
Python 2.4 Quick Reference

Front matter
Invocation Options
Environment variables
Lexical entities : keywords, identifiers, string literals, boolean constants, numbers, sequences, dictionaries, operators
Basic types and their operations: None, bool, Numeric types, sequence types, list, dictionary, string, file, sets
Advanced types
Statements: assignment, control flow, exceptions, name space, function def, class def
Iterators; Generators; Descriptors; Decorators
Built-in Functions
Built-in Exceptions
Standard methods & operators redefinition in user-created Classes
Special informative state attributes for some types
Important modules : sys, os, posix, posixpath, shutil, time, string, re, math, getopt
List of modules in the base distribution
Workspace exploration and idiom hints
Python mode for Emacs

Version 2.4
The latest version is to be found here.
Please report errors, inaccuracies and suggestions to Richard Gruet (pqr at rgruet.net).

Last modified on Feb 20, 2005
17 Feb 2005,

upgraded by Richard Gruet for Python 2.4
03 Oct 2003,

upgraded by Richard Gruet for Python 2.3
11 May 2003, rev 4

upgraded by Richard Gruet for Python 2.2 (restyled by Andrei)
7 Aug 2001

upgraded by Simon Brunning for Python 2.1
16 May 2001

upgraded by Richard Gruet and Simon Brunning for Python 2.0
18 Jun 2000

upgraded by Richard Gruet for Python 1.5.2
30 Oct 1995

created by Chris Hoffmann for Python 1.3

Color coding:
Features added in 2.4 since 2.3.
Features added in 2.3 since 2.2.
Features added in 2.2 since 2.1.

Originally based on:
Python Bestiary, author: Ken Manheimer
Python manuals, authors: Guido van Rossum and Fred Drake
python-mode.el, author: Tim Peters
and the readers of comp.lang.python

Useful links :

Python's nest: http://www.python.org
Official documentation: http://www.python.org/doc/
Other doc & books: Dive into Python, Python Cookbook, Faqts, Thinking in Python, Text processing in Python
Packages: Python Package Index (PyPI), Vaults of Parnassus, SourceForge (search "python"), O'Reilly Python DevCenter,
Starship Python
Wiki: moinmoin
Newsgroups: comp.lang.python and comp.lang.python.announce
Misc pages: Daily Python URL, Kevin Altis' WebLog
Development: http://python.sourceforge.net/
Jython (Java impl. of Python): http://www.jython.org/
ActivePython: http://www.ActiveState.com/ASPN/Python/
Help desk: help@python.org
An excellent Python reference book: Python Essential Reference by David Beazley & Guido Van Rossum (Other New
Riders)
Alternate (somewhat longer) online Python 2.2 Quick Reference by the New Mexico Tech Computer Center.

Tip: From within the Python interpreter, type help, help(object) or help("name") to get help.

Contents

Front matter

Page 1 of 30Python 2.4 Quick Reference

2/20/2005

python[w] [-dEhimOQStuUvVWxX?] [-c command | scriptFile | -] [args]
 (pythonw does not open a terminal/console; python does)

Available IDEs in std distrib: IDLE (tkinter based, portable), Pythonwin (on Windows). Other free IDEs: IPython
(enhanced interactive Python shell), SPE, BOA constructor.
Typical python module header :

#!/usr/bin/env python
-*- coding: latin1 -*-

Since 2.3 the encoding of a Python source file must be declared as one of the two first lines (or defaults to 7 bits
Ascii) [PEP-0263], with the format:

-*- coding: encoding -*-

Std encodings are defined here, e.g. ISO-8859-1 (aka latin1), iso-8859-15 (latin9), UTF-8... Not all encodings
supported, in particular UTF-16 is not supported.

 and del for is raise

Invocation Options

Invocation Options

Option Effect
-d Output parser debugging information (also PYTHONDEBUG=x)
-E Ignore environment variables (such as PYTHONPATH)
-h Print a help message and exit (formerly -?)
-i Inspect interactively after running script (also PYTHONINSPECT=x) and force prompts, even if stdin appears not to be

a terminal.
-m module Search for module on sys.path and runs the module as a script.
-O Optimize generated bytecode (also PYTHONOPTIMIZE=x). Asserts are suppressed.
-OO Remove doc-strings in addition to the -O optimizations.
-Q arg Division options: -Qold (default), -Qwarn, -Qwarnall, -Qnew
-S Don't perform import site on initialization.
-t Issue warnings about inconsistent tab usage (-tt: issue errors).
-u Unbuffered binary stdout and stderr (also PYTHONUNBUFFERED=x).
-U Force Python to interpret all string literals as Unicode literals.
-v Verbose (trace import statements) (also PYTHONVERBOSE=x).
-V Print the Python version number and exit.
-W arg Warning control (arg is action:message:category:module:lineno)
-x Skip first line of source, allowing use of non-unix Forms of #!cmd
-X Disable class based built-in exceptions (for backward compatibility management of exceptions)
-c
command

Specify the command to execute (see next section). This terminates the option list (following options are passed as
arguments to the command).

scriptFile The name of a python file (.py) to execute. Read from stdin.
- Program read from stdin (default; interactive mode if a tty).
args Passed to script or command (in sys.argv[1:])
 If no scriptFile or command, Python enters interactive mode.

Environment variables
Environment variables

Variable Effect
PYTHONHOME Alternate prefix directory (or prefix;exec_prefix). The default module search path uses prefix/lib
PYTHONPATH Augments the default search path for module files. The format is the same as the shell's $PATH: one or

more directory pathnames separated by ':' or ';' without spaces around (semi-) colons !
On Windows first search for Registry key
HKEY_LOCAL_MACHINE\Software\Python\PythonCore\x.y\PythonPath (default value). You may also define
a key named after your application with a default string value giving the root directory path of your app.
Alternatively, you can create a text file in the Python home directory with a .pth extension, containing the
path (one per line).

PYTHONSTARTUP If this is the name of a readable file, the Python commands in that file are executed before the first prompt
is displayed in interactive mode (no default).

PYTHONDEBUG If non-empty, same as -d option
PYTHONINSPECT If non-empty, same as -i option
PYTHONOPTIMIZE If non-empty, same as -O option
PYTHONUNBUFFERED If non-empty, same as -u option
PYTHONVERBOSE If non-empty, same as -v option
PYTHONCASEOK If non-empty, ignore case in file/module names (imports)

Notable lexical entities

Keywords

Page 2 of 30Python 2.4 Quick Reference

2/20/2005

 assert elif from lambda return
 break else global not try
 class except if or while
 continue exec import pass yield
 def finally in print

(List of keywords available in std module: keyword)
Illegitimate Tokens (only valid in strings): $? (plus @ before 2.4)
A statement must all be on a single line. To break a statement over multiple lines, use "\", as with the C
preprocessor.
Exception: can always break when inside any (), [], or {} pair, or in triple-quoted strings.
More than one statement can appear on a line if they are separated with semicolons (";").
Comments start with "#" and continue to end of line.

(letter | "_") (letter | digit | "_")*

Python identifiers keywords, attributes, etc. are case-sensitive.
Special forms: _ident (not imported by 'from module import *'); __ident__ (system defined name); __ident (class-
private name mangling).

Use \ at end of line to continue a string on next line.
Adjacent strings are concatened, e.g. 'Monty ' 'Python' is the same as 'Monty Python'.
u'hello' + ' world' --> u'hello world' (coerced to unicode)

NUL byte (\000) is not an end-of-string marker; NULs may be embedded in strings.
Strings (and tuples) are immutable: they cannot be modified.

True
False

In 2.2, True and False are integers 1 and 0. Since 2.3, they are of new type bool.

Decimal integer: 1234, 1234567890546378940L (or l)
Octal integer: 0177, 0177777777777777777L (begin with a 0)
Hex integer: 0xFF, 0XFFFFffffFFFFFFFFFFL (begin with 0x or 0X)

Identif iers

String l i terals

Literal
"a string enclosed by double quotes"
'another string delimited by single quotes and with a " inside'
'''a string containing embedded newlines and quote (') marks, can be delimited with triple quotes.'''
""" may also use 3- double quotes as delimiters """
u'a unicode string'
U"Another unicode string"
r'a raw string where \ are kept (literalized): handy for regular expressions and windows paths!'
R"another raw string" -- raw strings cannot end with a \
ur'a unicode raw string'
UR"another raw unicode"

String Literal Escapes

Escape Meaning
\newline Ignored (escape newline)
\\ Backslash (\)
\e Escape (ESC)
\v Vertical Tab (VT)
\' Single quote (')
\f Formfeed (FF)
\ooo char with octal value ooo
\" Double quote (")
\n Linefeed (LF)
\a Bell (BEL)
\r Carriage Return (CR)
\xhh char with hex value hh
\b Backspace (BS)
\t Horizontal Tab (TAB)
\uxxxx Character with 16-bit hex value xxxx (unicode only)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (unicode only)
\N{name} Character named in the Unicode database (unicode only), e.g. u'\N{Greek Small Letter Pi}' <=>

u'\u03c0'.
(Conversely, in module unicodedata, unicodedata.name(u'\u03c0') == 'GREEK SMALL LETTER PI')

\AnyOtherChar left as-is, including the backslash, e.g. str('\z') == '\\z'

Boolean constants

Numbers

Page 3 of 30Python 2.4 Quick Reference

2/20/2005

Long integer (unlimited precision): 1234567890123456L (ends with L or l) or long(1234)
Float (double precision): 3.14e-10, .001, 10., 1E3
Complex: 1J, 2+3J, 4+5j (ends with J or j, + separates (float) real and imaginary parts)

Integers and long integers are unified starting from release 2.2 (the L suffix is no longer required)

Strings (type str) of length 0, 1, 2 (see above)
 '', '1', "12", 'hello\n'
Tuples (type tuple) of length 0, 1, 2, etc:
 () (1,) (1,2) # parentheses are optional if len > 0
Lists (type list) of length 0, 1, 2, etc:
 [] [1] [1,2]

Indexing is 0-based. Negative indices (usually) mean count backwards from end of sequence.
Sequence slicing [starting-at-index : but-less-than-index [: step]]. Start defaults to 0, end to len(sequence), step
to 1.
 a = (0,1,2,3,4,5,6,7)
 a[3] == 3
 a[-1] == 7
 a[2:4] == (2, 3)
 a[1:] == (1, 2, 3, 4, 5, 6, 7)
 a[:3] == (0, 1, 2)
 a[:] == (0,1,2,3,4,5,6,7) # makes a copy of the sequence.
 a[::2] == (0, 2, 4, 6) # Only even numbers.
 a[::-1] = (7, 6, 5, 4, 3 , 2, 1, 0) # Reverse order.

Dictionaries (type dict) of length 0, 1, 2, etc: {} {1 : 'first'} {1 : 'first', 'next': 'second'}

Alternate names are defined in module operator (e.g. __add__ and add for +)
Most operators are overridable

Notes:
Comparison behavior can be overridden for a given class by defining special method __cmp__.
(1) X < Y < Z < W has expected meaning, unlike C
(2) Compare object identities (i.e. id(object)), not object values.

Sequences

Dictionaries (Mappings)

Operators and their evaluation order

Operators and their evaluation order

Highest Operator Comment
 , [...] {...} `...` Tuple, list & dict. creation; string conv.

s[i] s[i:j] s.attr f(...) indexing & slicing; attributes, fct calls
+x, -x, ~x Unary operators
x**y Power
x*y x/y x%y mult, division, modulo
x+y x-y addition, substraction
x<<y x>>y Bit shifting
x&y Bitwise and
x^y Bitwise exclusive or
x|y Bitwise or
x<y x<=y x>y x>=y x==y x!=y x<>y
x is y x is not y
x in s x not in s

Comparison,
identity,
membership

not x boolean negation
x and y boolean and
x or y boolean or

Lowest lambda args: expr anonymous function

Basic types and their operations

Comparisons (defined between any types)

Comparisons

Comparison Meaning Notes
< strictly less than (1)
<= less than or equal to
> strictly greater than
>= greater than or equal to
== equal to
!= or <> not equal to
is object identity (2)
is not negated object identity (2)

Page 4 of 30Python 2.4 Quick Reference

2/20/2005

None is used as default return value on functions. Built-in single object with type NoneType. Might become a keyword in the
future.
Input that evaluates to None does not print when running Python interactively.
None is now a constant; trying to bind a value to the name "None" is now a syntax error.

Notes:
Truth testing behavior can be overridden for a given class by defining special method __nonzero__.
(1) Evaluate second arg only if necessary to determine outcome.

Floats (type float) are implemented with C doubles.
Integers (type int) are implemented with C longs (signed 32 bits, maximum value is sys.maxint)
Long integers (type long) have unlimited size (only limit is system resources).
Integers and long integers are unified starting from release 2.2 (the L suffix is no longer required). int() returns a long
integer instead of raising OverflowError. Overflowing operations such as 2<<32 no longer trigger FutureWarning and return
a long integer.
Since 2.4, new type Decimal introduced (see module: decimal) to compensate for some limitations of the floating point type,
in particular with fractions. Unlike floats, decimal numbers can be represented exactly; exactness is preserved in
calculations; precision is user settable via the Context type [PEP 327].

