only. This is called an attribute reference.

In this program, we can also see the use of docstrings for classes as well as
methods. We can access the class docstring at runtime such as Person.__doc__ and the
method docstring as Person.sayHi.__doc__.

Just like the __init__ method, we can also have a __del__ method where we can
decrement the Person.population by 1. This method is run when the object is no longer in
use. If you want to try this out, add the __del__ method and then use the statement del
personInstance to delete the object. You can use a print statement within this method to
see when it is run.

Note to C++/Java/C# Programmers
All class members (including the data members) are public and all the
methods are virtual in Python.

92

 A Byte of Python – www.python.g2swaroop.net

One exception: If you use data members with names using the double
underscore prefix such as __privatevar, Python uses name-mangling to
effectively make it a private variable.

Note to C++ Programmers
The __del__ method is analogous to the concept of a destructor.

Inheritance
One of the major benefits of object oriented programming is reuse of code and

one of the ways this is achieved is through the inheritance mechanism. Inheritance can
be best imagined as implementing a type and subtype relationship between classes.

Suppose you want to write a program which has to keep track of the teachers
and students in your college. They have some common characteristics such as name,
age and address. They also have some specific characteristics. For example, teachers
have salary, courses and leaves and students have marks and fees.

Although you could have created two independent classes for each type, a better
way would be to create a common class called SchoolMember and then have the teacher
and student classes inherit from this class i.e. be sub-types of this type (class) and
adding the specific characteristics or functionality to the sub-type.

There are many advantages to this approach. One is that you can refer to a
teacher or student object as a SchoolMember object, which could be helpful in some
situations such as counting the number of school members. This is called
polymorphism where a sub-type can be substituted in any situation where a parent type
is expected i.e. the object can be treated as an instance of a parent class.

Another advantage is that changes to the SchoolMember class are reflected in the
teacher and student classes as well. For example, you can add a new identification
number for each school member i.e. both teachers and students using this mechanism.
More importantly, we reuse the code of the parent class and we do not need to repeat it
elsewhere such as in the sub-types.

The SchoolMember class in this situation is known as the base class or the
superclass. The Teacher and Student classes are called the derived classes or
subclasses.

Inheritance
Example 11.4. Inheritance

#!/usr/bin/python

93

 A Byte of Python – www.python.g2swaroop.net

Filename: inheritance.py

class SchoolMember:
 '''Represents any school member.'''
 def __init__(self, name, age):
 self.name = name
 self.age = age
 print '(Initialized SchoolMember: %s)' % self.name

 def tell(self):
 print 'Name:"%s" Age:"%s" ' % (self.name, self.age),

class Teacher(SchoolMember):
 '''Represents a teacher.'''
 def __init__(self, name, age, salary):
 SchoolMember.__init__(self, name, age)
 self.salary = salary
 print '(Initialized Teacher: %s)' % self.name

 def tell(self):
 SchoolMember.tell(self)
 print 'Salary:"%d"' % self.salary

class Student(SchoolMember):
 '''Represents a student.'''
 def __init__(self, name, age, marks):
 SchoolMember.__init__(self, name, age)
 self.marks = marks
 print '(Initialized Student: %s)' % self.name

 def tell(self):
 SchoolMember.tell(self)
 print 'Marks:"%d"' % self.marks

t = Teacher('Mrs. Abraham', 40, 30000)
s = Student('Swaroop', 21, 75)

print # prints a blank line

members = [t, s]
for member in members:
 member.tell()
 # Works for instances of Student as well as Teacher

Output

94

 A Byte of Python – www.python.g2swaroop.net

$ python inheritance.py
(Initialized SchoolMember: Mrs. Abraham)
(Initialized Teacher: Mrs. Abraham)
(Initialized SchoolMember: Swaroop)
(Initialized Student: Swaroop)

Name:"Mrs. Abraham" Age:"40" Salary:"30000"
Name:"Swaroop" Age:"21" Marks:"75"

How It Works

To use inheritance, we specify the base class names in a parenthesized list
following the class name in the class definition. Next, we can observe that the __init__
method of the base class is explicitly called using the self variable so as to initialize the
base class part of the object. We can also observe that we can treat instances of
Teacher or Student as just instances of SchoolMember when we use the tell method of the
SchoolMember class.

A note on terminology - if more than one class is listed in the inheritance list,
then it is called multiple inheritance.

Summary
We have now explored the various aspects of classes and objects as well as the

various terminologies associated with it. We have also seen the various benefits and
pitfalls of object-oriented programming. Python is highly object-oriented and it may be
beneficial to understand these concepts thoroughly.

Next, we will see how to deal with input/output and how to access files using
Python.

95

 A Byte of Python – www.python.g2swaroop.net

Chapter 12. Input/Output
Table of Contents
Files

Using file
Pickle

Pickling and Unpickling
Summary

There will be lots of instances where your program needs to interact with the
user (which could be yourself) and we have already seen how to do this with the help of
the raw_input function and the print statement. You can also the various string methods
i.e. methods of the str class. For example, you can use the rjust method of the str class
to get a string which is right justified to a specified width. See help(str) for more details.