Notes:
(1) / is still a floor division (1/2 == 0) unless validated by a from __future__ import division.
classes may override methods __truediv__ and __floordiv__ to redefine these operators.

Type complex, represented as a pair of machine-level double precision floating point numbers.
The real and imaginary value of a complex number z can be retrieved through the attributes z.real and z.imag.

TypeError
raised on application of arithmetic operation to non-number

OverflowError

None

Boolean operators

Boolean values and operators

Value or Operator Evaluates to Notes
built-in bool(expr) True if expr is true, False otherwise. see True, False
None, numeric zeros, empty sequences and mappings considered False
all other values considered True
not x True if x is False, else False
x or y if x is False then y, else x (1)
x and y if x is False then x, else y (1)

Numeric types

Floats, integers, long integers, Decimals.

Operators on all numeric types

Operators on all numeric types

Operation Result
abs(x) the absolute value of x
int(x) x converted to integer
long(x) x converted to long integer
float(x) x converted to floating point
-x x negated
+x x unchanged
x + y the sum of x and y
x - y difference of x and y
x * y product of x and y
x / y true division of x by y: 1/2 -> 0.5 (1)
x // y floor division operator: 1//2 -> 0 (1)
x % y remainder of x / y
divmod(x, y) the tuple (x/y, x%y)
x ** y x to the power y (the same as pow(x,y))

Bit operators on integers and long integers

Bit operators

Operation Result
~x the bits of x inverted
x ^ y bitwise exclusive or of x and y
x & y bitwise and of x and y
x | y bitwise or of x and y
x << n x shifted left by n bits
x >> n x shifted right by n bits

Complex Numbers

Numeric exceptions

Page 5 of 30Python 2.4 Quick Reference

2/20/2005

numeric bounds exceeded
ZeroDivisionError

raised when zero second argument of div or modulo op

Notes:
(1) if i or j is negative, the index is relative to the end of the string, ie len(s)+i or len(s)+j is substituted. But note
that -0 is still 0.
(2) The slice of s from i to j is defined as the sequence of items with index k such that i<= k < j.
If i or j is greater than len(s), use len(s). If i is omitted, use len(s). If i is greater than or equal to j, the slice is
empty.
(3) For strings: before 2.3, x must be a single character string; Since 2.3, x in s is True if x is a substring of s.

Notes:
(1) Raises a ValueError exception when x is not found in s (i.e. out of range).
(2) The sort() method takes an optional argument cmp specifying a comparison function takings 2 list items and
returning -1, 0, or 1 depending on whether the 1st argument is considered smaller than, equal to, or larger than the
2nd argument. Note that this slows the sorting process down considerably. Since 2.4, the cmp argument may be
specified as a keyword, and 2 optional keywords args are added: key is a fct that takes a list item and returns the
key to use in the comparison (faster than cmp); reverse: If True, reverse the sense of the comparison used.
Since Python 2.3 (?), the sort is guaranteed "stable". This means that two entries with equal keys will be returned in
the same order as they were input. For example, you can sort a list of people by name, and then sort the list by age,
resulting in a list sorted by age where people with the same age are in name-sorted order.
(3) The sort() and reverse() methods modify the list in place for economy of space when sorting or reversing a
large list. They don't return the sorted or reversed list to remind you of this side effect.
(4) The pop() method is not supported by mutable sequence types other than lists. The optional argument i defaults
to -1, so that by default the last item is removed and returned.
(5) Raises a TypeError when x is not a list object.

Operations on al l sequence types (l ists, tuples, str ings)

Operations on all sequence types

Operation Result Notes
x in s True if an item of s is equal to x, else False (3)
x not in s False if an item of s is equal to x, else True (3)
s + t the concatenation of s and t
s * n, n*s n copies of s concatenated
s[i] i'th item of s, origin 0 (1)
s[i: j]
s[i: j:step]

Slice of s from i (included) to j(excluded). Optional step value, possibly negative (default: 1). (1), (2)

len(s) Length of s
min(s) Smallest item of s
max(s) Largest item of (s)
reversed(s) [2.4] Returns an iterator on s in reverse order. s must be a sequence, not an iterator (use

reversed(list(s)) in this case. [PEP 322]

sorted(iterable [,
cmp]
 [, cmp=cmpFct]
 [, key=keyGetter]
 [, reverse=bool])

[2.4] works like the new in-place list.sort(), but sorts a new list created from the iterable.

Operations on mutable sequences (type list)

Operations on mutable sequences

Operation Result Notes
s[i] =x item i of s is replaced by x
s[i:j [:step]] = t slice of s from i to j is replaced by t
del s[i:j[:step]] same as s[i:j] = []
s.append(x) same as s[len(s) : len(s)] = [x]
s.extend(x) same as s[len(s):len(s)]= x (5)
s.count(x) returns number of i's for which s[i] == x
s.index(x[, start[, stop]]) returns smallest i such that s[i]==x. start and stop limit search to only part of

the list.
(1)

s.insert(i, x) same as s[i:i] = [x] if i>= 0. i == -1 inserts before the last element.
s.remove(x) same as del s[s.index(x)] (1)
s.pop([i]) same as x = s[i]; del s[i]; return x (4)
s.reverse() reverses the items of s in place (3)
s.sort([cmp])
s.sort([cmp=cmpFct]
 [, key=keyGetter]
 [, reverse=bool])

sorts the items of s in place (2), (3)

Operations on mappings / dict ionaries (type dict)

Operations on mappings

Operation Result Notes
len(d) The number of items in d

dict()
dict(**kwargs)
dict(iterable)

Creates an empty dictionary.
Creates a dictionary init with the keyword args kwargs.
Creates a dictionary init with (key, value) pairs provided by iterable.

Page 6 of 30Python 2.4 Quick Reference

2/20/2005

Notes:
TypeError is raised if key is not acceptable.
(1) KeyError is raised if key k is not in the map.
(2) Keys and values are listed in random order.
(3) Never raises an exception if k is not in the map, instead it returns defaultval. defaultval is optional, when not
provided and k is not in the map, None is returned.
(4) Never raises an exception if k is not in the map, instead returns defaultVal, and adds k to map with value
defaultVal. defaultVal is optional. When not provided and k is not in the map, None is returned and added to map.

These string methods largely (but not completely) supersede the functions available in the string module.
The str and unicode types share a common base class basestring.

dict(d) Creates a dictionary which is a copy of dictionary d.
d.fromkeys(iterable, value=None) Class method to create a dictionary with keys provided by iterator, and

all values set to value.

d[k] The item of d with key k (1)
d[k] = x Set d[k] to x

del d[k] Removes d[k] from d (1)
d.clear() Removes all items from d

d.copy() A shallow copy of d

d.has_key(k)
k in d

True if d has key k, else False

d.items() A copy of d's list of (key, item) pairs (2)
d.keys() A copy of d's list of keys (2)

d1.update(d2) for k, v in d2.items(): d1[k] = v
Since 2.4, update(**kwargs) and update(iterable) may also be used.

d.values() A copy of d's list of values (2)

d.get(k, defaultval) The item of d with key k (3)

d.setdefault(k[,defaultval]) d[k] if k in d, else defaultval(also setting it) (4)
d.iteritems() Returns an iterator over (key, value) pairs.

d.iterkeys() Returns an iterator over the mapping's keys.
d.itervalues() Returns an iterator over the mapping's values.

d.pop(k[, default]) Removes key k and returns the corresponding value. If key is not found,
default is returned if given, otherwise KeyError is raised.

d.popitem() Removes and returns an arbitrary (key, value) pair from d

Operations on strings (type str)

Operations on strings

Operation Result Notes
s.capitalize() Returns a copy of s with only its first character capitalized.
s.center(width) Returns a copy of s centered in a string of length width. (1)
s.count(sub[,start[,end]]) Returns the number of occurrences of substring sub in string s. (2)
s.encode([encoding[,errors]]) Returns an encoded version of s. Default encoding is the current default string

encoding.
(3)

s.endswith(suffix [,start
[,end]])

Returns True if s ends with the specified suffix, otherwise return false. (2)

s.expandtabs([tabsize]) Returns a copy of s where all tab characters are expanded using spaces. (4)
s.find(sub[,start[,end]]) Returns the lowest index in s where substring sub is found. Returns -1 if sub is not

found.
(2)

s.index(sub[,start[,end]]) like find(), but raises ValueError when the substring is not found. (2)
s.isalnum() Returns True if all characters in s are alphanumeric, False otherwise. (5)
s.isalpha() Returns True if all characters in s are alphabetic, False otherwise. (5)
s.isdigit() Returns True if all characters in s are digit characters, False otherwise. (5)
s.islower() Returns True if all characters in s are lowercase, False otherwise. (6)
s.isspace() Returns True if all characters in s are whitespace characters, False otherwise. (5)
s.istitle() Returns True if string s is a titlecased string, False otherwise. (7)
s.isupper() Returns True if all characters in s are uppercase, False otherwise. (6)
separator.join(seq) Returns a concatenation of the strings in the sequence seq, separated by string

separator, e.g.: ",".join(['A', 'B', 'C']) -> "A, B, C"

s.ljust/rjust/center(width[,
fillChar=' '])

Returns s left/right justified/centered in a string of length width. (1), (8)

s.lower() Returns a copy of s converted to lowercase.
s.lstrip([chars]) Returns a copy of s with leading chars (default: whitespaces) removed.
s.replace(old, new[, maxCount
=-1])

Returns a copy of s with the first maxCount (-1: unlimited) occurrences of substring
old replaced by new.

(9)

s.rfind(sub[, start[, end]]) Returns the highest index in s where substring sub is found. Returns -1 if sub is not
found.

(2)

s.rindex(sub[, start[, end]]) like rfind(), but raises ValueError when the substring is not found. (2)
s.rjust(width) Returns s right justified in a string of length width. (1), (8)
s.rstrip([chars]) Returns a copy of s with trailing chars(default: whitespaces) removed.
s.split([separator[, maxsplit]]) Returns a list of the words in s, using separator as the delimiter string. (10)
s.rsplit([separator[,
maxsplit]])

Same as split, but splits from the end of the string. (10)

s.splitlines([keepends]) Returns a list of the lines in s, breaking at line boundaries. (11)
s.startswith(prefix [, start[,
end]])

Returns True if s starts with the specified prefix, otherwise returns False. Negative
numbers may be used for start and end

(2)

Page 7 of 30Python 2.4 Quick Reference

2/20/2005

Notes:
(1) Padding is done using spaces or the given character.
(2) If optional argument start is supplied, substring s[start:] is processed. If optional arguments start and end are
supplied, substring s[start:end] is processed.
(3) Optional argument errors may be given to set a different error handling scheme. The default for errors is 'strict',
meaning that encoding errors raise a ValueError. Other possible values are 'ignore' and 'replace'.
(4) If optional argument tabsize is not given, a tab size of 8 characters is assumed.
(5) Returns False if string s does not contain at least one character.
(6) Returns False if string s does not contain at least one cased character.
(7) A titlecased string is a string in which uppercase characters may only follow uncased characters and lowercase
characters only cased ones.
(8) s is returned if width is less than len(s).
(9) If the optional argument maxsplit is given, only the first maxsplit occurrences are replaced.
(10) If sep is not specified or None, any whitespace string is a separator. If maxsplit is given, at most maxsplit splits
are done.
(11) Line breaks are not included in the resulting list unless keepends is given and true.
(12) table must be a string of length 256. All characters occurring in the optional argument deletechars are removed
prior to translation.

formatString % args --> evaluates to a string

formatString uses C printf format codes : %, c, s, i, d, u, o, x, X, e, E, f, g, G, r (details below).
Width and precision may be a * to specify that an integer argument gives the actual width or precision.
The flag characters -, +, blank, # and 0 are understood (details below).
%s will convert any type argument to string (uses str() function)
args may be a single arg or a tuple of args
'%s has %03d quote types.' % ('Python', 2) == 'Python has 002 quote types.'

Right-hand-side can also be a mapping:
a = '%(lang)s has %(c)03d quote types.' % {'c':2, 'lang':'Python'}

(vars() function very handy to use on right-hand-side)

Since 2.4 [PEP 292] the string module provides a new mechanism to substitute variables into template strings.
Variables to be substituted begin with a $. Actual values are provided in a dictionary via the substitute or
safe_substitute methods (substitute throws KeyError if a key is missing while safe_substitute ignores it) :

 t = string.Template('Hello $name, you won $$$amount') # (note $$ to litteralize $)
 t.substitute({'name': 'Eric', 'amount': 100000}) # -> u'Hello Eric, you won $100000'

s.strip([chars]) Returns a copy of s with leading and trailing chars(default: whitespaces) removed.
s.swapcase() Returns a copy of s with uppercase characters converted to lowercase and vice

versa.

s.title() Returns a titlecased copy of s, i.e. words start with uppercase characters, all
remaining cased characters are lowercase.

s.translate(table [,
deletechars])

Returns a copy of s mapped through translation table table. (12)

s.upper() Returns a copy of s converted to uppercase.
s.zfill(width) Returns the numeric string left filled with zeros in a string of length width.