Another common type of input/output you need to do is with respect to files. The
ability to create, read and write files is essential to many programs and we will explore
this aspect in this chapter.

Files

You can open and use files for reading or writing by first creating an object of the
file class. Then we use the read, readline, or write methods of the file object to read from or
write to the file depending on which mode you opened the file in. Then finally, when you
are finished the file, you call the close method of the file object.

Using file
Example 12.1. Using files

#!/usr/bin/python
Filename: fileob.py

poem = '''\
Programming is fun
When the work is done
if (you wanna make your work also fun):
 use Python!
'''

f = file('poem.txt', 'w')
f.write(poem)
f.close()

f = file('poem.txt') # the file is opened in 'r'ead mode by default
while True:
 line = f.readline()

96

 A Byte of Python – www.python.g2swaroop.net

 if len(line) == 0: # Length 0 indicates EOF
 break
 print line, # So that extra newline is not added
f.close()

Output

$ python fileob.py
Programming is fun
When the work is done
if (you wanna make your work also fun):
 use Python!

How It Works
First, we create an instance of the file class and specify the name of the file we

want to access and the mode in which we want to open the file. The mode can be a
read mode('r'), write mode ('w') or the append mode ('a'). There are actually many more
modes available and help(file) should give you more details.

In this case, we open the file in write mode. Then, we use the write method of the
file object to write to the file. Finally, we call the close method to finish.

Then, we open the same file again for reading. Notice that if we don't specify the
mode, then the read mode is the default one. We read each line of the file using the
readline method in a loop. This method returns a complete line, including the newline
character. So, even an empty line will have a single character which is the newline. The
end of the file is indicated by a completely empty string which is checked for using len
(line) == 0.

Notice that we use a comma with the print statement to suppress the automatic
newline of the print statement because the line that is read from the file already ends
with a newline character. Then, we close the file. See the poem.txt file to confirm that the
program has indeed worked properly.

Pickle
Python provides a standard module called pickle which you can use to store any

Python object to a file and then get it back later. This is called storing the object
persistently.

There is another module called cPickle which acts just the pickle module except
that is written in the C language and is (upto 1000 times) faster. You can use either of

97

 A Byte of Python – www.python.g2swaroop.net

these modules, although we will be using the cPickle module here. Remember though,
that here we refer to both these modules as the pickle module.

Pickling and Unpickling
Example 12.2. Pickling and Unpickling

#!/usr/bin/python
Filename: pickling.py

import cPickle

shoplistfile = 'shoplist.data' # The name of the file we will use

shoplist = ['apple', 'mango', 'carrot']

Write to the storage
f = file(shoplistfile, 'w')
cPickle.dump(shoplist, f) # dump the data to the file
f.close()

del shoplist # Remove shoplist

Read back from storage
f = file(shoplistfile)
storedlist = cPickle.load(f)
print storedlist

Output

$ python pickling.py
['apple', 'mango', 'carrot']

How It Works
We create a file object in write mode and then store the object into the opened

file by calling the dump function of the pickle module which stores the object into the file.
This process is called pickling.

Next, we retrieve the object using the load function of the pickle module which
returns the object. This process is called unpickling.

Summary

98

 A Byte of Python – www.python.g2swaroop.net

We have discussed various types of input/output including files and using the
pickle module. This will help you to manipulate files with ease.

Next, we will explore exceptions.

99

 A Byte of Python – www.python.g2swaroop.net

Chapter 13. Exceptions
Table of Contents
Errors
Try..Except

Handling Exceptions
Raising Exceptions

How To Raise Exceptions
Try..Finally

Using Finally
Summary

Exceptions occur when certain exceptional situations occur in your program. For
example, what if you are reading a file and you accidentally deleted it in another
window or some other error occurred? Such situations are handled using exceptions.

What if your program had some invalid statements? This is handled by Python
which raises its hands and tells you there is an error.

Errors
Consider a simple print statement. What if we misspelt print as Print? Note the

capitalization. In this case, Python raises a syntax error.

>>> Print 'Hello, World'
 File "<stdin>", line 1
 Print 'Hello, World'
 ^
SyntaxError: invalid syntax
>>> print 'Hello, World'
Hello, World
>>>

Observe that a SyntaxError is raised and also the location where the error was
detected, is printed. This is what a handler for the error does.

Try..Except
To show the usage of exceptions, we will try to read input from the user and see

what happens.

>>> s = raw_input('Enter something --> ')
Enter something --> Traceback (most recent call last):
 File "<stdin>", line 1, in ?
EOFError

100

 A Byte of Python – www.python.g2swaroop.net

>>>

Here, we ask the user (which is you in this case) for input and if you press Ctrl-d i.e.
the EOF (end of file) character, then Python raises an error called EOFError. Next, we
will see how to handle such errors.

Handling Exceptions
We can handle exceptions using the try..except statement. We basically put our

usual statements within the try-block and we put all the error handlers in the except-
block.