String formatting with the % operator

Format codes

Code Meaning
d Signed integer decimal.
i Signed integer decimal.
o Unsigned octal.
u Unsigned decimal.
x Unsigned hexadecimal (lowercase).
X Unsigned hexadecimal (uppercase).
e Floating point exponential format (lowercase).
E Floating point exponential format (uppercase).
f Floating point decimal format.
F Floating point decimal format.
g Same as "e" if exponent is greater than -4 or less than precision, "f" otherwise.
G Same as "E" if exponent is greater than -4 or less than precision, "F" otherwise.
c Single character (accepts integer or single character string).
r String (converts any python object using repr()).
s String (converts any python object using str()).
% No argument is converted, results in a "%" character in the result. (The complete specification is %%.)

Conversion flag characters

Flag Meaning
The value conversion will use the ``alternate form''.
0 The conversion will be zero padded.
- The converted value is left adjusted (overrides "-").
 (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
+ A sign character ("+" or "-") will precede the conversion (overrides a "space" flag).

String templating

Page 8 of 30Python 2.4 Quick Reference

2/20/2005

(Type file). Created with built-in functions open() [preferred] or its alias file(). May be created by other modules'
functions as well.
Unicode file names are now supported for all functions accepting or returning file names (open, os.listdir, etc...).

EOFError
End-of-file hit when reading (may be raised many times, e.g. if f is a tty).

IOError
Other I/O-related I/O operation failure

Since 2.4, Python has 2 new built-in types with fast C implementations [PEP 218]: set and frozenset (immutable set).
Sets are unordered collections of unique (non duplicate) elements. Elements must be hashable. frozensets are hashable
(thus can be elements of other sets) while sets are not. All sets are iterable.

Since 2.3, the classes Set and ImmutableSet were available in the module sets.This module remains in the 2.4 std library
in addition to the built-in types.

- See manuals for more details -

Module objects
Class objects
Class instance objects
Type objects (see module: types)
File objects (see above)
Slice objects
Ellipsis object, used by extended slice notation (unique, named Ellipsis)
Null object (unique, named None)
XRange objects

File objects

Operators on file objects

File operations

Operation Result
f.close() Close file f.
f.fileno() Get fileno (fd) for file f.
f.flush() Flush file f's internal buffer.
f.isatty() 1 if file f is connected to a tty-like dev, else 0.
f.read([size]) Read at most size bytes from file f and return as a string object. If size omitted, read to EOF.
f.readline() Read one entire line from file f. The returned line has a trailing \n, except possibly at EOF.
f.readlines() Read until EOF with readline() and return a list of lines read.
f.xreadlines() Return a sequence-like object for reading a file line-by-line without reading the entire file into

memory. From 2.2, use rather: for line in f (see below).
for line in f: do something... Iterate over the lines of a file (using readline)
f.seek(offset[, whence=0]) Set file f's position, like "stdio's fseek()".

whence == 0 then use absolute indexing.
whence == 1 then offset relative to current pos.
whence == 2 then offset relative to file end.

f.tell() Return file f's current position (byte offset).
f.write(str) Write string to file f.
f.writelines(list) Write list of strings to file f. No EOL are added.

File Exceptions

Sets

Main Set operations

Operation Result
set/frozenset([iterable=None]) [using built-in types] Builds a set or frozenset from the given iterable (default:

empty), e.g. set([1,2,3]), set("hello").
Set/ImmutableSet([iterable=None]) [using the sets module] Builds a Set or ImmutableSet from the given iterable

(default: empty), e.g. Set([1,2,3]).
len(s) Cardinality of set s.
elt in s / not in s True if element elt belongs / not belongs to set s.
for elt in s: process elt... Iterates on elements of set s.
s1.issubset(s2) True if every element in s1 is in s2.
s1.issuperset(s2) True if every element in s2 is in s1.
s.add(elt) Adds element elt to set s (if it doesn't already exist).
s.remove(elt) Removes element elt from set s. KeyError if element not found.
s.clear(elt) Removes all elements from this set (not on immutable sets!).
s1.intersection(s2) or s1&s2 Returns a new Set with elements common to s1 and s2.
s1.union(s2) or s1|s2 Returns a new Set with elements from both s1 and s2.
s1.difference(s2) or s1-s2 Returns a new Set with elements in s1 but not in s2.
s1.symmetric_difference(s2) or s1^s2 Returns a new Set with elements in either s1 or s2 but not both.
s.copy() Returns a shallow copy of set s.
s.update(iterable) Adds all values from iterable to set s.

Advanced Types

Page 9 of 30Python 2.4 Quick Reference

2/20/2005

Callable types:
User-defined (written in Python):

User-defined Function objects
User-defined Method objects

Built-in (written in C):
Built-in Function objects
Built-in Method object

Internal Types:
Code objects (byte-compile executable Python code: bytecode)
Frame objects (execution frames)
Traceback objects (stack trace of an exception)

Notes:
(1) Can unpack tuples, lists, and strings:

first, second = l[0:2] # equivalent to: first=l[0]; second=l[1]
[f, s] = range(2) # equivalent to: f=0; s=1
c1,c2,c3 = 'abc' # equivalent to: c1='a'; c2='b'; c3='c'
(a, b), c, (d, e, f) = ['ab', 'c', 'def'] # equivalent to: a='a'; b='b'; c='c'; d='d'; e='e'; f='f'

Tip: x,y = y,x swaps x and y.
(2) Multiple assignment possible:

a = b = c = 0
l1 = l2 = [1, 2, 3] # l1 and l2 points to the same list (l1 is l2)

(3) Not exactly equivalent - a is evaluated only once. Also, where possible, operation performed in-place - a
ismodified rather than replaced.

Statements

Statement Result
pass Null statement
del name[, name]* Unbind name(s) from object. Object will be indirectly (and automatically) deleted

only if no longer referenced.
print[>> fileobject,] [s1 [, s2]* [,] Writes to sys.stdout, or to fileobject if supplied. Puts spaces between arguments.

Puts newline at end unless statement ends with comma. Print is not required
when running interactively, simply typing an expression will print its value,
unless the value is None.

exec x [in globals [, locals]] Executes x in namespaces provided. Defaults to current namespaces. x can be a
string, file object or a function object. locals can be any mapping type, not only
a regular Python dict.

callable(value,... [id=value] , [*args], [**kw]) Call function callable with parameters. Parameters can be passed by name or be
omitted if function defines default values. E.g. if callable is defined as "def
callable(p1=1, p2=2)"

"callable()" <=> "callable(1, 2)"
"callable(10)" <=> "callable(10, 2)"
"callable(p2=99)" <=> "callable(1, 99)"

*args is a tuple of positionalarguments.
**kw is a dictionary of keyword arguments.

yield expression (Only used within the body of a generator function, outside a try of a
try..finally). "Returns" the evaluated expression.

Assignment operators

Assignment operators

Operator Result Notes
a = b Basic assignment - assign object b to label a (1)(2)
a += b Roughly equivalent to a = a + b (3)
a -= b Roughly equivalent to a = a - b (3)
a *= b Roughly equivalent to a = a * b (3)
a /= b Roughly equivalent to a = a / b (3)
a //= b Roughly equivalent to a = a // b (3)
a %= b Roughly equivalent to a = a % b (3)
a **= b Roughly equivalent to a = a ** b (3)
a &= b Roughly equivalent to a = a & b (3)
a |= b Roughly equivalent to a = a | b (3)
a ^= b Roughly equivalent to a = a ^ b (3)
a >>= b Roughly equivalent to a = a >> b (3)
a <<= b Roughly equivalent to a = a << b (3)

Control Flow statements

Control flow statements

Statement Result

Page 10 of 30Python 2.4 Quick Reference

2/20/2005

An exception is an instance of an exception class (before 2.0, it may also be a mere string).
Exception classes must be derived from the predefined class: Exception, e.g.:
class TextException(Exception): pass
try:
 if bad:
 raise TextException()
except Exception:
 print 'Oops' # This will be printed because TextException is a subclass of Exception

When an error message is printed for an unhandled exception, the class name is printed, then a colon and a space,
and finally the instance converted to a string using the built-in function str().
All built-in exception classes derives from StandardError, itself derived from Exception.

Imported module files must be located in a directory listed in the Python path (sys.path). Since 2.3, they may reside in a
zip file [e.g. sys.path.insert(0, "theZipFile.zip")].

Packages (>1.5): a package is a name space which maps to a directory including module(s) and the special initialization
module __init__.py (possibly empty).
Packages/directories can be nested. You address a module's symbol via [package.[package...].module.symbol.
[1.51: On Mac & Windows, the case of module file names must now match the case as used in the import statement]

if condition:
 suite
[elif condition: suite]*
[else:
 suite]

Usual if/else if/else statement

while condition:
 suite
[else:
 suite]

Usual while statement. The else suite is executed after loop exits, unless the loop is exited with
break.

for element in sequence:
 suite
[else:
 suite]

Iterates over sequence, assigning each element to element. Use built-in range function to iterate a
number of times. The else suite is executed at end unless loop exited with break.

break Immediately exits for or while loop.
continue Immediately does next iteration of for or while loop.
return [result] Exits from function (or method) and returns result (use a tuple to return more than one value). If

no result given, then returns None.

Exception statements

Exception statements

Statement Result
assert expr[, message] expr is evaluated. if false, raises exception AssertionError with message. Before

2.3, inhibited if __debug__ is 0.
try:
 suite1
[except [exception [, value]:
 suite2]+
[else:
 suite3]

Statements in suite1 are executed. If an exception occurs, look in except clause(s)
for matching exception. If matches or bare except, execute suite of that clause. If
no exception happens, suite in else clause is executed after suite1. If exception
has a value, it is put in variable value. exception can also be a tuple of exceptions,
e.g. except(KeyError, NameError), val: print val.

try:
 suite1
finally:
 suite2

Statements in suite1 are executed. If no exception, execute suite2 (even if suite1 is
exited with a return,break or continue statement). If exception did occur,
executes suite2 and then immediately re-raises exception.

raise exceptionInstance Raises an instance of a class derived from Exception (preferred form of raise).
raise exceptionClass [, value [, traceback]] Raises exception of given class exceptionClass with optional value value. Arg

traceback specifies a traceback object to use when printing the exception's
backtrace.

raise A raise statement without arguments re-raises the last exception raised in the
current function.

Name Space Statements

Name space statements

Statement Result
import module1 [as name1] [,
module2]*

Imports modules. Members of module must be referred to by qualifying with [package.]
module name, e.g.:
import sys; print sys.argv
import package1.subpackage.module
package1.subpackage.module.foo()

module1 renamed as name1, if supplied.
from module import name1 [as
othername1][, name2]*

Imports names from module module in current namespace.
from sys import argv; print argv
from package1 import module; module.foo()
from package1.module import foo; foo()

name1 renamed as othername1, if supplied.
[2.4] You can now put parentheses around the list of names in a from module import names
statement (PEP 328).

from module import * Imports all names in module, except those starting with "_". Use sparsely, beware of
name clashes!
from sys import *; print argv

Page 11 of 30Python 2.4 Quick Reference

2/20/2005

def func_id ([param_list]):
 suite

Creates a function object and binds it to name func_id.
param_list ::= [id [, id]*]
id ::= value | id = value | *id | **id

Args are passed by value.Thus only args representing a mutable object can be modified (are inout parameters). Use a
tuple to return more than one value.

Example:
 def test (p1, p2 =5+3, *args, **kwargs):

args with "=" have a default value (evaluated at function definition time).
If arg list has "*args" then args is assigned a tuple of all remaining non-keywords args passed to the function.
If list has "**kwargs" then kwargs is assigned a dictionary of all extra arguments passed as keywords.
args and kwargs are common names but other names may be used as well.

class className [(super_class1[, super_class2]*)]:
 suite

Creates a class object and assigns it name className.
suite may contain local "defs" of class methods and assignments to class attributes.

Examples:
class MyClass (class1, class2): ...

Creates a class object inheriting from both class1 and class2. Assigns new class object to name "MyClass".
class MyClass: ...

Creates a base class object (inheriting from nothing). Assigns new class object to name "MyClass".
class MyClass (object): ...

Creates a new-style class/type (inheriting from object makes a class a new-style class). Assigns new class object to name
"MyClass".

First arg to class instance methods (operations) is always the target instance object, called 'self' by convention.
Special method __init__() is called when instance is created.
Special method __del__() called when no more reference to object.
Create instance by "calling" class object, possibly with arg (thus instance=apply(aClassObject, args...) creates an
instance!)
Before 2.2 it was not possible to subclass built-in classes like list, dict (you had to "wrap" them, using UserDict &
UserList modules); since 2.2 you can subclass them directly (see Types/Classes unification).

Example:
class c (c_parent):
 def __init__(self, name):
 self.name = name
 def print_name(self):
 print "I'm", self.name
 def call_parent(self):
 c_parent.print_name(self)

instance = c('tom')
print instance.name
'tom'
instance.print_name()
"I'm tom"

Call parent's super class by accessing parent's method directly and passing "self" explicitly (see "call_parent" in example
above).
Many other special methods available for implementing arithmetic operators, sequence, mapping indexing, etc...

from package.module import *; print x

Only legal at the top level of a module.
If module defines an __all__ attribute, only names listed in __all__ will be imported.
NB: "from package import *" only imports the symbols defined in the package's
__init__.py file, not those in the package's modules !

global name1 [, name2] Names are from global scope (usually meaning from module) rather than local (usually
meaning only in function).
E.g. in function without global statements, assuming "x" is name that hasn't been used in
function or module so far:
- Try to read from "x" -> NameError
- Try to write to "x" -> creates "x" local to function
If "x" not defined in fct, but is in module, then: - Try to read from "x", gets value from
module
- Try to write to "x", creates "x" local to fct
But note "x[0]=3" starts with search for "x", will use to global "x" if no local "x".

Function Definit ion

Class Definit ion

Types / classes unification

Page 12 of 30Python 2.4 Quick Reference

2/20/2005

Base types int, float, str, list, tuple, dict and file now (2.2) behave like classes derived from base class object,
and may be subclassed:

x = int(2) # built-in cast function now a constructor for base type
y = 3 # <=> int(3) (litterals are instances of new base types)
print type(x), type(y) # int, int
assert isinstance(x, int) # replaces isinstance(x, types.IntType)
assert issubclass(int, object) # base types derive from base class 'object'.
s = "hello" # <=> str("hello")
assert isinstance(s, str)
f = 2.3 # <=> float(2.3)
class MyInt(int): pass # may subclass base types
x,y = MyInt(1), MyInt("2")
print x, y, x+y # => 1,2,3
class MyList(list): pass
l = MyList("hello")
print l # ['h', 'e', 'l', 'l', 'o']

New-style classes extends object.Old-styleclasses don't.

Modules, classes and functions may be documented by placing a string literal by itself as the first statement in the suite.
The documentation can be retrieved by getting the '__doc__' attribute from the module, class or function.

Example:
class C:
 "A description of C"
 def __init__(self):
 "A description of the constructor"
 # etc.

c.__doc__ == "A description of C".
c.__init__.__doc__ == "A description of the constructor"

An iterator enumerates elements of a collection. It is an object with a single method next() returning the next
element or raising StopIteration.
You get an iterator on obj via the new built-in function iter(obj), which calls obj.__class__.__iter__().
A collection may be its own iterator by implementing both __iter__() and next().
Built-in collections (lists, tuples, strings, dict) implement __iter__(); dictionaries (maps) enumerate their keys; files
enumerates their lines.
You can build a list or a tuple from an iterator, e.g. list(anIterator)
Python uses implicitely iterators wherever it has to loop :

for elt in collection:
if elt in collection:
when assigning tuples: x,y,z= collection

A generator is a function that retains its state between 2 calls and produces a new value at each invocation. The
values are returned (one at a time) using the keyword yield, while return or raise StopIteration() are used to
notify the end of values.
A typical use is the production of IDs, names, or serial numbers.
To use a generator: call the generator function to get a generator object, then call generator.next() to get the
next value until StopIteration is raised.
2.4 introduces generator expressions [PEP 289] similar to list comprehensions, except that they create a generator
that will return elements one by one, which is suitable for long sequences :
 linkGenerator = (link for link in get_all_links() if not link.followed)
 for link in linkGenerator:
 ...process link...
Generator expressions must appear between parentheses.
In 2.2, feature needs to be enabled by the statement: from __future__ import generators (not required since
2.3+)

Example:
def genID(initialValue=0):
 v = initialValue
 while v < initialValue + 1000:
 yield "ID_%05d" % v
 v += 1
 return # or: raise StopIteration()
generator = genID() # Create a generator
for i in range(10): # Generates 10 values
 print generator.next()

Descriptors are objects implementing at least the first of these 3 methods representing the descriptor protocol:
__get__(self, obj, type=None) --> value
__set__(self, obj, value)
__delete__(self, obj)

Python now transparently uses descriptors to describe and access the attributes and methods of new-style classes
(i.e. derived from object). [more info])

Documentation Strings

Iterators

Generators

Descriptors / Attribute access

Page 13 of 30Python 2.4 Quick Reference

2/20/2005

Built-in descriptors now allow to define:
Static methods : Use staticmethod(f) to make method f(x) static (unbound).
Class methods: like a static but takes the Class as 1st argument => Use f = classmethod(f) to make
method f(theClass, x) a class method.
Properties : A property is an instance of the new built-in type property, which implements the descriptor
protocol for attributes => Use propertyName = property(getter=None, setter=None, deleter=None,
description=None) to define a property inside or outside a class. Then access it as propertyName or
obj.propertyName
Slots. New style classes can define a class attribute __slots__ to constrain the list of assignable attribute
names, to avoid typos (which is normally not detected by Python and leads to the creation of new attributes),
e.g. __slots__ = ('x', 'y')
Note: According to recent discussions, the real purpose of slots seems still unclear (optimization?), and their
use should probably be discouraged.

[PEP 318] A decorator D is noted @D on the line preceding the function/method it decorates :
 @D
 def f(): ...
and is equivalent to:
 def f(): ...
 f = D(f)
Several decorators can be applied in cascade :
 @A @B @C
 def f(): ...
is equivalent to:
 f = A(B(C(f)))
A decorator is just a function taking the fct to be decorated and returns the same function or some new callable
thing.
Decorator functions can take arguments:
 @A @B @C(args)
becomes :
 def f(): ...
 _deco = C(args)
 f = A(B(_deco(f)))
The decorators @staticmethod and @classmethod replace more elegantly the equivalent declarations f =
staticmethod(f) and f = classmethod(f).

lambda [param_list]: returnedExpr

Creates an anonymous function.
returnedExpr must be an expression, not a statement (e.g., not "if xx:...", "print xxx", etc.) and thus can't contain newlines. Used
mostly for filter(), map(), reduce() functions, and GUI callbacks.

List comprehensions
result = [expression for item1 in sequence1 [if condition1]
 [for item2 in sequence2 ... for itemN in sequenceN]
]

is equivalent to:
result = []
for item1 in sequence1:
 for item2 in sequence2:
 ...
 for itemN in sequenceN:
 if (condition1) and further conditions:
 result.append(expression)

Nested scopes
Since 2.2 nested scopes no longer need to be specially enabled by a from __future__ import nested_scopes directive, and are
always used.

Decorators for functions & methods

Misc

Built-In Functions
Built-In Functions

Function Result
__import__(name[,
globals[,locals[,from
list]]])

Imports module within the given context (see library reference for more details)

abs(x) Returns the absolute value of the number x.
apply(f, args[,
keywords])

Calls func/method f with arguments args and optional keywords.

buffer(object[, offset[,
size]])

Returns a Buffer from a slice of object, which must support the buffer call interface (string, array,
buffer).

callable(x) Returns True if x callable, else False.

Page 14 of 30Python 2.4 Quick Reference

2/20/2005

chr(i) Returns one-character string whose ASCII code isinteger i.
classmethod(function) Returns a class method for function. A class method receives the class as implicit first argument, just

like an instance method receives the instance. To declare a class method, use this idiom:

 class C:
 def f(cls, arg1, arg2, ...): ...
 f = classmethod(f)

Then call it on the class C.f() or on an instance C().f(). The instance is ignored except for its class. If
a class method is called for a derived class, the derived class object is passed as the implied first
argument.
Since 2.4 you can alternatively use the decorator notation:
 class C:
 @classmethod
 def f(cls, arg1, arg2, ...): ...

cmp(x,y) Returns negative, 0, positive if x <, ==, > to y respectively.
coerce(x,y) Returns a tuple of the two numeric arguments converted to a common type.
compile(string, filename,
kind[, flags[,
dont_inherit]])

Compiles string into a code object. filename is used in error message, can be any string. It is usually
the file from which the code was read, or eg. '<string>' if not read from file. kind can be 'eval' if
string is a single stmt, or 'single' which prints the output of expression statements that evaluate to
something else than None, or be 'exec'. New args flags and dont_inherit concern future statements.

complex(real[, image]) Creates a complex object (can also be done using J or j suffix, e.g. 1+3J).
delattr(obj, name) Deletes the attribute named name of object obj <=> del obj.name
dict([mapping-or-
sequence])

Returns a new dictionary initialized from the optional argument (or an empty dictionary if no
argument). Argument may be a sequence (or anything iterable) of pairs (key,value).

dir([object]) Without args, returns the list of names in the current local symbol table. With a module, class or class
instance object as arg, returns the list of names in its attr. dictionary.

divmod(a,b) Returns tuple (a/b, a%b)
enumerate(iterable) Iterator returning pairs (index, value) of iterable, e.g. List(enumerate('Py')) -> [(0, 'P'), (1,

'y')].
eval(s[, globals[,
locals]])

Evaluate string s in (optional) globals, locals contexts. s must have no NUL's or newlines. s can also be
a code object. locals can be any mapping type, not only a regular Python dict.
Example:
x = 1; assert eval('x + 1') == 2

execfile(file[, globals
[,locals]])

Executes a file without creating a new module, unlike import. locals can be any mapping type, not only
a regular Python dict.

file(filename[,mode
[,bufsize]])

Opens a file and returns a new file object. Alias for open.

filter(function,sequence) Constructs a list from those elements of sequence for which function returns true. function takes one
parameter.

float(x) Converts a number or a string to floating point.
getattr(object,name
[,default]))

Gets attribute called name from object, e.g. getattr(x, 'f') <=> x.f). If not found, raises
AttributeError or returns default if specified.

globals() Returns a dictionary containing the current global variables.
hasattr(object, name) Returns true if object has an attribute called name.
hash(object) Returns the hash value of the object (if it has one).
help([object]) Invokes the built-in help system. No argument -> interactive help; if object is a string (name of a

module, function, class, method, keyword, or documentation topic), a help page is printed on the
console; otherwise a help page on object is generated.

hex(x) Converts a number x to a hexadecimal string.
id(object) Returns a unique integer identifier for object.
input([prompt]) Prints prompt if given. Reads input and evaluates it. Uses line editing / history if module readline

available.
int(x[, base]) Converts a number or a string to a plain integer. Optional base parameter specifies base from which to

convert string values.
intern(aString) Enters aString in the table of interned strings and returns the string. Before 2.3, interned strings were

'immortals' (never garbage collected). This is no longer true in 2.3+.
isinstance(obj,
classInfo)

Returns true if obj is an instance of class classInfo or an object of type classInfo (classInfo may also
be a tuple of classes or types). If issubclass(A,B) then isinstance(x,A) => isinstance(x,B)

issubclass(class1,
class2)

Returns true if class1 is derived from class2 (or if class1 is class2).

iter(obj[,sentinel]) Returns an iterator on obj. If sentinel is absent, obj must be a collection implementing either
__iter__() or __getitem__(). If sentinel is given, obj will be called with no arg; if the value returned
is equal to sentinel, StopIteration will be raised, otherwise the value will be returned. See Iterators.

len(obj) Returns the length (the number of items) of an object (sequence, dictionary, or instance of class
implementing __len__).

list([seq]) Creates an empty list or a list with same elements as seq. seq may be a sequence, a container that
supports iteration, or an iterator object. If seq is already a list, returns a copy of it.

locals() Returns a dictionary containing current local variables.
long(x[, base]) Converts a number or a string to a long integer. Optional base parameter specifies the base from which

to convert string values.
map(function, list, ...) Applies function to every item of list and returns a list of the results. If additional arguments are

passed, function must take that many arguments and they are given to function on each call.
max(seq[, args...]) With a single argument seq, returns the largest item of a non-empty sequence (such as a string, tuple

or list). With more than one argument, returns the largest of the arguments.
min(seq[, args...]) With a single argument seq, returns the smallest item of a non-empty sequence (such as a string,

tuple or list). With more than one argument, returns the smallest of the arguments.
oct(x) Converts a number to an octal string.
open(filename [,
mode='r', [bufsize]])

Returns a new file object. See also alias file(). Use codecs.open() instead to open an encoded file and
provide transparent encoding / decoding.

filename is the file name to be opened
mode indicates how the file is to be opened:

'r' for reading

Page 15 of 30Python 2.4 Quick Reference

2/20/2005

Exception
The mother of all exceptions. exception.args is a tuple of the arguments passed to the constructor.