Example 13.1. Handling Exceptions

#!/usr/bin/python
Filename: try_except.py

import sys

try:
 s = raw_input('Enter something --> ')
except EOFError:
 print '\nWhy did you do an EOF on me?'
 sys.exit() # Exit the program
except:
 print '\nSome error/exception occurred.'
 # Here, we are not exiting the program

print 'Done'

Output

$ python try_except.py
Enter something -->
Why did you do an EOF on me?
$ python try_except.py
Enter something --> Python is exceptional!
Done

How It Works
We put all the statements that might raise an error in the try block and then

handle all errors and exceptions in the except clause/block. The except clause can handle
a single specified error or exception or a parenthesized list of errors/exceptions. If no
names of errors or exceptions are supplied, it will handle all errors and exceptions.

101

 A Byte of Python – www.python.g2swaroop.net

There has to be at least one except clause associated with every try clause.

If any error or exception is not handled, then the default Python handler is called
which stops the execution of the program and prints a message. We have already seen
how this works.

You can also have an else clause with the try..catch block. The else clause is
executed if no exception occurs.

We can also get the exception object so that we can retrieve additional
information about the exception which has occurred. This is demonstrated in the next
example.

Raising Exceptions
You can raise exceptions using the raise statement - you specify the name of the

error/exception and the exception object. The error or exception that you can raise
should be a class which directly or indirectly is a derived class of the Error or Exception
class respectively.

How To Raise Exceptions
Example 13.2. Raising Exceptions

#!/usr/bin/python
Filename: raising.py

class ShortInputException(Exception):
 '''A user-defined exception class.'''
 def __init__(self, length, atleast):
 self.length = length
 self.atleast = atleast

try:
 s = raw_input('Enter something --> ')
 if len(s) < 3:
 raise ShortInputException(len(s), 3)
 # Other work can go as usual here.
except EOFError:
 print '\nWhy did you do an EOF on me?'
except ShortInputException, x:
 print '\nThe input was of length %d, it should be at least %d'\
 % (x.length, x.atleast)
else:
 print 'No exception was raised.'

Output

102

 A Byte of Python – www.python.g2swaroop.net

$ python raising.py
Enter something -->
Why did you do an EOF on me?
$ python raising.py
Enter something --> ab

The input was of length 2, it should be atleast 3
$ python raising.py
Enter something --> abc
No exception was raised.

How It Works
Here, we have created our own exception type, although we could've used any

predefined exception/error for demonstration purposes. This new exception type is the
class ShortInputException. It declares two fields - length and atleast which is the length of the
input and the minimum length that the input should have been.

In the except clause, we mention the class of error as well as the variable to hold
the corresponding error/exception object. This is analogous to parameters and
arguments in a function call. Inside this particular except clause, we use the length and
atleast fields to print an appropriate message to the user.

Try..Finally
What if you wanted some statements to execute after the try block whether or not

an exception was raised? This is done using the finally block. Note that if you are using a
finally block, you cannot have any except clauses for the same try block.

Using Finally
Example 13.3. Using Finally

#!/usr/bin/python
Filename: finally.py

try:
 f = file('poem.txt')
 while True: # Our usual file-reading block
 l = f.readline()
 if len(l) == 0:
 break
 print l,
finally:
 print 'Cleaning up...'
 f.close()

103

 A Byte of Python – www.python.g2swaroop.net

Output

$ python finally.py
Programming is fun
When the work is done
if (you wanna make your work also fun):
 use Python!
Cleaning up...

How It Works
Here, we do the usual file-reading stuff that we have done before, but we ensure

that the file is closed even if an IOError or any other error/exception is raised when the
file is being opened or read.

Summary
We have discussed the usage of the try..except and the try..finally statements. We

have seen how to create our own exception types and how to raise exceptions as well.
Next, we will explore the Python Standard Library.

104

 A Byte of Python – www.python.g2swaroop.net

Chapter 14. The Python Standard Library
Table of Contents
Introduction
The sys module

Command Line Arguments
More sys

The os module
Summary

Introduction
The Python Standard Library is available with every Python installation. It

contains a huge number of very useful modules. It is important that you become familiar
with the Python Standard Library since most of your problems can be solved more
easily and quickly if you are familiar with this library of modules.

We will now explore the Python standard library and some of the most commonly
used modules in this library. The complete documentation for the Python Standard
Library is available with the standard documentation that comes with your Python
installation. The "Library Reference" section in the Python Documentation will give you
the complete details of the modules available.

The sys module
The sys module contains system-specific functionality. We have already seen

that the sys.argv list contains the command line arguments. Let us see an example.