StopIteration
Raised by an iterator's next() method to signal that there are no further values.
SystemExit
On sys.exit()
Warning
Base class for warnings (see module warning)

UserWarning
Warning generated by user code.
PendingDeprecationWarning

'w' for writing (truncating an existing file)
'a' opens it for appending
'+' (appended to any of the previous modes) open the file for updating (note that
'w+'truncates the file)
'b' (appended to any of the previous modes) open the file in binary mode
'U' (or 'rU') open the file for reading in Universal Newline mode: all variants of EOL (CR,
LF, CR+LF) will be translated to a single LF ('\n').

bufsize is 0 for unbuffered, 1 for line-buffered, negative for sys-default, all else, of (about) given
size.

ord(c) Returns integer ASCII value of c (a string of len 1). Works with Unicode char.
pow(x, y [, z]) Returns x to power y [modulo z]. See also ** operator.
range(start [,end [,
step]])

Returns list of ints from >= start and < end.
With 1 arg, list from 0..arg-1
With 2 args, list from start..end-1
With 3 args, list from start up to end by step

raw_input([prompt]) Prints prompt if given, then reads string from std input (no trailing \n). See also input().
reduce(f, list [, init]) Applies the binary function f to the items of list so as to reduce the list to a single value. If init is given,

it is "prepended" to list.
reload(module) Re-parses and re-initializes an already imported module. Useful in interactive mode, if you want to

reload a module after fixing it. If module was syntactically correct but had an error in initialization,
must import it one more time before calling reload().

repr(object) Returns a string containing a printable and if possible evaluable representation of an object. <=>
`object` (using backquotes). Class redefinable (__repr__). See also str()

round(x, n=0) Returns the floating point value x rounded to n digits after the decimal point.
setattr(object, name,
value)

This is the counterpart of getattr().setattr(o, 'foobar', 3) <=> o.foobar = 3. Creates attribute if it
doesn't exist!

slice([start,] stop[,
step])

Returns a slice object representing a range, with R/O attributes: start, stop, step.

staticmethod(function) Returns a static method for function. A static method does not receive an implicit first argument. To
declare a static method, use this idiom:

 class C:
 def f(arg1, arg2, ...): ...
 f = staticmethod(f)

Then call it on the class C.f() or on an instance C().f(). The instance is ignored except for its class.
Since 2.4 you can alternatively use the decorator notation:
 class C:
 @staticmethod
 def f(cls, arg1, arg2, ...): ...

str(object) Returns a string containing a nicely printable representation of an object. Class overridable (__str__).
See also repr().

sum(iterable[, start=0]) Returns the sum of a sequence of numbers (not strings), plus the value of parameter. Returns start
when the sequence is empty.

super(type[, object-or-
type])

Returns the superclass of type. If the second argument is omitted the super object returned is
unbound. If the second argument is an object, isinstance(obj, type) must be true. If the second
argument is a type, issubclass(type2, type) must be true. Typical use:
class C(B):
 def meth(self, arg):
 super(C, self).meth(arg)

tuple([seq]) Creates an empty tuple or a tuple with same elements as seq. seq may be a sequence, a container that
supports iteration, or an iterator object. If seq is already a tuple, returns itself (not a copy).

type(obj) Returns a type object [see module types] representing the type of obj. Example: import types if type
(x) == types.StringType: print 'It is a string'. NB: it is better to use instead: if isinstance(x,
types.StringType)...

unichr(code) Returns a unicode string 1 char long with given code.
unicode(string[,
encoding[,error]]])

Creates a Unicode string from a 8-bit string, using the given encoding name and error treatment
('strict', 'ignore',or 'replace'}. For objects which provide a __unicode__() method, it will call this
method without arguments to create a Unicode string.

vars([object]) Without arguments, returns a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument, returns a dictionary corresponding to the object's
symbol table. Useful with the "%" string formatting operator.

xrange(start [, end [,
step]])

Like range(), but doesn't actually store entire list all at once. Good to use in "for" loops when there is a
big range and little memory.

zip(seq1[, seq2,...]) Returns a list of tuples where each tuple contains the nth element of each of the argument sequences.
Since 2.4 returns an empty list if called with no arguments (was raising TypeError before).

Built-In Exception classes

Page 16 of 30Python 2.4 Quick Reference

2/20/2005

Warning about future deprecated code.
DeprecationWarning
Warning about deprecated code.
SyntaxWarning
Warning about dubious syntax.
RuntimeWarning
Warning about dubious runtime behavior.

StandardError
Base class for all built-in exceptions; derived from Exception root class.

ArithmeticError
Base class for arithmetic errors.

FloatingPointError
When a floating point operation fails.
OverflowError
On excessively large arithmetic operation.
ZeroDivisionError
On division or modulo operation with 0 as 2nd argument.

AssertionError
When an assert statement fails.
AttributeError
On attribute reference or assignment failure

EnvironmentError [new in 1.5.2]
On error outside Python; error arg. tuple is (errno, errMsg...)

IOError [changed in 1.5.2]
I/O-related operation failure.
OSError [new in 1.5.2]
Used by the os module's os.error exception.

WindowsError
When a Windows-specific error occurs or when the error number does not correspond to an errno value.

EOFError
Immediate end-of-file hit by input() or raw_input()
ImportError
On failure of import to find module or name.
KeyboardInterrupt
On user entry of the interrupt key (often `CTRL-C')
LookupError
base class for IndexError, KeyError

IndexError
On out-of-range sequence subscript
KeyError
On reference to a non-existent mapping (dict) key

MemoryError
On recoverable memory exhaustion
NameError
On failure to find a local or global (unqualified) name.

UnboundLocalError
On reference to an unassigned local variable.

ReferenceError
On attempt to access to a garbage-collected object via a weak reference proxy.
RuntimeError
Obsolete catch-all; define a suitable error instead.

NotImplementedError [new in 1.5.2]
On method not implemented.

SyntaxError
On parser encountering a syntax error

IndentationError
On parser encountering an indentation syntax error
TabError
On parser encountering an indentation syntax error

SystemError
On non-fatal interpreter error - bug - report it
TypeError
On passing inappropriate type to built-in operator or function.
ValueError
On argument error not covered by TypeError or more precise.

UnicodeError
On Unicode-related encoding or decoding error.

Standard methods & operators map to special methods '__method__' and thus can be redefined (mostly in user-defined
classes), e.g.:
class C:
 def __init__(self, v): self.value = v
 def __add__(self, r): return self.value + r
a = C(3) # sort of like calling C.__init__(a, 3)

Standard methods & operators redefinition in classes

Page 17 of 30Python 2.4 Quick Reference

2/20/2005

a + 4 # is equivalent to a.__add__(4)

See list in the operator module. Operator function names are provided with 2 variants, with or without leading & trailing
'__' (e.g. __add__ or add).

Right-hand-side equivalents for all binary operators exist; they are called when class instance is on r-h-s of operator:
a + 3 calls __add__(a, 3)

Special methods for any class

Method Description
__init__(self, args) Instance initialization (on construction)
__del__(self) Called on object demise (refcount becomes 0)
__repr__(self) repr() and `...` conversions
__str__(self) str() and print statement
__cmp__(self,other) Compares self to other and returns <0, 0, or >0. Implements >, <, == etc...
__lt__(self, other) Called for self < other comparisons. Can return anything, or can raise an exception.
__le__(self, other) Called for self <= other comparisons. Can return anything, or can raise an exception.
__gt__(self, other) Called for self > other comparisons. Can return anything, or can raise an exception.
__ge__(self, other) Called for self >= other comparisons. Can return anything, or can raise an exception.
__eq__(self, other) Called for self == other comparisons. Can return anything, or can raise an exception.
__ne__(self, other) Called for self != other (and self <> other) comparisons. Can return anything, or can raise

an exception.
__hash__(self) Compute a 32 bit hash code; hash() and dictionary ops
__nonzero__(self) Returns 0 or 1 for truth value testing. when this method is not defined, __len__() is called

if defined; otherwise all class instances are considered "true".
__getattr__(self,name) Called when attribute lookup doesn't find name. See also __getattribute__.
__getattribute__(self, name) Same as __getattr__ but always called whenever the attribute name is accessed.
__setattr__(self, name, value) Called when setting an attribute (inside, don't use "self.name = value", use instead

"self.__dict__[name] = value")
__delattr__(self, name) Called to delete attribute <name>.
__call__(self, *args, **kwargs) Called when an instance is called as function: obj(arg1, arg2, ...) is a shorthand for

obj.__call__(arg1, arg2, ...).

Operators

Numeric operations special methods

Operator Special method
self + other __add__(self, other)
self - other __sub__(self, other)
self * other __mul__(self, other)
self / other __div__(self, other) or __truediv__(self,other) if __future__.division is active.
self // other __floordiv__(self, other)
self % other __mod__(self, other)
divmod(self,other) __divmod__(self, other)
self ** other __pow__(self, other)
self & other __and__(self, other)
self ^ other __xor__(self, other)
self | other __or__(self, other)
self << other __lshift__(self, other)
self >> other __rshift__(self, other)
nonzero(self) __nonzero__(self) (used in boolean testing)
-self __neg__(self)
+self __pos__(self)
abs(self) __abs__(self)
~self __invert__(self) (bitwise)
self += other __iadd__(self, other)
self -= other __isub__(self, other)
self *= other __imul__(self, other)
self /= other __idiv__(self, other) or __itruediv__(self,other) if __future__.division is in effect.
self //= other __ifloordiv__(self, other)
self %= other __imod__(self, other)
self **= other __ipow__(self, other)
self &= other __iand__(self, other)
self ^= other __ixor__(self, other)
self |= other __ior__(self, other)
self <<= other __ilshift__(self, other)
self >>= other __irshift__(self, other)

Conversions

built-in function Special method
int(self) __int__(self)
long(self) __long__(self)
float(self) __float__(self)
complex(self) __complex__(self)
oct(self) __oct__(self)
hex(self) __hex__(self)
coerce(self, other) __coerce__(self, other)

Page 18 of 30Python 2.4 Quick Reference

2/20/2005

3 + a calls __radd__(a, 3)

Tip: use module inspect to inspect live objects.

Special operations for containers

Operation Special method Notes
All sequences and maps :
len(self) __len__(self) length of object, >= 0. Length 0 == false
self[k] __getitem__(self, k) Get element at indice /key k (indice starts at 0). Or, if k is a slice object,

return a slice.
self[k] = value __setitem__(self, k, value) Set element at indice/key/slice k.
del self[k] __delitem__(self, k) Delete element at indice/key/slice k.
elt in self
elt not in self

__contains__(self, elt)
not __contains__(self, elt)

More efficient than std iteration thru sequence.

iter(self) __iter__(self) Returns an iterator on elements (keys for mappings <=> self.iterkeys()).
See iterators.

Sequences, general methods, plus:
self[i:j] __getslice__(self, i, j) Deprecated since 2.0, replaced by __getitem__ with a slice object as

parameter.
self[i:j] = seq __setslice__(self, i, j,seq) Deprecated since 2.0, replaced by __setitem__ with a slice object as

parameter.
del self[i:j] __delslice__(self, i, j) Same as self[i:j] = [] - Deprecated since 2.0, replaced by __delitem__

with a slice object as parameter.
self * n __repeat__(self, n)
self + other __concat__(self, other)
Mappings, general methods, plus:
hash(self) __hash__(self) hashed value of object self is used for dictionary keys

Special informative state attributes for some types:

Lists & Dictionaries

Attribute Meaning
__methods__ (list, R/O): list of method names of the object Deprecated, use dir() instead

Modules

Attribute Meaning
__doc__ (string/None, R/O): doc string (<=> __dict__['__doc__'])
__name__ (string, R/O): module name (also in __dict__['__name__'])
__dict__ (dict, R/O): module's name space
__file__ (string/undefined, R/O): pathname of .pyc, .pyo or .pyd (undef for modules statically linked to the interpreter)
__path__ (list/undefined, R/W): List of directory paths where to find the package (for packages only).

Classes

Attribute Meaning
__doc__ (string/None, R/W): doc string (<=> __dict__['__doc__'])
__name__ (string, R/W): class name (also in __dict__['__name__'])
__bases__ (tuple, R/W): parent classes
__dict__ (dict, R/W): attributes (class name space)

Instances

Attribute Meaning
__class__ (class, R/W): instance's class
__dict__ (dict, R/W): attributes

User defined functions

Attribute Meaning
__doc__ (string/None, R/W): doc string
__name__ (string, R/O): function name
func_doc (R/W): same as __doc__
func_name (R/O, R/W from 2.4): same as __name__
func_defaults (tuple/None, R/W): default args values if any
func_code (code, R/W): code object representing the compiled function body
func_globals (dict, R/O): ref to dictionary of func global variables

User-defined Methods

Attribute Meaning
__doc__ (string/None, R/O): doc string
__name__ (string, R/O): method name (same as im_func.__name__)
im_class (class, R/O): class defining the method (may be a base class)
im_self (instance/None, R/O): target instance object (None if unbound)
im_func (function, R/O): function object

Built-in Functions & methods

Attribute Meaning
__doc__ (string/None, R/O): doc string
__name__ (string, R/O): function name
__self__ [methods only] target object

Page 19 of 30Python 2.4 Quick Reference

2/20/2005

System-specific parameters and functions. [Full doc]

__members__ list of attr names: ['__doc__','__name__','__self__']) Deprecated, use dir() instead.

Codes

Attribute Meaning
co_name (string, R/O): function name
co_argcount (int, R/0): number of positional args
co_nlocals (int, R/O): number of local vars (including args)
co_varnames (tuple, R/O): names of local vars (starting with args)
co_code (string, R/O): sequence of bytecode instructions
co_consts (tuple, R/O): literals used by the bytecode, 1st one is function doc (or None)
co_names (tuple, R/O): names used by the bytecode
co_filename (string, R/O): filename from which the code was compiled
co_firstlineno (int, R/O): first line number of the function
co_lnotab (string, R/O): string encoding bytecode offsets to line numbers.
co_stacksize (int, R/O): required stack size (including local vars)
co_flags (int, R/O): flags for the interpreter bit 2 set if fct uses "*arg" syntax, bit 3 set if fct uses '**keywords' syntax

Frames

Attribute Meaning
f_back (frame/None, R/O): previous stack frame (toward the caller)
f_code (code, R/O): code object being executed in this frame
f_locals (dict, R/O): local vars
f_globals (dict, R/O): global vars
f_builtins (dict, R/O): built-in (intrinsic) names
f_restricted (int, R/O): flag indicating whether fct is executed in restricted mode
f_lineno (int, R/O): current line number
f_lasti (int, R/O): precise instruction (index into bytecode)
f_trace (function/None, R/W): debug hook called at start of each source line
f_exc_type (Type/None, R/W): Most recent exception type
f_exc_value (any, R/W): Most recent exception value
f_exc_traceback (traceback/None, R/W): Most recent exception traceback

Tracebacks

Attribute Meaning
tb_next (frame/None, R/O): next level in stack trace (toward the frame where the exception occurred)
tb_frame (frame, R/O): execution frame of the current level
tb_lineno (int, R/O): line number where the exception occured
tb_lasti (int, R/O): precise instruction (index into bytecode)

Slices

Attribute Meaning
start (any/None, R/O): lowerbound, included
stop (any/None, R/O): upperbound, excluded
step (any/None, R/O): step value

Complex numbers

Attribute Meaning
real (float, R/O): real part
imag (float, R/O): imaginary part

xranges

Attribute Meaning
tolist (Built-in method, R/O): ?