Command Line Arguments
Example 14.1. Using sys.argv

#!/usr/bin/python
Filename : cat.py
import sys

Functions
def readfile(filename):
 '''Print a file to the standard output.'''
 f = file(filename)
 while True:
 line = f.readline()
 if len(line) == 0:
 break
 print line, # The comma is to suppress additional newline.
 f.close()

Main

105

 A Byte of Python – www.python.g2swaroop.net

if len(sys.argv) < 2:
 print 'No action specified.'
 sys.exit()

if sys.argv[1].startswith('--'):
 option = sys.argv[1][2:]
 # Fetch sys.argv[1] and copy the string except for first two characters
 if option == 'version':
 print 'Version 1.00'
 elif option == 'help':
 print '''\
This program prints files to the standard output.
Any number of files can be specified.
Options include:
 --version : Prints the version number and exits
 --help : Prints this help and exits'''
 else:
 print 'Unknown option.'
 sys.exit()
else:
 for filename in sys.argv[1:]:
 readfile(filename)

Output

$ python cmdline.py --nonsense
Unknown option.

$ python cmdline.py --help
This program prints files to the standard output.
Any number of files can be specified.
Options include:
 --version : Prints the version number and exits
 --help : Prints this help and exits

$ python cmdline.py --version
Version 1.00

$ python cmdline.py poem.txt poemmore.txt
Programming is fun
When the work is done
if (you wanna make your work also fun):
 use Python!
Programming is fun
When the work is done
if (you wanna make your work more fun):
 use more Python!

106

 A Byte of Python – www.python.g2swaroop.net

How It Works
This command works basically like the cat command familiar to Linux/BSD/Unix

users. You just specify the names of some text files and this command will print them to
the output for you.

When Python is not run in interactive mode (i.e. you are not using the interpreter
prompt), there is always at least one item in the sys.argv list which is the name of the
current Python program being run. This is accessed by sys.argv[0] since Python starts
counting from 0. Similarly, if there is one command line argument to our program, then
sys.argv will contain two items and sys.argv[1] refers to the second item.

To make the program more user-friendly, we have supplied certain options that
the user can use to learn more about the program. We use the first argument to check if
any options have been specified to our program. If the --version option is used, the
version number of the command is printed. Similarly, when the --help option is used,
some explanation about the program is printed. We make use of the sys.exit() function to
exit the running program. You can optionally return a status code using this function. As
always, see help(sys.exit) for details.

When only filenames are specified, the program then prints out the files, one by
one, to the standard output. As an aside, the name cat is short for concatenate which is
basically what this program does i.e. it can print out a file or attach (concatenate) two or
more files together in the output.

More sys
The sys.version string gives you information about the version of Python that you

have installed. The sys.version_info tuple gives an easier way of enabling Python-version
specific components of your program.

$ python
>>> import sys
>>> sys.version
'2.2.3 (#1, Oct 15 2003, 23:33:35) \n[GCC 3.3.1 20030930 (Red Hat Linux 3.3.1-6)]'
>>> sys.version_info
(2, 2, 3, 'final', 0)
>>>

For experienced programmers, other items of interest in the sys module include
sys.stdin, sys.stdout and sys.stderr which represent the standard input, standard output and
standard error streams of your program respectively.

For all this and more, please see the Python Standard Documentation. Yes, see it
right now.

107

 A Byte of Python – www.python.g2swaroop.net

The os module
This module represents operating system specific functionality. This module is

especially important if you want to make your programs platform-independent i.e. it
should run on Linux as well as Windows without any problems and without requiring
changes. An example is using the os.sep string instead of '\\' path separator in Windows,
the '/' path separator in Linux or ':' path separator in Mac.

Some of the more useful parts of the os module are listed below. Most of them are
self-explanatory.

 The os.name string specifies which platform you are using. If you are using
Windows, it will say 'nt'. If you are using Linux or BSD, it will say 'posix'. If you are
using the Jython interpreter instead of the CPython interpreter, it will say 'java'.

 The os.getcwd() function returns the current working directory i.e. the name of the
directory from which the current Python script is running.

 The os.getenv() and os.putenv() functions are used to get and set environment
variables.

 The os.listdir() function returns the name of all files and directories in the specified
directory.

 The os.remove() function is used to delete a file.

 The os.system() function is used to run a shell command.

 The os.linesep string gives the line terminator used in the current platform. For
example, Windows uses '\r\n', Linux uses '\n' and Mac uses '\r'.

 The os.path.split() function returns the directory name and file name of the path.

>>> os.path.split('/home/swaroop/poem.txt')
('/home/swaroop', 'poem.txt')

The os.path.isfile() and the os.path.isdir() functions check if the given path refers to a
file or directory respectively. Similarly, the os.path.exists() function is used to check
if a given path actually exists.

108

 A Byte of Python – www.python.g2swaroop.net

You can explore the Python Standard Documentation for more details on these
functions and variables. You can use the help() as well.

Summary

We have seen some of the functionality of the sys and os modules in the Python
Standard Library. You should explore the Python Standard Documentation to find out
more about these and other modules as well.

Next, we will cover various other aspects of Python that will make our tour of
Python more complete.

109

 A Byte of Python – www.python.g2swaroop.net

Chapter 15. More Python
Table of Contents
Special Methods
Single Statement Blocks
List Comprehensions

Using List Comprehensions
Receiving Tuples and Lists in Functions
Lambda Forms

Using Lambda Forms
The exec statement
The eval statement
The assert statement
The repr function
Summary

Till now, have covered the majority of the aspects of Python that you will use. In
this chapter, we will cover some more aspects that will make our knowledge of Python
complete.