Important Modules

sys

Some sys variables

Variable Content
argv The list of command line arguments passed to a Python script. sys.argv[0] is the script name.
builtin_module_names A list of strings giving the names of all modules written in C that are linked into this interpreter.
byteorder Native byte order, either 'big'(-endian) or 'little'(-endian).
check_interval How often to check for thread switches or signals (measured in number of virtual machine

instructions)
copyright A string containing the copyright pertaining to the Python interpreter.
exec_prefix
prefix

Root directory where platform-dependent Python files are installed, e.g. 'C:\\Python23', '/usr'.

executable Name of executable binary of the Python interpreter (e.g. 'C:\\Python23\\python.exe',
'/usr/bin/python')

exitfunc User can set to a parameterless function. It will get called before interpreter exits. Deprecated since
2.4. Code should be using the existing atexit module

last_type, last_value,
last_traceback

Set only when an exception not handled and interpreter prints an error. Used by debuggers.

maxint Maximum positive value for integers. Since 2.2 integers and long integers are unified, thus integers

Page 20 of 30Python 2.4 Quick Reference

2/20/2005

Miscellaneous operating system interfaces. [Full doc]

"synonym" for whatever OS-specific module (nt, mac, posix...) is proper for current environment. This module uses posix
whenever possible.
(see also M.A. Lemburg's utility platform.py (now included in 2.3+)

Posix OS interfaces. [Full doc]
Do not import this module directly, import os instead ! (see also module: shutil for file copy & remove functions)

have no limit.
maxunicode Largest supported code point for a Unicode character.
modules Dictionary of modules that have already been loaded.
path Search path for external modules. Can be modified by program. sys.path[0] == directory of script

currently executed.
platform The current platform, e.g. "sunos5", "win32"
ps1, ps2 Prompts to use in interactive mode, normally ">>>" and "..."
stdin, stdout, stderr File objects used for I/O. One can redirect by assigning a new file object to them (or any object: with

a method write(string) for stdout/stderr, or with a method readline() for stdin).
__stdin__,__stdout__ and __stderr__ are the default values.

version String containing version info about Python interpreter.
version_info Tuple containing Python version info - (major, minor, micro, level, serial).
winver Version number used to form registry keys on Windows platforms (e.g. '2.2').

Some sys functions

Function Result
displayhook The function used to display the output of commands issued in interactive mode - defaults to

the builtin repr(). __displayhook__ is the original value.
excepthook Can be set to a user defined function, to which any uncaught exceptions are passed.

__excepthook__ is the original value.
exit(n) Exits with status n (usually 0 means OK). Raises SystemExit exception (hence can be

caught and ignored by program)
getrefcount(object) Returns the reference count of the object. Generally 1 higher than you might expect,

because of object arg temp reference.
setcheckinterval(interval) Sets the interpreter's thread switching interval (in number of bytecode instructions, default:

10 until 2.2, 100 from 2.3).
settrace(func) Sets a trace function: called before each line of code is exited.
setprofile(func) Sets a profile function for performance profiling.
exc_info() Info on exception currently being handled; this is a tuple (exc_type, exc_value,

exc_traceback). Warning: assigning the traceback return value to a local variable in a
function handling an exception will cause a circular reference.

setdefaultencoding(encoding) Change default Unicode encoding - defaults to 7-bit ASCII.
getrecursionlimit() Retrieve maximum recursion depth.
setrecursionlimit() Set maximum recursion depth (default 1000).

os

Some os variables

Variable Meaning
name name of O/S-specific module (e.g. "posix", "mac", "nt")
path O/S-specific module for path manipulations.

On Unix, os.path.split() <=> posixpath.split()
curdir string used to represent current directory (eg '.')
pardir string used to represent parent directory (eg '..')
sep string used to separate directories ('/' or '\'). Tip: Use os.path.join() to build portable paths.
altsep Alternate separator if applicable (None otherwise)
pathsep character used to separate search path components (as in $PATH), eg. ';' for windows.
linesep line separator as used in text files, ie '\n' on Unix, '\r\n' on Dos/Win, '\r' on Mac.

Some os functions

Function Result
makedirs(path[, mode=0777]) Recursive directory creation (create required intermediary dirs); os.error if

fails.
removedirs(path) Recursive directory delete (delete intermediary empty dirs); fails (os.error) if

the directories are not empty.
renames(old, new) Recursive directory or file renaming; os.error if fails.
urandom(n) Returns a string containing n bytes of random data.

posix

posix Variables

Variable Meaning
environ dictionary of environment variables, e.g. posix.environ['HOME'].
error exception raised on POSIX-related error.

Corresponding value is tuple of errno code and perror() string.

Some posix functions

Function Result
chdir(path) Changes current directory to path.
chmod(path, mode) Changes the mode of path to the numeric mode

Page 21 of 30Python 2.4 Quick Reference

2/20/2005

Posix pathname operations.
Do not import this module directly, import os instead and refer to this module as os.path. (e.g. os.path.exists(p))!

High-level file operations (copying, deleting). [Full doc]

close(fd) Closes file descriptor fd opened with posix.open.
_exit(n) Immediate exit, with no cleanups, no SystemExit, etc... Should use this to exit a child process.
execv(p, args) "Become" executable p with args args
getcwd() Returns a string representing the current working directory.
getcwdu() Returns a Unicode string representing the current working directory.
getpid() Returns the current process id.
getsid() Calls the system call getsid() [Unix].
fork() Like C's fork(). Returns 0 to child, child pid to parent [Not on Windows].
kill(pid, signal) Like C's kill [Not on Windows].
listdir(path) Lists (base)names of entries in directory path, excluding '.' and '..'. If path is a Unicode string, so will be the

returned strings.
lseek(fd, pos, how) Sets current position in file fd to position pos, expressed as an offset relative to beginning of file (how=0), to

current position (how=1), or to end of file (how=2).
mkdir(path[,
mode])

Creates a directory named path with numeric mode (default 0777).

open(file, flags,
mode)

Like C's open(). Returns file descriptor. Use file object functions rather than this low level ones.

pipe() Creates a pipe. Returns pair of file descriptors (r, w) [Not on Windows].
popen(command,
mode='r',
bufSize=0)

Opens a pipe to or from command. Result is a file object to read to or write from, as indicated by mode being
'r' or 'w'. Use it to catch a command output ('r' mode), or to feed it ('w' mode).

remove(path) See unlink.
rename(old, new) Renames/moves the file or directory old to new. [error if target name already exists]
renames(old, new) Recursive directory or file renaming function. Works like rename(), except creation of any intermediate

directories needed to make the new pathname good is attempted first. After the rename, directories
corresponding to rightmost path segments of the old name will be pruned away using removedirs().

rmdir(path) Removes the empty directory path
read(fd, n) Reads n bytes from file descriptor fd and return as string.
stat(path) Returns st_mode, st_ino, st_dev, st_nlink, st_uid,st_gid, st_size, st_atime, st_mtime, st_ctime. [st_ino,

st_uid, st_gid are dummy on Windows]
system(command) Executes string command in a subshell. Returns exit status of subshell (usually 0 means OK). Since 2.4 use

subprocess.call() instead.
times() Returns accumulated CPU times in sec (user, system, children's user, children's sys, elapsed real time) [3

last not on Windows].
unlink(path) Unlinks ("deletes") the file (not dir!) path. Same as: remove.
utime(path, (aTime,
mTime))

Sets the access & modified time of the file to the given tuple of values.

wait() Waits for child process completion. Returns tuple of pid, exit_status [Not on Windows].
waitpid(pid,
options)

Waits for process pid to complete. Returns tuple of pid, exit_status [Not on Windows].

write(fd, str) Writes str to file fd. Returns nb of bytes written.

posixpath

Some posixpath functions

Function Result
abspath(p) Returns absolute path for path p, taking current working dir in account.
commonprefix(list) Returns the longuest path prefix (taken character-by-character) that is a prefix of all paths in list (or '' if list

empty).
dirname/basename
(p)

directory and name parts of the path p. See also split.

exists(p) True if string p is an existing path (file or directory). See also lexists.
expanduser(p) Returns string that is (a copy of) p with "~" expansion done.
expandvars(p) Returns string that is (a copy of) p with environment vars expanded. [Windows: case significant; must use

Unix: $var notation, not %var%]
getmtime(filepath) Returns last modification time of filepath (integer nb of seconds since epoch).
getatime(filepath) Returns last access time of filepath (integer nb of seconds since epoch).
getsize(filepath) Returns the size in bytes of filepath. os.error if file inexistent or inaccessible.
isabs(p) True if string p is an absolute path.
isdir(p) True if string p is a directory.
islink(p) True if string p is a symbolic link.
ismount(p) True if string p is a mount point [true for all dirs on Windows].
join(p[,q[,...]]) Joins one or more path components intelligently.
lexists(path) True if the file specified by path exists, whether or not it's a symbolic link (unlike exists).
split(p) Splits p into (head, tail) where tail is last pathname component and head is everything leading up to that.

<=> (dirname(p), basename(p))
splitdrive(p) Splits path p in a pair ('drive:', tail) [Windows]
splitext(p) Splits into (root, ext) where last comp of root contains no periods and ext is empty or starts with a period.
walk(p, visit, arg) Calls the function visit with arguments (arg, dirname, names) for each directory recursively in the directory

tree rooted at p (including p itself if it's a dir). The argument dirname specifies the visited directory, the
argument names lists the files in the directory. The visit function may modify names to influence the set of
directories visited below dirname, e.g. to avoid visiting certain parts of the tree.

shuti l

Page 22 of 30Python 2.4 Quick Reference

2/20/2005

(and also: copyfile, copymode, copystat, copy2)

Time access and conversions. [Full doc]

and also: clock, ctime.

Common string operations. [Full doc]
As of Python 2.0, much (though not all) of the functionality provided by the string module have been superseded by built-
in string methods - see Operations on strings for details.

Main shutil functions

Function Result
copy(src, dest) Copies the contents of file src to file dest, retaining file permissions.
copytree(src, dest[, symlinks]) Recursively copies an entire directory tree rooted at src into dest (which should not

already exist). If symlinks is true, links in src are kept as such in dest.
move(src, dest) Recursively moves a file or directory to a new location.
rmtree(path[, ignore_errors[, onerror]]) Deletes an entire directory tree, ignoring errors if ignore_errors is true, or calling

onerror(func, path, sys.exc_info()) if supplied, with arguments func (faulty function),
and path (concerned file).

t ime

Variables

Variable Meaning
altzone Signed offset of local DST timezone in sec west of the 0th meridian.
daylight Non zero if a DST timezone is specified.

Some functions

Function Result
time() Returns a float representing UTC time in seconds since the epoch.
gmtime(secs), localtime(secs) Returns a tuple representing time : (year aaaa, month(1-12), day(1-31), hour(0-23), minute(0-

59), second(0-59), weekday(0-6, 0 is monday), Julian day(1-366), daylight flag(-1,0 or 1)).
asctime(timeTuple), 24-character string of the following form: 'Sun Jun 20 23:21:05 1993'.
strftime(format, timeTuple) Returns a formated string representing time. See format in table below.
mktime(tuple) Inverse of localtime(). Returns a float.
strptime(string[, format]) Parses a formated string representing time, return tuple as in gmtime().
sleep(secs) Suspends execution for secs seconds. secs can be a float.

Formatting in strftime()

Directive Meaning
%a Locale's abbreviated weekday name.
%A Locale's full weekday name.
%b Locale's abbreviated month name.
%B Locale's full month name.
%c Locale's appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale's equivalent of either AM or PM.
%S Second as a decimal number [00,61]. Yes, 61 !
%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All days in a new year

preceding the first Sunday are considered to be in week 0.
%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All days in a new year

preceding the first Sunday are considered to be in week 0.
%x Locale's appropriate date representation.
%X Locale's appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (or by no characters if no time zone exists).
%% A literal "%" character.

string

Some string variables

Variable Meaning
digits The string '0123456789'.
hexdigits, octdigits Legal hexadecimal & octal digits.
letters, uppercase, lowercase, whitespace Strings containing the appropriate characters.
ascii_letters, ascii_lowercase, ascii_uppercase Same, taking the current locale in account.
index_error Exception raised by index() if substring not found.