Special Methods
There are certain special methods for classes that have some special semantics.

Examples are the __init__ and __del__ methods which we have already used.
Generally, special methods are used to mimic certain behavior. For example, if you
want to use the x[key] indexing operation for your class just like you use for lists and
tuples, then you just implement the __getitem__() method and your job is done. If you
think about it, this is what Python does for the list class itself!

Some useful special methods are listed in the following table. If you want to
know about all the special methods, then a huge list is available in the Python
Reference Manual.

Table 15.1. Some Special Methods
Name Explanation

__init__(self, [..]) This method is called just before the newly created object is
returned for usage.

__del__(self) Called just before the object is destroyed.

__str__(self) Called when we use the print statement with the object or when str()
is used.

110

 A Byte of Python – www.python.g2swaroop.net

Name Explanation

__lt__(self, other) Called when the less than operator (<) is used. Similarly, there are
special methods for all the operators (+, >, etc.).

__getitem__(self,
key) Called when the x[key] indexing operation is used.

__len__(self) Called when the built-in function len() is used for the
sequence/object.

Single Statement Blocks
By now, you should have firmly understood that each block of statements is set

apart from the rest by it's own indentation level. Well, this is true for the most part but it
is not entirely true. If your block of statements contains only one single statement, then
you can specify it on the same line of, say, a conditional statement or looping
statement.

The following example should make this clear.

>>> flag = True
>>> if flag: print 'Yes'
...
Yes
>>>

As we can see, the single statement is used in-place and not as a separate block.

Although you can use this for making your program smaller, I strongly recommend
that you do not use this short-cut method. One reason is that it will be much easier to
add an extra statement if you are using proper indentation.

Note
Also notice that the Python interpreter when used in the interactive
mode, helps you when you enter the statements. In the above case,
after you entered the keyword if, it changes the prompt to ... to indicate
that the statement is not yet complete. When we do complete the
statement in this manner, we press enter to confirm that the statement is
complete. Then Python runs the statement and returns to the old prompt
that we have become familiar with.

List Comprehensions

111

 A Byte of Python – www.python.g2swaroop.net

List comprehensions are used to derive a new list from an existing list. For
example, you have a list of numbers and you want to get a corresponding list with all
the numbers multiplied by 2 but only when the number itself is more than 2, then list
comprehensions are ideal for such situations.

Using List Comprehensions
Example 15.1. Using List Comprehensions

#!/usr/bin/python
Filename: list_comprehensions.py

listone = [2, 3, 4]
listtwo = [2*i for i in listone if i > 2]
print listtwo

Output

$ python list_comprehensions.py
[6, 8]

How It Works
Here, we derive a new list by specifying the manipulation to be done (2*i) when

some condition is satisfied (if i > 2). Note that the original list remains unmodified. Many
a time, we use loops to process each element of a list - the same can be achieved
using list comprehensions in a more precise, compact and explicit manner.

Receiving Tuples and Lists in Functions
There is a special way of receiving parameters to a function as a tuple or a

dictionary using the * or ** prefix to the parameter name respectively. This is useful for
receiving a variable number of arguments in a function.

>>> def sum(number, *args):
... '''Return the sum the number of args.'''
... total = 0
... for i in range(0, number):
... total += args[i]
... return total
...
>>> sum(3, 10, 20, 30)
60
>>> sum(2, -5, -10)
-15
>>>

112

 A Byte of Python – www.python.g2swaroop.net

Due to the * prefix on the args variable, all the extra arguments passed to the
function are stored in args as a tuple. If a ** prefix had been used instead, the extra
parameters would have been stored in a dictionary.

Lambda Forms
A lambda statement is used to create new function objects and then return them.

Using Lambda Forms
Example 15.2. Using Lambda Forms

#!/usr/bin/python
Filename: lambda_form.py

def make_repeater(n):
return lambda s: s * n

twice = make_repeater(2)
twicetheword = twice('word')
print twicetheword

Output

$ python lambda_form.py
wordword

How It Works
Here, we use a function make_repeater to create new function objects at runtime

and then return it. A lambda statement is used to create the function object which is
invoked just like any other function. Essentially, the lambda statement is a function
generator. Note that the lambda form's content must be a single expression only - it
cannot even be a statement like the print statement.

The exec statement
The exec statement is used to execute Python statements which are stored in a

string or file. For example, we can generate a string containing Python code at runtime
and then execute these statements using the exec statement. A simple example is
shown below.

>>> exec 'print "Hello World"'
Hello World

113

 A Byte of Python – www.python.g2swaroop.net

The eval statement
The eval statement is used to evaluate valid Python expressions which are stored in

a string. A simple example is shown below.
>>> eval('2*3')
6

The assert statement
The assert statement is used to assert that something is true. For example, if you are

very sure that you will have at least one element in a list you are using and you want to
check this and make sure an error is raised if it is not true, then, the assert statement is
ideal in this situation. When the assert statement fails, an AssertionError is raised.

>>> mylist = ['a']
>>> assert len(mylist) >= 1
>>> mylist.remove('a')
>>> mylist
[]
>>> assert len(mylist) >= 1
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError
>>>

The repr function
The repr function is used to obtain a canonical string representation of the object.

Backticks (also called conversion or reverse quotes) does the same thing. Note that
you will have eval(repr(object)) == object most of the time.

>>> i = 5
>>> `i`
'5'
>>> repr(i)
'5'
>>>

114

 A Byte of Python – www.python.g2swaroop.net

Basically, the repr function or the backticks are used to obtain a printable
representation of the object. You can control what your objects return for the repr
function by defining the __repr__ method in your class.

Summary
We have covered some more features of Python in this chapter and yet you can

be sure we haven't covered all the features of Python. However, at this stage, we have
covered most of what you are ever going to use in practice. This is sufficient for you to
get started with whatever programs you are going to create.

Next, we will discuss how to explore Python further.

115

 A Byte of Python – www.python.g2swaroop.net

Chapter 16. What Next?
Table of Contents
Graphical Software

Summary of GUI Tools
Explore More
Summary

If you have read this book thoroughly till now and practised writing a lot of
programs, then you must have become very comfortable and familiar with Python. You
have probably created some Python programs to try out some stuff and to exercise
your Python skills as well. You have already seen how to create a backup script as well.
The question now is "What Next?"

I would suggest that you tackle this problem : create your own command-line
address-book program using which you can add, modify, delete or search for your
contacts such as friends, family and colleagues and their information such as email
address and/or phone number. Details must be stored for later retrieval.

This is fairly easy if you think about it in terms of all the various stuff that we have
come across till now. If you still want directions on how to proceed, read the following
hint. (Hint: Create a class to represent the person's information. Use a dictionary to
store person objects with their name as the key. Use the cPickle module to store the
objects persistently on your hard disk. Use the dictionary built-in methods to add, delete
and modify the persons.)

Once you are able to do this, you can claim to be an accomplished programmer.
Now, immediately send me a mail thanking me for this great book ;-). This step is
optional but highly recommended!

Here are some ways to continue your journey with Python:

Graphical Software
GUI Libraries using Python - you need these to create your own graphical

programs using Python. You can create your own Winamp or IrfanView (Windows users
should be familiar with these) or your own XMMS or KOrganizer (Linux/BSD users
should be familiar with these) using these GUI (graphical user interface) libraries with
their Python bindings. Bindings are what allow you to write programs in Python using
libraries which themselves are written in C or C++ such as all the GUI libraries we
mention below.

116

 A Byte of Python – www.python.g2swaroop.net

There are lots of choices for GUI using Python:

 PyQt. This is the Python binding for the Qt toolkit which is the foundation upon
which KDE is built. Qt is extremely easy to use and very powerful because of the
excellent Qt Designer and the amazing Qt documentation. You can use it for free
on Linux but you will have to pay for it if you want to use it on Windows. PyQt is
free if you want to create free (GPL'ed) software and paid if you want to create
proprietary software. A good resource on PyQt is GUI Programming with
Python .

 PyGTK. This is the Python bindings for the GTK+ toolkit which is the foundation
upon which GNOME is built. GTK+ has many quirks in usage but you can
become really productive with it once you get used to it. The Glade graphical
interface designer is indispensable. The documentation is yet to improve. GTK+
works well on Linux but it's port to Windows is incomplete. You can create both
free software as well as proprietary software using GTK+.

 wxPython. This is the Python bindings for the wxWidgets toolkit. wxPython has a
learning curve associated with it but it is very portable and runs on Linux,
Windows, Mac as well as some embedded platforms and all this without any
changes to your code. There are many excellent IDEs for wxPython which
include GUI designers as well, such as the Boa Constructor and the spe (Stan's
Python Editor) as well as the free wxGlade GUI builder. You can create free as
well as proprietary software using wxPython.

 PythonCard. Many readers have suggested that PythonCard is a very good
alternative for basic GUI programs. It is actually a layer over wxPython.

 TkInter. TkInter is one of the oldest GUI toolkits. If you have used IDLE, you
have seen a TkInter program at work. The documentation for TkInter at
PythonWare.org is comprehensive. TkInter is portable and works on both Linux
as well as Windows.

Summary of GUI Tools
Unfortunately, there is no one standard GUI tool for Python. I suggest that you

choose one of the above tools depending on your situation. The first factor is whether
you are willing to pay to use any of the GUI tools. The second factor is whether you
want the program to run on Linux or Windows or both. The third factor is whether you
are a KDE or GNOME user on Linux.

117

 A Byte of Python – www.python.g2swaroop.net

Explore More
 The Python Standard Library is an extensive library. Most of the time, this library

will have what you are looking for. This is referred to as the "batteries included"
philosophy of Python. I highly recommend that you go through the [Python
Standard Documentation] that comes with your Python installation before you
proceed to start writing large Python programs.