Some string functions

Function Result
expandtabs(s, tabSize) Returns a copy of string s with tabs expanded.

Page 23 of 30Python 2.4 Quick Reference

2/20/2005

Regular expression operations. [Full doc]

Handles Unicode strings. Implemented in new module sre, re now a mere front-end for compatibility.
Patterns are specified as strings. Tip: Use raw strings (e.g. r'\w*') to litteralize backslashes.

find/rfind(s, sub[, start=0[, end=0]) Returns the lowest/highest index in s where the substring sub is found such that
sub is wholly contained in s[start:end]. Return -1 if sub not found.

ljust/rjust/center(s, width[, fillChar=' ']) Returns a copy of string s; left/right justified/centered in a field of given width,
padded with spaces or the given character. s is never truncated.

lower/upper(s) Returns a string that is (a copy of) s in lowercase/uppercase.
split(s[, sep=whitespace[, maxsplit=0]]) Returns a list containing the words of the string s, using the string sep as a

separator.
rsplit(s[, sep=whitespace[, maxsplit=0]]) Same as split above but starts splitting from the end of string, e.g.

'A,B,C'.split(',', 1) == ['A', 'B,C'] but 'A,B,C'.rsplit(',', 1) ==
['A,B', 'C']

join(words[, sep=' ']) Concatenates a list or tuple of words with intervening separators; inverse of
split.

replace(s, old, new[, maxsplit=0] Returns a copy of string s with all occurrences of substring old replaced by new.
Limits to maxsplit first substitutions if specified.

strip(s[, chars=None]) Returns a string that is (a copy of) s without leading and trailing chars (default:
whitespace). Also: lstrip, rstrip.

re (sre)

Regular expression syntax

Form Description
. Matches any character (including newline if DOTALL flag specified).
^ Matches start of the string (of every line in MULTILINE mode).
$ Matches end of the string (of every line in MULTILINE mode).
* 0 or more of preceding regular expression (as many as possible).
+ 1 or more of preceding regular expression (as many as possible).
? 0 or 1 occurrence of preceding regular expression.
*?, +?, ?? Same as *, + and ? but matches as few characters as possible.
{m,n} Matches from m to n repetitions of preceding RE.
{m,n}? Idem, attempting to match as few repetitions as possible.
[] Defines character set: e.g. '[a-zA-Z]' to match all letters (see also \w \S).
[^] Defines complemented character set: matches if char is NOT in set.
\ Escapes special chars '*?+&$|()' and introduces special sequences (see below). Due to Python string rules, write as

'\\' or r'\' in the pattern string.
\\ Matches a litteral '\'; due to Python string rules, write as '\\\\' in pattern string, or better using raw string: r'\\'.
| Specifies alternative: 'foo|bar' matches 'foo' or 'bar'.
(...) Matches any RE inside (), and delimits a group.
(?:...) Idem but doesn't delimit a group (non capturing parenthesis).
(?
P<name>...)

Matches any RE inside (), and delimits a named group, (e.g. r'(?Pid[a-zA-Z_]\w*)' defines a group named id).

(?P=name) Matches whatever text was matched by the earlier group named name.
(?=...) Matches if ... matches next, but doesn't consume any of the string e.g. 'Isaac (?=Asimov)' matches 'Isaac' only if

followed by 'Asimov'.
(?!...) Matches if ... doesn't match next. Negative of (?=...).
(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current position. This is

called a positive lookbehind assertion.
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative lookbehind

assertion.
(?(group)
A|B)

[2.4+] group is either a numeric group ID or a group name defined with (?Pgroup...) earlier in the expression. If
the specified group matched, the regular expression pattern A will be tested against the string; if the group didn't
match, the pattern B will be used instead.

(?#...) A comment; ignored.
(?letters) letters is one or more of 'i','L', 'm', 's', 'x'. Sets the corresponding flags (re.I, re.L, re.M, re.S, re.X) for the entire

RE.

Special sequences

Sequence Description
number Matches content of the group of the same number; groups are numbered starting from 1.
\A Matches only at the start of the string.
\b Empty str at beginning or end of word: '\bis\b' matches 'is', but not 'his'.
\B Empty str NOT at beginning or end of word.
\d Any decimal digit (<=> [0-9]).
\D Any non-decimal digit char (<=> [^O-9]).
\s Any whitespace char (<=> [\t\n\r\f\v]).
\S Any non-whitespace char (<=> [^ \t\n\r\f\v]).
\w Any alphaNumeric char (depends on LOCALE flag).
\W Any non-alphaNumeric char (depends on LOCALE flag).
\Z Matches only at the end of the string.

Variables

Variable Meaning
error Exception when pattern string isn't a valid regexp.

Functions

Function Result
compile(pattern[,flags=0]) Compiles a RE pattern string into a regular expression object.

Page 24 of 30Python 2.4 Quick Reference

2/20/2005

RE objects are returned by the compile function.

Match objects are returned by the match & search functions.

Flags (combinable by |):
I or IGNORECASE or (?i)

case insensitive matching
L or LOCALE or (?L)

make \w, \W, \b, \B dependent on the current locale
M or MULTILINE or (?m)

matches every new line and not only start/end of the whole string
S or DOTALL or (?s)

'.' matches ALL chars, including newline
X or VERBOSE or (?x)

Ignores whitespace outside character sets
escape(string) Returns (a copy of) string with all non-alphanumerics backslashed.
match(pattern, string[, flags]) If 0 or more chars at beginning of string matches the RE pattern string, returns a

corresponding MatchObject instance, or None if no match.
search(pattern, string[, flags]) Scans thru string for a location matching pattern, returns a corresponding MatchObject

instance, or None if no match.
split(pattern, string[, maxsplit=0]) Splits string by occurrences of pattern. If capturing () are used in pattern, then

occurrences of patterns or subpatterns are also returned.
findall(pattern, string) Returns a list of non-overlapping matches in pattern, either a list of groups or a list of

tuples if the pattern has more than 1 group.
sub(pattern, repl, string[, count=0]) Returns string obtained by replacing the (count first) leftmost non-overlapping

occurrences of pattern (a string or a RE object) in string by repl; repl can be a string or
a function called with a single MatchObj arg, which must return the replacement string.

subn(pattern, repl, string[, count=0]) Same as sub(), but returns a tuple (newString, numberOfSubsMade).

Regular Expression Objects

re object attributes

Attribute Description
flags Flags arg used when RE obj was compiled, or 0 if none provided.
groupindex Dictionary of {group name: group number} in pattern.
pattern Pattern string from which RE obj was compiled.

re object methods

Method Result
match(string[, pos][, endpos]) If zero or more characters at the beginning of string match this regular expression, returns a

corresponding MatchObject instance. Returns None if the string does not match the pattern;
note that this is different from a zero-length match.
The optional second parameter pos gives an index in the string where the search is to start;
it defaults to 0. This is not completely equivalent to slicing the string; the '' pattern character
matches at the real beginning of the string and at positions just after a newline, but not
necessarily at the index where the search is to start.
The optional parameter endpos limits how far the string will be searched; it will be as if the
string is endpos characters long, so only the characters from pos to endpos will be searched
for a match.

search(string[, pos][, endpos]) Scans through string looking for a location where this regular expression produces a match,
and returns a corresponding MatchObject instance. Returns None if no position in the string
matches the pattern; note that this is different from finding a zero-length match at some
point in the string.
The optional pos and endpos parameters have the same meaning as for the match() method.

split(string[, maxsplit=0]) Identical to the split() function, using the compiled pattern.
findall(string) Identical to the findall() function, using the compiled pattern.
sub(repl, string[, count=0]) Identical to the sub() function, using the compiled pattern.
subn(repl, string[, count=0]) Identical to the subn() function, using the compiled pattern.

Match Objects

Match object attributes

Attribute Description
pos Value of pos passed to search or match functions; index into string at which RE engine started search.
endpos Value of endpos passed to search or match functions; index into string beyond which RE engine won't go.
re RE object whose match or search fct produced this MatchObj instance.
string String passed to match() or search().

Match object functions

Function Result
group([g1, g2, ...]) Returns one or more groups of the match. If one arg, result is a string; if multiple args, result is a tuple

with one item per arg. If gi is 0, returns value is entire matching string; if 1 <= gi <= 99, return string
matching group #gi (or None if no such group); gi may also be a group name.

groups() Returns a tuple of all groups of the match; groups not participating to the match have a value of None.
Returns a string instead of tuple if len(tuple)== 1.

start(group), end(group) Returns indices of start & end of substring matched by group (or None if group exists but didn't
contribute to the match).

span(group) Returns the 2-tuple (start(group), end(group)); can be (None, None) if group didn't contibute to the
match.

Page 25 of 30Python 2.4 Quick Reference

2/20/2005

For intensive number crunching, see also Numerical Python and the Python and Scientific computing page. [Full doc]

Parser for command line options. [Full doc]

This was the standard parser until Python 2.3, now superseded by optparse.
[see also: Richard Gruet's simple parser getargs.py (shameless self promotion)]

Functions:
getopt(list, optstr) -- Similar to C. <optstr> is option letters to look for.
 Put ':' after letter if option takes arg. E.g.
 # invocation was "python test.py -c hi -a arg1 arg2"
 opts, args = getopt.getopt(sys.argv[1:], 'ab:c:')
 # opts would be
 [('-c', 'hi'), ('-a', '')]
 # args would be
 ['arg1', 'arg2']

Built-ins and content of python Lib directory. The subdirectory Lib/site-packages contains platform-specific packages
and modules.
[Python NT distribution, may be slightly different in other distributions]

math

Constants

Name Value
pi 3.1415926535897931
e 2.7182818284590451

Functions

Name Result
acos(x) Returns the arc cosine (measured in radians) of x.
asin(x) Returns the arc sine (measured in radians) of x.
atan(x) Returns the arc tangent (measured in radians) of x.
atan2(x, y) Returns the arc tangent (measured in radians) of y/x. Unlike atan(y/x), the signs of both x and y are

considered.
ceil(x) Returns the ceiling of x as a float. This is the smallest integral value >= x.
cos(x) Returns the cosine of x (measured in radians).
cosh(x) Returns the hyperbolic cosine of x.
degrees(x) Converts angle x from radians to degrees.
exp(x) Returns e raised to the power of x.
fabs(x) Returns the absolute value of the float x.
floor(x) Returns the floor of x as a float. This is the largest integral value <= x.
fmod(x, y) Returns fmod(x, y), according to platform C. x % y may differ.
frexp(x) Returns the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2.**e.

If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
hypot(x, y) Returns the Euclidean distance sqrt(x*x + y*y).
ldexp(x, i) x * (2**i)
log(x[, base]) Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm (base

e) of x.
log10(x) Returns the base 10 logarithm of x.
modf(x) Returns the fractional and integer parts of x. Both results carry the sign of x. The integer part is returned as a

float.
pow(x, y) Returns x**y (x to the power of y). Note that for y=2, it is more efficient to use x*x.
radians(x) Converts angle x from degrees to radians.
sin(x) Returns the sine (measured in radians) of x.
sinh(x) Returns the hyperbolic sine of x.
sqrt(x) Returns the square root of x.
tan(x) Returns the tangent (measured in radians) of x.
tanh(x) Returns the hyperbolic tangent of x.

getopt

List of modules and packages in base distribution

Standard library modules

Operation Result
aifc Stuff to parse AIFF-C and AIFF files.
anydbm Generic interface to all dbm clones. (dbhash, gdbm, dbm, dumbdbm).
asynchat A class supporting chat-style (command/response) protocols.
asyncore Basic infrastructure for asynchronous socket service clients and servers.
atexit Register functions to be called at exit of Python interpreter.
audiodev Classes for manipulating audio devices (currently only for Sun and SGI).
base64 Conversions to/from base64 transport encoding as per RFC-1521.
BaseHTTPServer HTTP server base class
Bastion "Bastionification" utility (control access to instance vars).
bdb A generic Python debugger base class.
bsddb (Optional) improved BSD database interface [package].