 Python.org - The official site of Python with comprehensive information regarding
Python. You will also find the latest versions of Python here. There are links to
various mailing lists where active discussions about Python take place.

 comp.lang.python. This is the Usenet newsgroup where discussion about this
language takes place. You can post your doubts and queries to this newsgroup
as well. You can access this online using Google Groups.

 Python Cookbook is an extremely valuable collection of recipes or tips on how to
solve certain kinds of problems using Python. This is a must-read for every
Python user.

 Charming Python is an excellent series of Python-related articles by David Mertz.

 Dive Into Python is a very good book for experienced Python programmers. If
you have thoroughly read the current book you are reading ("A Byte of Python"),
then I would highly recommend that you read "Dive Into Python" next. It covers a
range of topics including XML Processing, Unit Testing, and Functional
Programming.

 IBM DeveloperWorks - you will find interesting articles such as Grid Computing
using Python .

 O'Reilly Network - here you will find the latest Python news.

 Python at O'Reilly - this is an exhaustive resource containing many Python-
related articles.

118

 A Byte of Python – www.python.g2swaroop.net

 Google - the ultimate search engine for the ultimate dynamic programming
language (Python)! Also take a look at the Google Jobs website which lists
Python as one of the pre-requisites for qualification for a software engineering
job at Google.

 Jython - this is an implementation of the Python interpreter in the Java language.
This translates to using the expressiveness of the Python language with the
extensive Java libraries. For example, you can create Swing GUI applications
using Python code.

 IronPython is an implementation of the Python interpreter in .Net/Mono. This
translates to using the Python language along with the powerful .Net libraries.
IronPython is from the same person behind Jython - Jim Hugunin.

 Lython is a LISP frontend to the Python language. It is similar to Common LISP
and compiles directly to Python bytecode which means that it will interoperate
with your usual Python code as well.

Summary
We have now come to the end of this book but, as they say, this is the beginning

of the end !. You are now an avid Python programmer and user and you are no doubt
ready to solve all your problems using Python. You can start automating your computer
to do all kind of previously unimaginable things or write your own games or just do
some plain boring backups. All this and more is possible using Python. So, get started!

119

 A Byte of Python – www.python.g2swaroop.net

Appendix A. Free/Libre and Open Source Software
(FLOSS)

FLOSS is based on the concept of a community which itself is based on the
concept of sharing, and particularly the sharing of knowledge. FLOSS is free for usage,
modification and redistribution.

You are already familiar with FLOSS since you have been using Python all along! If
you want to know more about such FLOSS, you can explore the following list. I have
listed some major FLOSS as well as those FLOSS which work on both Linux and
Windows so that you can try out these software without the need to switch to Linux
immediately although you eventually will ;-).

 Linux. This is a free and open-source operating system that the whole world is
embracing! It was started by Linus Torvalds as a student. Now, it is giving
competition to Windows. It is a full-featured kernel and the new 2.6 kernel is a
major breakthrough with respect to speed, stability and scalability. [Linux
Kernel]

 Knoppix. This is a distribution of Linux which runs off the CD! There is no need
to install it. You can reboot your computer, pop this CD in the drive and then start
using a full-featured Linux distribution! You can use all the various FLOSS that
come with a standard Linux distribution - you can run your Python programs,
compile C programs or even burn CDs using Knoppix (of course, you will have to
have two separate drives for this). Then, reboot your computer, remove the CD
and then you are back to Windows as if nothing happened at all. [Knoppix]

 Fedora. This is a project sponsored by Red Hat which is the standard Linux
distribution. It contains the the Linux kernel, the X Window System, the KDE and
GNOME desktop environments and the plethora of FLOSS they provide and all
this in an easy-to-use and easy-to-install manner. If you are a complete
beginner, then I would recommend that you try Mandrake Linux. The newly
released Mandrake 10 Linux is just too awesome for words. [Fedora Linux,
Mandrake Linux]

 OpenOffice.org. This is an excellent complete office suite based on the Sun
Microsystems' StarOffice software. You can use OpenOffice to open and edit MS
Word and MS Powerpoint files as well as it's own open and excellent XML-based
formats. This is the one-stop shop for all your office needs. It runs on both Linux
and Windows. The upcoming OpenOffice 2.0 has some radical improvements to
it. [OpenOffice]

120

 A Byte of Python – www.python.g2swaroop.net

 Mozilla Firefox. This is the next generation web browser which is predicted to
beat Internet Explorer (in terms of market share only ;-) in a few years. It is
blazingly fast and has gained critical acclaim for its sensible and impressive
features. It works on Linux, Windows, Mac OS and many other platforms. [
Mozilla Firefox]

 Mono. This is an open source implementation of the Microsoft .NET platform
which allows .NET applications to be created and run on Linux, Windows,
FreeBSD, Mac OS, as well as other platforms. Mono implements the ECMA
standards - Microsoft, Intel and HP have submitted the CLR (Common Language
Runtime) and the C# language to ECMA (European Computer Manufacturers'
Association) which has accepted them as open standards. This is a step in the
direction of ISO standards on the lines of ISO C/C++.

Currently, there is a complete C# compiler mcs (which itself has been written in
C#!), a feature-complete ASP.NET implementation, many ADO.NET providers
for database servers and many many more features being added and improved
everyday. [Mono, ECMA, Microsoft .NET]

 Apache. This is a popular open source web server. In fact, it is the most popular
web server on the planet. It runs nearly 60% of the websites out there! Yes,
that's right Apache handles more websites than all the competition (including
Microsoft IIS) combined. It runs on Linux as well as Windows. [Apache]

 MySQL. This is an extremely popular free and open source database server. It
runs on both Linux and Windows. [MySQL]

 MPlayer. This is the video player for Linux. It can play anything from DivX to
MP3 to Ogg to VCDs and DVDs. Who says open source ain't fun? [MPlayer]

 Movix. This is a Linux distribution which (like Knoppix) runs off the CD but uses
MPlayer to play movies from your CD. You can even create eMovix CDs which
are bootable CDs - just pop in the CD into the drive, reboot the system and the
movie starts playing by itself! You don't even need a hard disk to play eMovix
CDs. [Movix]

This list just gives a brief idea - there are many more free and open software and
technologies out there such as the Perl language, PHP language, PostNuke content
management system, PHProjekt groupware, PostgreSQL database server (a real

121

 A Byte of Python – www.python.g2swaroop.net

workhorse and very reliable), TORCS racing game, KDevelop IDE, the famous Anjuta
IDE (by the famous Indian Mr. Naba Kumar), XVid codec, Xine - the movie player,
Apache Software Foundation projects such as the Xerces parser and the Cocoon, ...
this list just could go on forever.

For an incredibly huge list of FLOSS, see the following websites.

 SourceForge

 FreshMeat

 KDE

 GNOME

To get the latest buzz in the free and open source world, see the following websites.

 OSNews

 LinuxToday

 NewsForge

 g2swaroop.net

If you want to get the latest Linux distributions and open source software on CDs,
then see the following websites.

 LinCDs

 LinuxCentral

So, go ahead and explore the vast, free and open world of FLOSS!

122

 A Byte of Python – www.python.g2swaroop.net

Appendix B. About
Table of Contents
Colophon
About the Author
About LinCDs.com
Feedback

Colophon
All the software that I have used in the creation of this book have been free and

open source software. In the first draft, I had used Red Hat 9.0 Linux as my setup and
for this fifth draft, I have used Fedora Core 1 Linux as the foundation of my Linux box
setup.

Initially, I used KWord to create this book (as explained in the History Lesson in
the preface). Later, I switched to DocBook XML using Kate but I found it too tedious.
So, I switched to OpenOffice which was just excellent with the level of control on the
formatting as well as the PDF generation, but it produced very sloppy HTML from the
document. Finally, I discovered XEmacs and I rewrote this book from scratch in
DocBook XML (again). This book would not have been possible if it wasn't for XEmacs
(and XMMS, of course).

The standard XSL stylesheets that come with the Fedora Core 1 Linux
distribution were used. The standard default fonts were used as well. However, I have
written a CSS document to give color and style to the pages. I have also written a crude
lexical analyzer (in Python of course!) which automatically provides syntax highlighting
to all the programs listed in this book (this applies to the HTML form of the book only).

About the Author
Swaroop C H is a final year graduate student of Computer Science at PESIT,

Bangalore, India. His interests on the technological side include FLOSS such as Linux,
Mono, Qt and MySQL, great languages like Python, C and C#, writing stuff like this
book and any software he can create in his spare time, as well as writing his blog and
maintaining his website. His ultimate goal is to create a software that will output any
software that he wants or thinks. He also thinks that self-written introductions to authors
are cool.

Do not forget to visit my website www.g2swaroop.net - there are lots of cool stuff
here such as the latest versions of this book, many software I have written, my techstuff
pages as well as my blog and my photos.

About LinCDs.com

123

 A Byte of Python – www.python.g2swaroop.net

LinCDs.com is a service started by my friend Yashwanth and myself. We are both final
year students of B.E. Computer Science at PESIT, Bangalore, India.

The idea behind LinCDs.com was to make Linux accessible to everybody. We
were finding it difficult to get the latest versions of distributions such as Red Hat and
Mandrake and we found so many people in the same situation. We used to eventually
get those CDs but after a lot of searching. So we decided to do something about it. We
collected some distributions and started to provide them to others at a reasonable cost.
We also started acquiring new releases quickly as well.

Now, we have more than 35 different distributions and application CDs from
Fedora, Mandrake, Debian, Connectiva, ELX and other Linux distributions to FreeBSD,
NetBSD and OpenBSD to GNUWin, Freeduc and other application CDs.
LinCDs.com caters to both Indian and international customers. Please see our website
for more details.

Feedback
Any suggestions, praise, comments or criticisms are most welcome. You can

contact me at python@2swaroop.net .

124