Page 26 of 30Python 2.4 Quick Reference

2/20/2005

binhex Macintosh binhex compression/decompression.
bisect Bisection algorithms.
bz2 BZ2 compression.
calendar Calendar printing functions.
cgi Wraps the WWW Forms Common Gateway Interface (CGI).
CGIHTTPServer CGI-savvy HTTP Server.
cmd A generic class to build line-oriented command interpreters.
cmp Efficiently compare files, boolean outcome only.
cmpcache Same, but caches 'stat' results for speed.
code Utilities needed to emulate Python's interactive interpreter.
codecs Lookup existing Unicode encodings and register new ones.
codeop Utilities to compile possibly incomplete Python source code.
collections high-performance container datatypes. Currently, the only datatype is a double-ended queue.
colorsys Conversion functions between RGB and other color systems.
commands Execute shell commands via os.popen [Unix only].
compileall Force "compilation" of all .py files in a directory.
ConfigParser Configuration file parser (much like windows .ini files).
Cookie HTTP state (cookies) management.
copy Generic shallow and deep copying operations.
copy_reg Helper to provide extensibility for modules pickle/cPickle.
csv Tools to read comma-separated files (of variations thereof).
datetime Improved date/time types (date, time, datetime, timedelta).
dbhash (g)dbm-compatible interface to bsdhash.hashopen.
decimal Decimal floating point arithmetic.
difflib Tool for comparing sequences, and computing the changes required to convert one into another.
dircache Sorted list of files in a dir, using a cache.
dircmp Defines a class to build directory diff tools on.
dis Bytecode disassembler.
distutils Package installation system.
distutils.command.register Registers a module in the Python package index (PyPI). This command plugin adds the register

command to distutil scripts.
distutils.debug
distutils.emxccompiler
distutils.log
doctest Unit testing framework based on running examples embedded in docstrings.
DocXMLRPCServer Creation of self-documenting XML-RPC servers, using pydoc to create HTML API doc on the fly.
dospath Common operations on DOS pathnames.
dumbdbm A dumb and slow but simple dbm clone.
dump Print python code that reconstructs a variable.
dummy_thread
dummy_threading Helpers to make it easier to write code that uses threads where supported, but still runs on Python

versions without thread support. The dummy modules simply run the threads sequentially.
email A package for parsing, handling, and generating email messages. New version 3.0 dropped various

deprecated APIs and removes support for Python versions earlier than 2.3.
encodings New codecs: idna (IDNA strings), koi8_u (Ukranian), palmos (PalmOS 3.5), punycode

(Punycode IDNA codec), string_escape (Python string escape codec: replaces non-printable chars
w/ Python-style string escapes). New codecs in 2.4: HP Roman8, ISO_8859-11, ISO_8859-16,
PCTP-154, TIS-620; Chinese, Japanese and Korean codecs.

exceptions Class based built-in exception hierarchy.
filecmp File and directory comparison.
fileinput Helper class to quickly write a loop over all standard input files.
find Find files directory hierarchy matching a pattern.
fnmatch Filename matching with shell patterns.
formatter Generic output formatting.
fpformat General floating point formatting functions.
ftplib An FTP client class. Based on RFC 959.
gc Perform garbage collection, obtain GC debug stats, and tune GC parameters.
getopt Standard command line processing. See also optparse.
getpass Utilities to get a password and/or the current user name.
gettext Internationalization and localization support.
glob Filename "globbing" utility.
gopherlib Gopher protocol client interface.
grep 'grep' utilities.
gzip Read & write gzipped files.
heapq Heap queue (priority queue) helpers.
hmac HMAC (Keyed-Hashing for Message Authentication).
hotshot.stones Helper to run the pystone benchmark under the Hotshot profiler.
htmlentitydefs HTML character entity references.
htmllib HTML2 parsing utilities
HTMLParser Simple HTML and XHTML parser.
httplib HTTP1 client class.
idlelib (package) Support library for the IDLE development environment.
ihooks Hooks into the "import" mechanism.
imaplib IMAP4 client.Based on RFC 2060.
imghdr Recognizing image files based on their first few bytes.
imputil Provides a way of writing customized import hooks.
inspect Get information about live Python objects.
itertools Tools to work with iterators and lazy sequences.
keyword List of Python keywords.
knee A Python re-implementation of hierarchical module import.
linecache Cache lines from files.

Page 27 of 30Python 2.4 Quick Reference

2/20/2005

linuxaudiodev Linux /dev/audio support. Replaced by ossaudiodev(Linux).
locale Support for number formatting using the current locale settings.
logging (package) Tools for structured logging in log4j style.
macpath Pathname (or related) operations for the Macintosh [Mac].
macurl2path Mac specific module for conversion between pathnames and URLs [Mac].
mailbox Classes to handle Unix style, MMDF style, and MH style mailboxes.
mailcap Mailcap file handling (RFC 1524).
marshal Internal Python object serialization.
markupbase Shared support for scanning document type declarations in HTML and XHTML.
mhlib MH (mailbox) interface.
mimetools Various tools used by MIME-reading or MIME-writing programs.
mimetypes Guess the MIME type of a file.
MimeWriter Generic MIME writer. Deprecated since release 2.3. Use the email package instead.
mimify Mimification and unmimification of mail messages.
mmap Interface to memory-mapped files - they behave like mutable strings.
modulefinder Tools to find what modules a given Python program uses, without actually running the program.
multifile A readline()-style interface to the parts of a multipart message.
mutex Mutual exclusion -- for use with module sched. See also std module threading, and glock.
netrc Parses and encapsulates the netrc file format.
nntplib An NNTP client class. Based on RFC 977.
ntpath Common operations on Windows pathnames.
nturl2path Convert a NT pathname to a file URL and vice versa.
olddifflib Old version of difflib (helpers for computing deltas between objects)?
optparse Improved command-line option parsing library (see also getopt).
os OS routines for Mac, DOS, NT, or Posix depending on what system we're on.
os2emxpath os.path support for OS/2 EMX.
packmail Create a self-unpacking shell archive.
pdb A Python debugger.
pickle Pickling (save and restore) of Python objects (a faster C implementation exists in built-in module:

cPickle).
pickletools Tools to analyze and disassemble pickles.
pipes Conversion pipeline templates.
pkgutil Tools to extend the module search path for a given package.
platform Get info about the underlying platform.
poly Polynomials.
popen2 Spawn a command with pipes to its stdin, stdout, and optionally stderr. Superseded by module

subprocess since 2.4
poplib A POP3 client class.
posixfile Extended file operations available in POSIX.
posixpath Common operations on POSIX pathnames.
pprint Support to pretty-print lists, tuples, & dictionaries recursively.
pre Support for regular expressions (RE) - see re.
profile Class for profiling python code.
pstats Class for printing reports on profiled python code.
pty Pseudo terminal utilities.
py_compile Routine to "compile" a .py file to a .pyc file.
pyclbr Parse a Python file and retrieve classes and methods.
pydoc Generate Python documentation in HTML or text for interactive use.
pyexpat Interface to the Expat XML parser.
PyUnit Unit test framework inspired by JUnit. See unittest.
Queue A multi-producer, multi-consumer queue.
quopri Conversions to/from quoted-printable transport encoding as per RFC 1521.
rand Don't use unless you want compatibility with C's rand().
random Random variable generators.
re Regular Expressions.
readline GNU readline interface [Unix].
reconvert Convert old ("regex") regular expressions to new syntax ("re").
regex_syntax Flags for regex.set_syntax().
regexp Backward compatibility for module "regexp" using "regex".
regsub Regexp-based split and replace using the obsolete regex module.
repr Redo repr() but with limits on most sizes.
rexec Restricted execution facilities ("safe" exec, eval, etc).
rfc822 Parse RFC-8222 mail headers.
rlcompleter Word completion for GNU readline 2.0.
robotparser Parse robot.txt files, useful for web spiders.
sched A generally useful event scheduler class.
sets A Set datatype implementation based on dictionaries (see Sets).
sgmllib A parser for SGML, using the derived class as a static DTD.
shelve Manage shelves of pickled objects.
shlex Lexical analyzer class for simple shell-like syntaxes.
shutil Utility functions for copying files and directory trees.
SimpleHTTPServer Simple HTTP Server.
SimpleXMLRPCServer Simple XML-RPC Server
site Append module search paths for third-party packages to sys.path.
smtpd An RFC 2821 smtp proxy.
smtplib SMTP/ESMTP client class.
sndhdr Several routines that help recognizing sound.
socket Socket operations and some related functions. Now supports timeouts thru function settimeout

(t). Also supports SSL on Windows.
SocketServer Generic socket server classes.

Page 28 of 30Python 2.4 Quick Reference

2/20/2005

dir(<module>) list functions, variables in <module>
dir() get object keys, defaults to local name space
if __name__ == '__main__': main() invoke main if running as script
map(None, lst1, lst2, ...) merge lists
b = a[:] create copy of seq structure
_ (underscore) in interactive mode, is last value printed

Emacs goodies available here.
(The following has not been revised, probably not up to date - any contribution welcome -)

sre Support for regular expressions (RE). See re.
stat Constants/functions for interpreting results of os.
statcache Maintain a cache of stat() information on files.
statvfs Constants for interpreting statvfs struct as returned by os.statvfs() and os.fstatvfs() (if they

exist).
string A collection of string operations (see Strings).
stringprep Normalization and manipulation of Unicode strings.
StringIO File-like objects that read/write a string buffer (a faster C implementation exists in built-in module:

cStringIO).
subprocess Subprocess management. Replacement for os.system, os.spawn*, os.popen*, popen2.* [PEP324]
sunau Stuff to parse Sun and NeXT audio files.
sunaudio Interpret sun audio headers.
symbol Non-terminal symbols of Python grammar (from "graminit.h").
symtable Interface to the compiler's internal symbol tables.
tabnanny Check Python source for ambiguous indentation.
tarfile Tools to read and create TAR archives.
telnetlib TELNET client class. Based on RFC 854.
tempfile Temporary files and filenames.
textwrap Tools to wrap paragraphs of text.
threading Proposed new threading module, emulating a subset of Java's threading model.
threading_api (doc of the threading module).
timeit Benchmark tool.
toaiff Convert "arbitrary" sound files to AIFF (Apple and SGI's audio format).
token Token constants (from "token.h").
tokenize Tokenizer for Python source.
traceback Extract, format and print information about Python stack traces.
trace Tools to trace execution of a function or program.
tty Terminal utilities [Unix].
turtle LogoMation-like turtle graphics.
types Define names for all type symbols in the std interpreter.
tzparse Parse a timezone specification.
unicodedata Interface to unicode properties.
unittest Python unit testing framework, based on Erich Gamma's and Kent Beck's JUnit.
urllib Open an arbitrary URL.
urllib2 An extensible library for opening URLs using a variety of protocols.
urlparse Parse (absolute and relative) URLs.
user Hook to allow user-specified customization code to run.
UserDict A wrapper to allow subclassing of built-in dict class (useless with new-style classes. Since Python

2.2, dict is subclassable).
UserList A wrapper to allow subclassing of built-in list class (useless with new-style classes. Since Python

2.2, list is subclassable)
UserString A wrapper to allow subclassing of built-in string class (useless with new-style classes. Since Python

2.2, str is subclassable).
util some useful functions that don't fit elsewhere !!
uu Implementation of the UUencode and UUdecode functions.
warnings Python part of the warnings subsystem. Issue warnings, and filter unwanted warnings.
wave Stuff to parse WAVE files.
weakref Weak reference support for Python. Also allows the creation of proxy objects.
webbrowser Platform independent URL launcher.
whatsound Several routines that help recognizing sound files.
whichdb Guess which db package to use to open a db file.
whrandom Wichmann-Hill random number generator (obsolete, use random instead).
xdrlib Implements (a subset of) Sun XDR (eXternal Data Representation).
xmllib A parser for XML, using the derived class as static DTD.
xml.dom Classes for processing XML using the DOM (Document Object Model). 2.3: New modules

expatbuilder, minicompat, NodeFilter, xmlbuilder.
xml.sax Classes for processing XML using the SAX API.
xmlrpclib An XML-RPC client interface for Python.
xreadlines Provides a sequence-like object for reading a file line-by-line without reading the entire file into

memory. Deprecated since release 2.3. Use for line in file instead. Removed since 2.4
zipfile Read & write PK zipped files.
zipimport ZIP archive importer.
zmod Demonstration of abstruse mathematical concepts.

Workspace exploration and idiom hints

Python Mode for Emacs

Page 29 of 30Python 2.4 Quick Reference

2/20/2005

Type C-c ? when in python-mode for extensive help.
INDENTATION
Primarily for entering new code:
 TAB indent line appropriately
 LFD insert newline, then indent
 DEL reduce indentation, or delete single character
Primarily for reindenting existing code:
 C-c : guess py-indent-offset from file content; change locally
 C-u C-c : ditto, but change globally
 C-c TAB reindent region to match its context
 C-c < shift region left by py-indent-offset
 C-c > shift region right by py-indent-offset
MARKING & MANIPULATING REGIONS OF CODE
C-c C-b mark block of lines
M-C-h mark smallest enclosing def
C-u M-C-h mark smallest enclosing class
C-c # comment out region of code
C-u C-c # uncomment region of code
MOVING POINT
C-c C-p move to statement preceding point
C-c C-n move to statement following point
C-c C-u move up to start of current block
M-C-a move to start of def
C-u M-C-a move to start of class
M-C-e move to end of def
C-u M-C-e move to end of class
EXECUTING PYTHON CODE
C-c C-c sends the entire buffer to the Python interpreter
C-c | sends the current region
C-c ! starts a Python interpreter window; this will be used by
 subsequent C-c C-c or C-c | commands
VARIABLES
py-indent-offset indentation increment
py-block-comment-prefix comment string used by py-comment-region
py-python-command shell command to invoke Python interpreter
py-scroll-process-buffer t means always scroll Python process buffer
py-temp-directory directory used for temp files (if needed)
py-beep-if-tab-change ring the bell if tab-width is changed

Page 30 of 30Python 2.4 Quick Reference

2/20/2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

